1
|
Tain YL, Lin YJ, Hsu CN. Breastfeeding and Future Cardiovascular, Kidney, and Metabolic Health-A Narrative Review. Nutrients 2025; 17:995. [PMID: 40290039 PMCID: PMC11944316 DOI: 10.3390/nu17060995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/10/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
The benefits of breastfeeding for both mother and infant are generally recognized; however, the connections between breast milk, lactation, and long-term offspring health and disease remain incompletely understood. Cardiovascular-kidney-metabolic syndrome (CKMS) has become a major global public health challenge. Insufficient breast milk supply, combined with various early-life environmental factors, markedly increases the future risk of CKMS, as highlighted by the developmental origins of health and disease (DOHaD) concept. Given its richness in nutrients and bioactive components essential for infant health, this review focuses on reprogramming strategies involving breast milk to improve offspring's cardiovascular, kidney, and metabolic health. It also highlights recent experimental advances in understanding the mechanisms driving CKMS programming. Cumulatively, the evidence suggests that lactational impairment heightens the risk of CKMS development. In contrast, early interventions during the lactation period focused on animal models that leverage breast milk components in response to early-life cues show potential in improving cardiovascular, kidney, and metabolic outcomes-an area warranting further investigation and clinical translation.
Collapse
Affiliation(s)
- You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Arishi RA, Gridneva Z, Perrella SL, Cheema AS, Lai CT, Payne MS, Geddes DT, Stinson LF. Breastfeeding patterns and total volume of human milk consumed influence the development of the infant oral microbiome. J Oral Microbiol 2025; 17:2469892. [PMID: 40013012 PMCID: PMC11864009 DOI: 10.1080/20002297.2025.2469892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/23/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Background The oral microbiome of breastfed infants is distinct from that of formula-fed infants. However, breastfeeding characteristics, such as time spent breastfeeding (min/24 h), breastfeeding frequency (number of breastfeeds per day), and human milk intake (ml/day) vary significantly between breastfeeding dyads. Objectives Given that human milk and breastfeeding exposures likely influence early colonisation of the infant oral microbiome, this study aimed to elucidate the impact of breastfeeding characteristics on the development of the infant oral microbiome. Materials and methods Oral swabs (n = 55) were collected from infants at three months of age, alongside breastfeeding data collected over a 24-hour period. Bacterial DNA profiles were analysed using full-length 16S rRNA gene sequencing. Results Variations in breastfeeding characteristics contributed to differences in microbial community structure. Total breastfeeding duration (min/24 h) was positively associated with Bifidobacterium longum and Lactobacillus gasseri, while breastfeeding frequency was negatively associated with Veillonella sp. Additionally, human milk intake (ml/24 h) was negatively associated with Streptococcus parasanguinis. Conclusion These findings underscore the significant influence of early life feeding practices on oral microbial communities and emphasise the importance role of breastfeeding in shaping the oral microbiome during early life.
Collapse
Affiliation(s)
- Roaa A. Arishi
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Molecular Sciences, ABREAST Network, Perth, WA, Australia
- School of Molecular Sciences, UWA Centre for Human Lactation Research and Translation, Crawley, WA, Australia
- Ministry of Education, Riyadh, Saudi Arabia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Molecular Sciences, ABREAST Network, Perth, WA, Australia
- School of Molecular Sciences, UWA Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Sharon L. Perrella
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Molecular Sciences, ABREAST Network, Perth, WA, Australia
- School of Molecular Sciences, UWA Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Ali S. Cheema
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Ching T. Lai
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Molecular Sciences, ABREAST Network, Perth, WA, Australia
- School of Molecular Sciences, UWA Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynaecology, The University of Western Australia, Crawley, WA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Molecular Sciences, ABREAST Network, Perth, WA, Australia
- School of Molecular Sciences, UWA Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA, Australia
- School of Molecular Sciences, ABREAST Network, Perth, WA, Australia
- School of Molecular Sciences, UWA Centre for Human Lactation Research and Translation, Crawley, WA, Australia
| |
Collapse
|
3
|
Bianco I, Ferrara C, Romano F, Loperfido F, Sottotetti F, El Masri D, Vincenti A, Cena H, De Giuseppe R. The Influence of Maternal Lifestyle Factors on Human Breast Milk Microbial Composition: A Narrative Review. Biomedicines 2024; 12:2423. [PMID: 39594990 PMCID: PMC11592219 DOI: 10.3390/biomedicines12112423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Human breast milk (HBM) is considered the gold standard for infant nutrition due to its optimal nutrient profile and complex composition of cellular and non-cellular components. Breastfeeding positively influences the newborn's gut microbiota and health, reducing the risk of conditions like gastrointestinal infections and chronic diseases (e.g., allergies, asthma, diabetes, and obesity). Research has revealed that HBM contains beneficial microbes that aid gut microbiota maturation through mechanisms like antimicrobial production and pathogen exclusion. The HBM microbiota composition can be affected by several factors, including gestational age, delivery mode, medical treatments, lactation stage, as well as maternal lifestyle habits (e.g., diet, physical activity, sleep quality, smoking, alcohol consumption, stress level). Particularly, lifestyle factors can play a significant role in shaping the HBM microbiota by directly modulating the microbial composition or influencing the maternal gut microbiota and influencing the HBM microbes through the enteromammary pathway. This narrative review of current findings summarized how maternal lifestyle influences HBM microbiota. While the influence of maternal diet on HBM microbiota is well-documented, indicating that dietary patterns, especially those rich in plant-based proteins and complex carbohydrates, can positively influence HBM microbiota, the impact of other lifestyle factors is poorly investigated. Maintaining a healthy lifestyle during pregnancy and breastfeeding is crucial for the health of both mother and baby. Understanding how maternal lifestyle factors influence microbial colonization of HBM, along with their interactions and impact, is key to developing new strategies that support the beneficial maturation of the infant's gut microbiota.
Collapse
Affiliation(s)
- Irene Bianco
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Chiara Ferrara
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Romano
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Federica Loperfido
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Francesca Sottotetti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Dana El Masri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Alessandra Vincenti
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
- Clinical Nutrition Unit, General Medicine, Istituti Clinici Scientifici (ICS) Maugeri, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 27100 Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy; (I.B.); (C.F.); (F.R.); (F.L.); (D.E.M.); (A.V.); (H.C.); (R.D.G.)
| |
Collapse
|
4
|
Chehab RF, Fehr K, Moossavi S, Subbarao P, Moraes TJ, Mandhane P, de Souza RJ, Turvey SE, Khafipour E, Azad MB, Forman MR. Prenatal vitamin C and fish oil supplement use are associated with human milk microbiota composition in the Canadian CHILD Cohort Study. J Nutr Sci 2024; 13:e53. [PMID: 39345253 PMCID: PMC11428054 DOI: 10.1017/jns.2024.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/08/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Maternal diet may modulate human milk microbiota, but the effects of nutritional supplements are unknown. We examined the associations of prenatal diet and supplement use with milk microbiota composition. Mothers reported prenatal diet intake and supplement use using self-administered food frequency and standardised questionnaires, respectively. The milk microbiota was profiled using 16S rRNA gene sequencing. Associations of prenatal diet quality, dietary patterns, and supplement use with milk microbiota diversity and taxonomic structure were examined using Wilcoxon signed-rank tests and multivariable models adjusting for relevant confounders. A subset of 645 mothers participating in the CHILD Cohort Study (originally known as the Canadian Healthy Infant Longitudinal Development Study) provided one milk sample between 2 and 6 months postpartum and used prenatal multivitamin supplements ≥4 times a week. After adjusting for confounders, vitamin C supplement use was positively associated with milk bacterial Shannon diversity (β = 0.18, 95% CI = 0.05, 0.31) and Veillonella and Granulicatella relative abundance (β = 0.54; 95% CI = 0.05, 1.03 and β = 0.44; 95% CI = 0.04, 0.84, respectively), and negatively associated with Finegoldia relative abundance (β = -0.31; 95% CI = -0.63, -0.01). Fish oil supplement use was positively associated with Streptococcus relative abundance (β = 0.26; 95% CI = 0.03, 0.50). Prenatal diet quality and dietary patterns were not associated with milk microbiota composition. Prenatal vitamin C and fish oil supplement use were associated with differences in the milk microbiota composition. Future studies are needed to confirm our findings and elucidate mechanisms linking maternal supplement use to milk microbiota and child health.
Collapse
Affiliation(s)
- Rana F Chehab
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| | - Kelsey Fehr
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Shirin Moossavi
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- International Microbiome Centre, University of Calgary, Calgary, AB, Canada
| | - Padmaja Subbarao
- Hospital for Sick Children, Department of Pediatrics & Physiology and Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Theo J Moraes
- Department of Pediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Piushkumar Mandhane
- Department of Paediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital and The University of British Columbia, Vancouver, BC, Canada
| | - Ehsan Khafipour
- Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Michele R Forman
- Department of Nutrition Science, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
5
|
Ingram K, Gregg C, Tegge A, Elison JT, Lin W, Howell BR. Metagenomic assessment of the bacterial breastfeeding microbiome in mature milk across lactation. Front Pediatr 2024; 11:1275436. [PMID: 39092171 PMCID: PMC11292495 DOI: 10.3389/fped.2023.1275436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/25/2023] [Indexed: 08/04/2024] Open
Abstract
Introduction Research has illustrated the presence of a diverse range of microbiota in human milk. The composition of the milk microbiome varies across different stages of lactation, emphasizing the need to consider the lactation stage when studying its composition. Additionally, the transfer of both milk and skin microbiota during breastfeeding is crucial for understanding their collective impact on infant health and development. Further exploration of the complete breastfeeding microbiome is necessary to unravel the role these organisms play in infant development. We aim to longitudinally assess the bacterial breastfeeding microbiome across stages of lactation. This includes all the bacteria that infants are exposed to during breastfeeding, such as bacteria found within human milk and any bacteria found on the breast and nipple. Methods Forty-six human milk samples were collected from 15 women at 1, 4, 7, and 10 months postpartum. Metagenomic analysis of the bacterial microbiome for these samples was performed by CosmosID (Rockville, MD) via deep sequencing. Results Staphylococcus epidermidis and Propionibacteriaceae species are the most abundant bacterial species from these samples. Samples collected at 10 months showed higher abundances of Proteobacteria, Streptococcaceae, Lactobacillales, Streptococcus, and Neisseria mucosa compared to other timepoints. Alpha diversity varied greatly between participants but did not change significantly over time. Discussion As the bacterial breastfeeding microbiome continues to be studied, bacterial contributions could be used to predict and reduce health risks, optimize infant outcomes, and design effective management strategies, such as altering the maternal flora, to mitigate adverse health concerns.
Collapse
Affiliation(s)
- Kelly Ingram
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Collin Gregg
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Allison Tegge
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
| | - Jed T. Elison
- Institute for Child Development, University of Minnesota, Minneapolis, MN, United States
- Masonic Institute for the Developing Brain, University of Minnesota, St. Paul, MN, United States
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Brittany R. Howell
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, United States
- Department of Human Development and Family Science, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Sun Q, Zhou Q, Ge S, Liu L, Li P, Gu Q. Effects of Maternal Diet on Infant Health: A Review Based on Entero-Mammary Pathway of Intestinal Microbiota. Mol Nutr Food Res 2024; 68:e2400077. [PMID: 39059011 DOI: 10.1002/mnfr.202400077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/30/2024] [Indexed: 07/28/2024]
Abstract
SCOPE The microbes in breast milk are critical for the early establishment of infant gut microbiota and have important implications for infant health. Breast milk microbes primarily derive from the migration of maternal intestinal microbiota. This review suggests that the regulation of maternal diet on gut microbiota may be an effective strategy to improve infant health. METHODS AND RESULTS This article reviews the impact of breast milk microbiota on infant development and intestinal health. The close relationship between the microbiota in the maternal gut and breast through the entero-mammary pathway is discussed. Based on the effect of diet on gut microbiota, it is proposed that changing the maternal dietary structure is a new strategy for regulating breast milk microbiota and infant intestinal microbiota, which would have a positive impact on infant health. CONCLUSION Breast milk microbes have beneficial effects on infant development and regulation of the immune system. The mother's gut and breast can undergo certain bacterial migration through the entero-mammary pathway. Research has shown that intervening in a mother's diet during breastfeeding can affect the composition of the mother's gut microbiota, thereby regulating the microbiota of breast milk and infant intestines, and is closely related to infant health.
Collapse
Affiliation(s)
- Qiaoyu Sun
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qingqing Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Sitong Ge
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Lingli Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| |
Collapse
|
7
|
Sindi AS, Stinson LF, Gridneva Z, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Rea A, Trevenen ML, Geddes DT, Payne MS. Maternal dietary intervention during lactation impacts the maternal faecal and human milk microbiota. J Appl Microbiol 2024; 135:lxae024. [PMID: 38323424 DOI: 10.1093/jambio/lxae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/05/2023] [Accepted: 02/05/2024] [Indexed: 02/08/2024]
Abstract
AIMS To determine the effect of a two-week reduced fat and sugar and increased fibre maternal dietary intervention on the maternal faecal and human milk (HM) microbiomes. METHODS AND RESULTS Faecal swabs and HM samples were collected from mothers (n = 11) immediately pre-intervention, immediately post-intervention, and 4 and 8 weeks post-intervention, and were analysed using full-length 16S rRNA gene sequencing. Maternal macronutrient intake was assessed at baseline and during the intervention. Maternal fat and sugar intake during the intervention were significantly lower than pre-intervention (P = <0.001, 0.005, respectively). Significant changes in the bacterial composition of maternal faeces were detected after the dietary intervention, with decreases in the relative abundance of Bacteroides caccae (P = <0.001) and increases in the relative abundance of Faecalibacillus intestinalis (P = 0.006). In HM, the diet resulted in a significant increase in Cutibacterium acnes (P = 0.001) and a decrease in Haemophilus parainfluenzae (P = <0.001). The effect of the diet continued after the intervention, with faecal swabs and HM samples taken 4 and 8 weeks after the diet showing significant differences compared to baseline. CONCLUSION This pilot study demonstrates that short-term changes in maternal diet during lactation can alter the bacterial composition of the maternal faeces and HM.
Collapse
Affiliation(s)
- Azhar S Sindi
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F Stinson
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Zoya Gridneva
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Gabriela E Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
| | - Merryn J Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, SA 5000, Australia
- Discipline of Paediatrics, The University of Adelaide, North Adelaide, SA 5006, Australia
- Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Mary E Wlodek
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Beverly S Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Urrbrae, SA 5064, Australia
- CSIRO, Adelaide, SA 5000, Australia
| | - Alethea Rea
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, WA 6150, Australia
| | - Michelle L Trevenen
- Centre for Applied Statistics, The University of Western Australia, Crawley, WA 6009, Australia
| | - Donna T Geddes
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Matthew S Payne
- Division of Obstetrics and Gynaecology, School of Medicine, The University of Western Australia, Subiaco, WA 6008, Australia
| |
Collapse
|
8
|
Ajeeb TT, Gonzalez E, Solomons NW, Vossenaar M, Koski KG. Human milk microbiome: associations with maternal diet and infant growth. Front Nutr 2024; 11:1341777. [PMID: 38529196 PMCID: PMC10962684 DOI: 10.3389/fnut.2024.1341777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Ingestion of human milk (HM) is identified as a significant factor associated with early infant gut microbial colonization, which has been associated with infant health and development. Maternal diet has been associated with the HM microbiome (HMM). However, a few studies have explored the associations among maternal diet, HMM, and infant growth during the first 6 months of lactation. Methods For this cross-sectional study, Mam-Mayan mother-infant dyads (n = 64) were recruited from 8 rural communities in the Western Highlands of Guatemala at two stages of lactation: early (6-46 days postpartum, n = 29) or late (109-184 days postpartum, n = 35). Recruited mothers had vaginally delivered singleton births, had no subclinical mastitis or antibiotic treatments, and breastfed their infants. Data collected at both stages of lactation included two 24-h recalls, milk samples, and infant growth status indicators: head-circumference-for-age-z-score (HCAZ), length-for-age-z-score (LAZ), and weight-for-age-z-score (WAZ). Infants were divided into subgroups: normal weight (WAZ ≥ -1SD) and mildly underweight (WAZ < -1SD), non-stunted (LAZ ≥ -1.5SD) and mildly stunted (LAZ < -1.5SD), and normal head-circumference (HCAZ ≥ -1SD) and smaller head-circumference (HCAZ < -1SD). HMM was identified using 16S rRNA gene sequencing; amplicon analysis was performed with the high-resolution ANCHOR pipeline, and DESeq2 identified the differentially abundant (DA) HMM at the species-level between infant growth groups (FDR < 0.05) in both early and late lactation. Results Using both cluster and univariate analyses, we identified (a) positive correlations between infant growth clusters and maternal dietary clusters, (b) both positive and negative associations among maternal macronutrient and micronutrient intakes with the HMM at the species level and (c) distinct correlations between HMM DA taxa with maternal nutrient intakes and infant z-scores that differed between breast-fed infants experiencing growth faltering and normal growth in early and late lactation. Conclusion Collectively, these findings provide important evidence of the potential influence of maternal diet on the early-life growth of breastfed infants via modulation of the HMM.
Collapse
Affiliation(s)
- Tamara T. Ajeeb
- School of Human Nutrition, McGill University, Montreal, QC, Canada
- Department of Clinical Nutrition, College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Emmanuel Gonzalez
- Canadian Centre for Computational Genomics, McGill Genome Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC, Canada
| | - Noel W. Solomons
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | - Marieke Vossenaar
- Center for Studies of Sensory Impairment, Aging and Metabolism (CeSSIAM), Guatemala City, Guatemala
| | | |
Collapse
|
9
|
Gou W, Miao Z, Deng K, Zheng JS. Nutri-microbiome epidemiology, an emerging field to disentangle the interplay between nutrition and microbiome for human health. Protein Cell 2023; 14:787-806. [PMID: 37099800 PMCID: PMC10636640 DOI: 10.1093/procel/pwad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/02/2023] [Indexed: 04/28/2023] Open
Abstract
Diet and nutrition have a substantial impact on the human microbiome, and interact with the microbiome, especially gut microbiome, to modulate various diseases and health status. Microbiome research has also guided the nutrition field to a more integrative direction, becoming an essential component of the rising area of precision nutrition. In this review, we provide a broad insight into the interplay among diet, nutrition, microbiome, and microbial metabolites for their roles in the human health. Among the microbiome epidemiological studies regarding the associations of diet and nutrition with microbiome and its derived metabolites, we summarize those most reliable findings and highlight evidence for the relationships between diet and disease-associated microbiome and its functional readout. Then, the latest advances of the microbiome-based precision nutrition research and multidisciplinary integration are described. Finally, we discuss several outstanding challenges and opportunities in the field of nutri-microbiome epidemiology.
Collapse
Affiliation(s)
- Wanglong Gou
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zelei Miao
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kui Deng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Ju-Sheng Zheng
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
- Research Center for Industries of the Future, Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
10
|
Holdsworth EA, Williams JE, Pace RM, Lane AA, Gartstein M, McGuire MA, McGuire MK, Meehan CL. Breastfeeding patterns are associated with human milk microbiome composition: The Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES). PLoS One 2023; 18:e0287839. [PMID: 37556398 PMCID: PMC10411759 DOI: 10.1371/journal.pone.0287839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/14/2023] [Indexed: 08/11/2023] Open
Abstract
The human milk microbiome (HMM) is hypothesized to be seeded by multiple factors, including the infant oral microbiome during breastfeeding. However, it is not known whether breastfeeding patterns (e.g., frequency or total time) impact the composition of the HMM. As part of the Mother-Infant Microbiomes, Behavior, and Ecology Study (MIMBES), we analyzed data from naturalistic observations of 46 mother-infant dyads living in the US Pacific Northwest and analyzed milk produced by the mothers for its bacterial diversity and composition. DNA was extracted from milk and the V1-V3 region of the 16S rRNA gene was amplified and sequenced. We hypothesized that number of breastfeeding bouts (breastfeeding sessions separated by >30 seconds) and total time breastfeeding would be associated with HMM α-diversity (richness, diversity, or evenness) and differential abundance of HMM bacterial genera. Multiple linear regression was used to examine associations between HMM α-diversity and the number of breastfeeding bouts or total time breastfeeding and selected covariates (infant age, maternal work outside the home, frequency of allomother physical contact with the infant, non-household caregiving network). HMM richness was inversely associated with number of breastfeeding bouts and frequency of allomother physical contact, but not total time breastfeeding. Infants' non-household caregiving network was positively associated with HMM evenness. In two ANCOM-BC analyses, abundances of 5 of the 35 most abundant genera were differentially associated with frequency of breastfeeding bouts (Bifidobacterium, Micrococcus, Pedobacter, Acidocella, Achromobacter); 5 genera (Bifidobacterium, Agreia, Pedobacter, Rugamonas, Stenotrophomonas) were associated with total time breastfeeding. These results indicate that breastfeeding patterns and infant caregiving ecology may play a role in influencing HMM composition. Future research is needed to identify whether these relationships are consistent in other populations and if they are associated with variation in the infant's gastrointestinal (including oral) microbiome.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Avery A. Lane
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| | - Maria Gartstein
- Department of Psychology, Washington State University, Pullman, Washington, United States of America
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Courtney L. Meehan
- Department of Anthropology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
11
|
Mady EA, Doghish AS, El-Dakroury WA, Elkhawaga SY, Ismail A, El-Mahdy HA, Elsakka EGE, El-Husseiny HM. Impact of the mother's gut microbiota on infant microbiome and brain development. Neurosci Biobehav Rev 2023; 150:105195. [PMID: 37100161 DOI: 10.1016/j.neubiorev.2023.105195] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 04/28/2023]
Abstract
The link between the gut microbiome and health has recently garnered considerable interest in its employment for medicinal purposes. Since the early microbiota exhibits more flexibility compared to that of adults, there is a considerable possibility that altering it will have significant consequences on human development. Like genetics, the human microbiota can be passed from mother to child. This provides information on early microbiota acquisition, future development, and prospective chances for intervention. The succession and acquisition of early-life microbiota, modifications of the maternal microbiota during pregnancy, delivery, and infancy, and new efforts to understand maternal-infant microbiota transmission are discussed in this article. We also examine the shaping of mother-to-infant microbial transmission, and we then explore possible paths for future research to advance our knowledge in this area.
Collapse
Affiliation(s)
- Eman A Mady
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Animal Hygiene, Behavior and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya,13736, Egypt.
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and industrial pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Ahmed Ismail
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Hesham A El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Elsayed G E Elsakka
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt
| | - Hussein M El-Husseiny
- Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
12
|
Abdolmaleky HM, Martin M, Zhou JR, Thiagalingam S. Epigenetic Alterations of Brain Non-Neuronal Cells in Major Mental Diseases. Genes (Basel) 2023; 14:896. [PMID: 37107654 PMCID: PMC10137903 DOI: 10.3390/genes14040896] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/22/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The tissue-specific expression and epigenetic dysregulation of many genes in cells derived from the postmortem brains of patients have been reported to provide a fundamental biological framework for major mental diseases such as autism, schizophrenia, bipolar disorder, and major depression. However, until recently, the impact of non-neuronal brain cells, which arises due to cell-type-specific alterations, has not been adequately scrutinized; this is because of the absence of techniques that directly evaluate their functionality. With the emergence of single-cell technologies, such as RNA sequencing (RNA-seq) and other novel techniques, various studies have now started to uncover the cell-type-specific expression and DNA methylation regulation of many genes (e.g., TREM2, MECP2, SLC1A2, TGFB2, NTRK2, S100B, KCNJ10, and HMGB1, and several complement genes such as C1q, C3, C3R, and C4) in the non-neuronal brain cells involved in the pathogenesis of mental diseases. Additionally, several lines of experimental evidence indicate that inflammation and inflammation-induced oxidative stress, as well as many insidious/latent infectious elements including the gut microbiome, alter the expression status and the epigenetic landscapes of brain non-neuronal cells. Here, we present supporting evidence highlighting the importance of the contribution of the brain's non-neuronal cells (in particular, microglia and different types of astrocytes) in the pathogenesis of mental diseases. Furthermore, we also address the potential impacts of the gut microbiome in the dysfunction of enteric and brain glia, as well as astrocytes, which, in turn, may affect neuronal functions in mental disorders. Finally, we present evidence that supports that microbiota transplantations from the affected individuals or mice provoke the corresponding disease-like behavior in the recipient mice, while specific bacterial species may have beneficial effects.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Marian Martin
- Department of Neurology, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jin-Rong Zhou
- Department of Surgery, Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
13
|
Krebs NF, Belfort MB, Meier PP, Mennella JA, O'Connor DL, Taylor SN, Raiten DJ. Infant factors that impact the ecology of human milk secretion and composition-a report from "Breastmilk Ecology: Genesis of Infant Nutrition (BEGIN)" Working Group 3. Am J Clin Nutr 2023; 117 Suppl 1:S43-S60. [PMID: 37173060 PMCID: PMC10356564 DOI: 10.1016/j.ajcnut.2023.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 05/15/2023] Open
Abstract
Infants drive many lactation processes and contribute to the changing composition of human milk through multiple mechanisms. This review addresses the major topics of milk removal; chemosensory ecology for the parent-infant dyad; the infant's inputs into the composition of the human milk microbiome; and the impact of disruptions in gestation on the ecology of fetal and infant phenotypes, milk composition, and lactation. Milk removal, which is essential for adequate infant intake and continued milk synthesis through multiple hormonal and autocrine/paracrine mechanisms, should be effective, efficient, and comfortable for both the lactating parent and the infant. All 3 components should be included in the evaluation of milk removal. Breastmilk "bridges" flavor experiences in utero with postweaning foods, and the flavors become familiar and preferred. Infants can detect flavor changes in human milk resulting from parental lifestyle choices, including recreational drug use, and early experiences with the sensory properties of these recreational drugs impact subsequent behavioral responses. Interactions between the infant's own developing microbiome, that of the milk, and the multiple environmental factors that are drivers-both modifiable and nonmodifiable-in the microbial ecology of human milk are explored. Disruptions in gestation, especially preterm birth and fetal growth restriction or excess, impact the milk composition and lactation processes such as the timing of secretory activation, adequacy of milk volume and milk removal, and duration of lactation. Research gaps are identified in each of these areas. To assure a sustained and robust breastfeeding ecology, these myriad infant inputs must be systematically considered.
Collapse
Affiliation(s)
- Nancy F Krebs
- Section of Nutrition, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Mandy B Belfort
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paula P Meier
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | | | - Deborah L O'Connor
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada; The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah N Taylor
- Division of Neonatology, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Daniel J Raiten
- Pediatric Growth and Nutrition Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Taylor R, Keane D, Borrego P, Arcaro K. Effect of Maternal Diet on Maternal Milk and Breastfed Infant Gut Microbiomes: A Scoping Review. Nutrients 2023; 15:1420. [PMID: 36986148 PMCID: PMC10051234 DOI: 10.3390/nu15061420] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
While it is widely recognized that nutrition during pregnancy and lactation can affect the microbiome of breast milk as well as the formation of the infant gut microbiome, we are only just beginning to understand the extent to which maternal diet impacts these microbiomes. Given the importance of the microbiome for infant health, we conducted a comprehensive review of the published literature to explore the current scope of knowledge regarding associations between maternal diet and the breast milk and infant gut microbiomes. Papers included in this review assessed either diet during lactation or pregnancy, and the milk and/or infant gut microbiome. Sources included cohort studies, randomized clinical trials, one case-control study, and one crossover study. From an initial review of 808 abstracts, we identified 19 reports for a full analysis. Only two studies assessed the effects of maternal diet on both milk and infant microbiomes. Although the reviewed literature supports the importance of a varied, nutrient-dense maternal diet in the formation of the infant's gut microbiome, several studies found factors other than maternal diet to have a greater impact on the infant microbiome.
Collapse
Affiliation(s)
- Rachel Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Deirdre Keane
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Paulina Borrego
- Science & Engineering Library, University of Massachusetts, Lederle Grad Research Ctr Low-Rise, 740 N Pleasant St Rm A273, Amherst, MA 01003, USA
| | - Kathleen Arcaro
- Department of Veterinary and Animal Sciences, University of Massachusetts, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
15
|
Sampath V, Martinez M, Caplan M, Underwood MA, Cuna A. Necrotizing enterocolitis in premature infants-A defect in the brakes? Evidence from clinical and animal studies. Mucosal Immunol 2023; 16:208-220. [PMID: 36804483 DOI: 10.1016/j.mucimm.2023.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
A key aspect of postnatal intestinal adaptation is the establishment of symbiotic relationships with co-evolved gut microbiota. Necrotizing enterocolitis (NEC) is the most severe disease arising from failure in postnatal gut adaptation in premature infants. Although pathological activation of intestinal Toll-like receptors (TLRs) is believed to underpin NEC pathogenesis, the mechanisms are incompletely understood. We postulate that unregulated aberrant TLR activation in NEC arises from a failure in intestinal-specific mechanisms that tamponade TLR signaling (the brakes). In this review, we discussed the human and animal studies that elucidate the developmental mechanisms inhibiting TLR signaling in the postnatal intestine (establishing the brakes). We then evaluate evidence from preclinical models and human studies that point to a defect in the inhibition of TLR signaling underlying NEC. Finally, we provided a framework for the assessment of NEC risk by screening for signatures of TLR signaling and for NEC prevention by TLR-targeted therapy in premature infants.
Collapse
Affiliation(s)
- Venkatesh Sampath
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA.
| | - Maribel Martinez
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| | - Michael Caplan
- Department of Pediatrics, North Shore University Health System, Evanston, Illinois, USA
| | - Mark A Underwood
- Department of Pediatrics, University of California Davis, Sacramento, California, USA
| | - Alain Cuna
- Division of Neonatology, Children's Mercy Kansas City, Kansas City, Missouri, USA; School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
16
|
Hill RR, Pados BF. Gastrointestinal Symptom Improvement for Infants Following Tongue-Tie Correction. Clin Pediatr (Phila) 2023; 62:136-142. [PMID: 35945826 DOI: 10.1177/00099228221117459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Treatment of tongue-tie in infants suggests improvements for breastfeeding mothers, including reduced nipple pain and improved latching onto the breast. The effects of frenotomy on infant feeding and gastrointestinal dysfunction remain controversial, with insufficient evidence on the relationship between tongue-tie and disorders of the gastrointestinal tract. The purpose of this study was to compare symptoms of gastrointestinal (GI) distress and gastroesophageal reflux (GER) prior to and 2 weeks following frenotomy in infants with tongue-tie. Parents were surveyed prior to frenotomy and 2 weeks post procedure, using the Gastrointestinal and Gastroesophageal Reflux (GIGER) Scale for Infants and Toddlers. Eighty-four participants completed surveys at both time points, with significant improvements in GI and GER symptoms 2 weeks after frenotomy. Younger infants and those with more severe tongue-tie had the greatest improvements in GI and GER symptoms. Infants with tongue-tie and symptoms of GI tract distress may experience improvement in symptoms after frenotomy.
Collapse
Affiliation(s)
- Rebecca R Hill
- MGH Institute of Health Professions School of Nursing, Boston, MA, USA
| | | |
Collapse
|
17
|
Lundgren SN, Madan JC, Karagas MR, Morrison HG, Christensen BC, Hoen AG. Human milk-associated bacterial communities associate with the infant gut microbiome over the first year of life. Front Microbiol 2023; 14:1164553. [PMID: 37138613 PMCID: PMC10149717 DOI: 10.3389/fmicb.2023.1164553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/27/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Microbial communities inhabiting the human infant gut are important for immune system development and lifelong health. One critical exposure affecting the bacterial colonization of the infant gut is consumption of human milk, which contains diverse microbial communities and prebiotics. We hypothesized that human milk-associated microbial profiles are associated with those of the infant gut. Methods Maternal-infant dyads enrolled in the New Hampshire Birth Cohort Study (n = 189 dyads) contributed breast milk and infant stool samples collected approximately at 6 weeks, 4 months, 6 months, 9 months, and 12 months postpartum (n = 572 samples). Microbial DNA was extracted from milk and stool and the V4-V5 region of the bacterial 16S rRNA gene was sequenced. Results Clustering analysis identified three breast milk microbiome types (BMTs), characterized by differences in Streptococcus, Staphylococcus, Pseudomonas, Acinetobacter, and microbial diversity. Four 6-week infant gut microbiome types (6wIGMTs) were identified, differing in abundances of Bifidobacterium, Bacteroides, Clostridium, Streptococcus, and Escherichia/Shigella, while two 12-month IGMTs (12mIGMTs) differed primarily by Bacteroides presence. At 6 weeks, BMT was associated with 6wIGMT (Fisher's exact test value of p = 0.039); this association was strongest among infants delivered by Cesarean section (Fisher's exact test value of p = 0.0028). The strongest correlations between overall breast milk and infant stool microbial community structures were observed when comparing breast milk samples to infant stool samples collected at a subsequent time point, e.g., the 6-week breast milk microbiome associated with the 6-month infant gut microbiome (Mantel test Z-statistic = 0.53, value of p = 0.001). Streptoccous and Veillonella species abundance were correlated in 6-week milk and infant stool, and 4- and 6-month milk Pantoea species were associated with infant stool Lachnospiraceae genera at 9 and 12 months. Discussion We identified clusters of human milk and infant stool microbial communities that were associated in maternal-infant dyads at 6 weeks of life and found that milk microbial communities were more strongly associated with infant gut microbial communities in infants delivered operatively and after a lag period. These results suggest that milk microbial communities have a long-term effect on the infant gut microbiome both through sharing of microbes and other molecular mechanisms.
Collapse
Affiliation(s)
- Sara N. Lundgren
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Juliette C. Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Pediatrics, Children’s Hospital at Dartmouth, Lebanon, NH, United States
- Department of Psychiatry, Children’s Hospital at Dartmouth, Lebanon, NH, United States
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Hilary G. Morrison
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- *Correspondence: Brock C. Christensen,
| | - Anne G. Hoen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
18
|
Edwards CA, Van Loo-Bouwman CA, Van Diepen JA, Schoemaker MH, Ozanne SE, Venema K, Stanton C, Marinello V, Rueda R, Flourakis M, Gil A, Van der Beek EM. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes 2022; 13:365-382. [PMID: 36377578 DOI: 10.3920/bm2021.0098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal microbiota plays a major role in infant health and development. However, the role of the breastmilk microbiota in infant gut colonisation remains unclear. A systematic review was performed to evaluate the composition of the breastmilk microbiota and evidence for transfer to/colonisation of the infant gut. Searches were performed using PUBMED, OVID, LILACS and PROQUEST from inception until 18th March 2020 with a PUBMED update to December 2021. 88 full texts were evaluated before final critique based on study power, sample contamination avoidance, storage, purification process, DNA extraction/analysis, and consideration of maternal health and other potential confounders. Risk of skin contamination was reduced mainly by breast cleaning and rejecting the first milk drops. Sample storage, DNA extraction and bioinformatics varied. Several studies stored samples under conditions that may selectively impact bacterial DNA preservation, others used preculture reducing reliability. Only 15 studies, with acceptable sample size, handling, extraction, and bacterial analysis, considered transfer of bacteria to the infant. Three reported bacterial transfer from infant to breastmilk. Despite consistent evidence for the breastmilk microbiota, and recent studies using improved methods to investigate factors affecting its composition, few studies adequately considered transfer to the infant gut providing very little evidence for effective impact on gut colonisation.
Collapse
Affiliation(s)
- C A Edwards
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - C A Van Loo-Bouwman
- Yili Innovation Center Europe, Bronland 12 E-1, 6708 WH Wageningen, the Netherlands
| | - J A Van Diepen
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - M H Schoemaker
- Medical and Scientific Affairs, Reckitt|Mead Johnson Nutrition Institute, Middenkampweg 2, 6545 CJ Nijmegen, the Netherlands
| | - S E Ozanne
- Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, P.O. Box 289, Cambridge CB2 0QQ, United Kingdom
| | - K Venema
- Department of Human Biology, Centre for Healthy Eating & Food Innovation, Maastricht University - Campus Venlo, P.O. Box 8, 5900 AA Venlo, the Netherlands
| | - C Stanton
- Teagasc Moorepark Food Research Centre, and APC Microbiome Ireland, Cork, Ireland
| | - V Marinello
- Human Nutrition, School of Medicine, Dentistry, and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, 84 Castle St, Glasgow G4 0SF, United Kingdom
| | - R Rueda
- R&D Department, Abbott Nutrition, Cam. de Purchil, 68, 18004 Granada, Spain
| | - M Flourakis
- ILSI Europe a.i.s.b.l., E. Mounierlaan 83, 1200 Brussels, Belgium; correspondence has been taken over by C.-Y. Chang of ILSI Europe
| | - A Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Institute of Nutrition and Food Technology 'José Mataix,' Biomedical Research Centre, University of Granada, and Instituto de Investigación Biosanitaria ibs Granada, Avda. del Conocimiento s/n, 18100, Armilla, Grenada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - E M Van der Beek
- Department of Pediatrics, University Medical Centre Groningen, University of Groningen, Postbus 30.001, 9700 RB Groningen, the Netherlands
- Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands
| |
Collapse
|
19
|
Daiy K, Harries V, Nyhan K, Marcinkowska UM. Maternal weight status and the composition of the human milk microbiome: A scoping review. PLoS One 2022; 17:e0274950. [PMID: 36191014 PMCID: PMC9529148 DOI: 10.1371/journal.pone.0274950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
The human milk microbiome is thought to partly contribute to the assembly of the infant gut microbiome, a microbial community with important implications for infant health and development. While obesity has well-established links with the adult gut microbiome, less is known about how it affects the human milk microbiome. In this scoping review, we synthesize the current literature on the microbial composition of human milk by maternal weight status, defined broadly as BMI (prepregnancy and postpartum) and gestational weight gain (GWG). This study followed the a priori protocol published in Prospero (registration #: CRD42020165633). We searched the following databases for studies reporting maternal weight status and a characterization of milk microbiota through culture-dependent and culture-independent methods: MEDLINE, Embase, Web of Science, CINAHL, and Scopus. After screening 6,365 studies, we found 20 longitudinal and cross-sectional studies investigating associations between maternal weight status and the composition of the milk microbiome. While some studies reported no associations, many others reported that women with a pre-pregnancy or postpartum BMI characterized as overweight or obese, or with excessive GWG, had higher abundances of the genus Staphylococcus, lower Bifidobacterium abundance, and lower alpha diversity (within-sample diversity). This review suggests that maternal weight status is minorly associated with the composition of the milk microbiome in various ways. We offer potential explanations for these findings, as well as suggestions for future research.
Collapse
Affiliation(s)
- Katherine Daiy
- Department of Anthropology, Yale University, New Haven, CT, United States of America
| | - Victoria Harries
- Department of Anthropology, Yale University, New Haven, CT, United States of America
| | - Kate Nyhan
- Cushing/Whitney Medical Library, Yale University, New Haven, CT, United States of America
| | | |
Collapse
|
20
|
Sindi AS, Stinson LF, Lean SS, Chooi YH, Leghi GE, Netting MJ, Wlodek ME, Muhlhausler BS, Geddes DT, Payne MS. Effect of a reduced fat and sugar maternal dietary intervention during lactation on the infant gut microbiome. Front Microbiol 2022; 13:900702. [PMID: 36060782 PMCID: PMC9428759 DOI: 10.3389/fmicb.2022.900702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveA growing body of literature has shown that maternal diet during pregnancy is associated with infant gut bacterial composition. However, whether maternal diet during lactation affects the exclusively breastfed infant gut microbiome remains understudied. This study sets out to determine whether a two-week of a reduced fat and sugar maternal dietary intervention during lactation is associated with changes in the infant gut microbiome composition and function.DesignStool samples were collected from four female and six male (n = 10) infants immediately before and after the intervention. Maternal baseline diet from healthy mothers aged 22–37 was assessed using 24-h dietary recall. During the 2-week dietary intervention, mothers were provided with meals and their dietary intake was calculated using FoodWorks 10 Software. Shotgun metagenomic sequencing was used to characterize the infant gut microbiome composition and function.ResultsIn all but one participant, maternal fat and sugar intake during the intervention were significantly lower than at baseline. The functional capacity of the infant gut microbiome was significantly altered by the intervention, with increased levels of genes associated with 28 bacterial metabolic pathways involved in biosynthesis of vitamins (p = 0.003), amino acids (p = 0.005), carbohydrates (p = 0.01), and fatty acids and lipids (p = 0.01). Although the dietary intervention did not affect the bacterial composition of the infant gut microbiome, relative difference in maternal fiber intake was positively associated with increased abundance of genes involved in biosynthesis of storage compounds (p = 0.016), such as cyanophycin. Relative difference in maternal protein intake was negatively associated with Veillonella parvula (p = 0.006), while positively associated with Klebsiella michiganensis (p = 0.047). Relative difference in maternal sugar intake was positively associated with Lactobacillus paracasei (p = 0.022). Relative difference in maternal fat intake was positively associated with genes involved in the biosynthesis of storage compounds (p = 0.015), fatty acid and lipid (p = 0.039), and metabolic regulator (p = 0.038) metabolic pathways.ConclusionThis pilot study demonstrates that a short-term maternal dietary intervention during lactation can significantly alter the functional potential, but not bacterial taxonomy, of the breastfed infant gut microbiome. While the overall diet itself was not able to change the composition of the infant gut microbiome, changes in intakes of maternal protein and sugar during lactation were correlated with changes in the relative abundances of certain bacterial species.Clinical trial registration: Australian New Zealand Clinical Trials Registry (ACTRN12619000606189).
Collapse
Affiliation(s)
- Azhar S. Sindi
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- College of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Lisa F. Stinson
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Soo Sum Lean
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gabriela E. Leghi
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
| | - Merryn J. Netting
- Women and Kids Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- Discipline of Pediatrics, The University of Adelaide, Adelaide, SA, Australia
- Women’s and Children’s Hospital, Adelaide, SA, Australia
| | - Mary E. Wlodek
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Obstetrics and Gynecology, University of Melbourne, Melbourne, VIC, Australia
| | - Beverly S. Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide, SA, Australia
- CSIRO, Adelaide, SA, Australia
| | - Donna T. Geddes
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia
| | - Matthew S. Payne
- Division of Obstetrics and Gynecology, The University of Western Australia, Perth, WA, Australia
- Women and Infants Research Foundation, Perth, WA, Australia
- *Correspondence: Matthew S. Payne,
| |
Collapse
|
21
|
Huang T, Zeng Z, Liang X, Tang X, Luo H, Wang D, Zhou J, Xiao X. Effect of breast milk with or without bacteria on infant gut microbiota. BMC Pregnancy Childbirth 2022; 22:595. [PMID: 35883060 PMCID: PMC9317457 DOI: 10.1186/s12884-022-04930-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The breast milk microbiome could be a source of infant intestinal microbiota. Several studies have found that some breast milk is extremely low in bacteria or is even sterile. There are limited studies on the effect of milk without bacteria on the infant gut microbiota. The purpose of this study was to investigate the gut microbiota of infants fed with bacterial milk or sterile milk. Meanwhile, we attempted to find the cause of undetectable bacteria in milk. METHODS A total of 17 healthy pregnant women and 17 infants were enrolled in this study. Fecal samples were collected from full-term pregnant women. Milk samples and infant fecal samples were collected on the 14th postnatal day. Breast milk and fecal samples were examined using 16S rRNA sequencing technology. Pregnant women and infants were grouped according to milk with or without bacteria. To compare the differences in gut microbiota and clinical characteristics between groups. RESULTS Bacteria were detected in 11 breast milk samples, and the bacterial detection rate was 64.7%. Infants fed with bacterial milk showed higher Shannon index and Simpson index (P = 0.020, P = 0.048), and their relative abundance of Lachnospirales, Lachnospiraceae and Eggerthellaceae was markedly higher. In addition, there were more bacterial associations in the co-occurrence network of infants fed with bacterial milk. Pregnant women with sterile and bacterial breast milk showed no significant differences in their clinical characteristics, and microbial composition and diversity. CONCLUSIONS Some breast milk from healthy postpartum women failed to be sequenced due to low microbial DNA quantities or is sterile. Research is needed to explore the reasons for this phenomenon. Infants fed with bacterial milk had higher Alpha diversity and more complex microbiota networks. These findings provide novel insight into milk microbiota and infant gut microbiota.
Collapse
Affiliation(s)
- Ting Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zichun Zeng
- Department of Obstetrics and Gynecology, Chengdu Fifth People's Hospital, Chengdu, China
| | - Xinyuan Liang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.,Department of Obstetrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Guangzhou, China
| | - Xiaomei Tang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huijuan Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Dongju Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiaomin Xiao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
22
|
Davis EC, Wang M, Donovan SM. Microbial Interrelationships across Sites of Breastfeeding Mothers and Infants at 6 Weeks Postpartum. Microorganisms 2022; 10:microorganisms10061155. [PMID: 35744673 PMCID: PMC9230604 DOI: 10.3390/microorganisms10061155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
Infancy is a critical life stage for the establishment of the gut microbiome. Human milk contains a unique microbial ecosystem that serves as a continuous source of commensal bacteria for the infant. However, the origin of the human milk microbiota, how it is influenced by breastfeeding exclusivity, and its role in infant gut microbiota assembly are not clear. To interrogate these questions, we examined the relationships among fecal, oral, breast skin, and human milk microbiota of 33 exclusively breastfeeding (EBF) and mixed-feeding (MF; human milk + infant formula) mother–infant pairs at 6 weeks postpartum. Here, we show that MF infants have a significantly more diverse oral microbiome comprised of lower relative abundances of Streptococcus and Gemella and higher abundances of Veillonella. Using both SourceTracker2 and FEAST, we demonstrate breast skin and infant saliva as the principal contributing sources to the human milk microbiota. Of the sampled sites, human milk and maternal stool were predicted to contribute the largest fraction to the infant fecal microbiome, but the majority of the community was estimated to arise from unknown sources. Lastly, we identified twenty-one significant co-occurrence relationships between bacteria in human milk and on other maternal and infant body sites. These results demonstrate several unique microbial interrelationships between breastfeeding dyads, providing insight into potential mechanisms of microbial assembly in early life.
Collapse
Affiliation(s)
- Erin C. Davis
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
| | - Mei Wang
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
| | - Sharon M. Donovan
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA;
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA;
- Correspondence: ; Tel.: +1-(217)-333-2289
| |
Collapse
|
23
|
Mullen AJ, O’Connor DL, Hanley AJ, Piedimonte G, Wallace M, Ley SH. Associations of Metabolic and Obstetric Risk Parameters with Timing of Lactogenesis II. Nutrients 2022; 14:nu14040876. [PMID: 35215526 PMCID: PMC8879345 DOI: 10.3390/nu14040876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/02/2022] Open
Abstract
Lactogenesis II is the onset of copious milk production following parturition. Delayed onset of lactogenesis II (DLII) often contributes to poorer lactation performance, which may adversely affect maternal and child health. The present study aims to identify the metabolic and obstetric risk factors for DLII in a secondary analysis of a prospective cohort study following pregnant women through postpartum. We defined the onset of lactogenesis II as delayed if it occurred ≥72 h postpartum. Multiple logistic regression analyses were conducted to evaluate the associations of metabolic and obstetric variables with DLII. Median onset of lactogenesis II was 72.4 h (IQR 60.4–91.6) postpartum, and 55.4% (98 of 177) of women experienced DLII. Time to first breast contact ≥ 2 h postpartum compared to ≤1 h postpartum was associated with DLII (OR 2.71 95% CI 1.12–6.53) with adjustment for age, race, pregravid BMI, primiparity, and mode of delivery, while metabolic variables were not significantly associated with DLII. In this comprehensive examination of potential metabolic and obstetric parameters, earlier timing of putting the infant to the breast remained significantly associated with earlier onset of milk coming in after consideration of the other potential risk factors. Obstetrical practices, including putting the baby to the breast later, may have an important impact on the timing of lactation, and interventions are needed to address this concern.
Collapse
Affiliation(s)
- Amber J. Mullen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, M.B. 8318, New Orleans, LA 70112, USA;
| | - Deborah L. O’Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.O.); (A.J.H.)
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Anthony J. Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, ON M5S 1A8, Canada; (D.L.O.); (A.J.H.)
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
- Division of Endocrinology, University of Toronto, Toronto, ON M5S 3H2, Canada
- Leadership Sinai Centre for Diabetes, Mount Sinai Hospital, Toronto, ON M5T 3L9, Canada
| | - Giovanni Piedimonte
- Departments of Pediatrics, Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Maeve Wallace
- Department of Social, Behavioral, and Population Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA;
| | - Sylvia H. Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, 1440 Canal Street, M.B. 8318, New Orleans, LA 70112, USA;
- Correspondence: ; Tel.: +1-504-988-2433; Fax: +1-504-988-1568
| |
Collapse
|
24
|
The hidden universe of human milk microbiome: origin, composition, determinants, role, and future perspectives. Eur J Pediatr 2022; 181:1811-1820. [PMID: 35124754 PMCID: PMC9056486 DOI: 10.1007/s00431-022-04383-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/14/2022]
Abstract
UNLABELLED Although traditionally considered sterile, human milk is currently recognized as an alive ecosystem that harbors not only bacteria, but also viruses, fungi and yeasts, and minor genera, collectively known as the human milk microbiome (HMM). The seeding of HMM is a complex phenomenon whose dynamics are still a matter of research. Many factors contribute to its determination, both maternal, neonatal, environmental, and related to human milk itself. The transmission of microorganisms to the infant through breastfeeding may impact its present and future health, mainly shaping the GI tract microbiome and immune system. The existence and persistence of HMM as a conserved feature among different species may also have an evolutionary meaning, which will become apparent only in evolutionary times. CONCLUSION The complexities of HMM warrant further research in order to deepen our knowledge on its origin, determinants, and impact on infants' health. The practical and translational implications of research on HMM (e.g., reconstitution of donor human milk through inoculation of infant's own mother milk, modulation of HMM through maternal dietary supplementation) should not be overlooked. WHAT IS KNOWN • Human milk harbors a wide variety of microorganisms, ranging from bacteria to viruses, fungi and yeasts, and minor genera. • Human milk microbiome is shaped over time by many factors: maternal, neonatal, environmental, and related to human milk itself. • The transmission of microorganisms through breastfeeding may impact the infant's present and future health. WHAT IS NEW • We provide an overview on human milk microbiome, hopefully encouraging physicians to consider it among the other better-known breastfeeding benefits. • Further studies, with standardized and rigorous study designs to enhance accuracy and reproducibility of the results, are needed to deepen our knowledge of the human milk microbiota and its role in newborn and infant's health.
Collapse
|
25
|
LeMay-Nedjelski L, Yonemitsu C, Asbury MR, Butcher J, Ley SH, Hanley AJ, Kiss A, Unger S, Copeland JK, Wang PW, Stintzi A, Bode L, O'Connor DL. Oligosaccharides and Microbiota in Human Milk Are Interrelated at 3 Months Postpartum in a Cohort of Women with a High Prevalence of Gestational Impaired Glucose Tolerance. J Nutr 2021; 151:3431-3441. [PMID: 34510198 PMCID: PMC8562078 DOI: 10.1093/jn/nxab270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Human milk is a rich source of human milk oligosaccharides (HMOs) and bacteria. It is unclear how these components interact within the breast microenvironment. OBJECTIVES The objectives were first, to investigate the association between maternal characteristics and HMOs, and second, to assess the association between HMOs and microbial community composition and predicted function in milk from women with high rates of gestational glucose intolerance. METHODS This was an exploratory analysis of a previously completed prospective cohort study (NCT01405547) where milk samples (n = 107) were collected at 3 mo postpartum. Milk microbiota composition was analyzed by V4-16S ribosomal RNA gene sequencing and HMOs by rapid high-throughput HPLC. Data were stratified and analyzed by maternal secretor status phenotype and associations between HMOs and microbiota were determined using linear regression models (ɑ-diversity), Adonis (B-diversity), Poisson regression models (differential abundance), and general linear models (predicted microbial function). RESULTS Prepregnancy BMI, race, and frequency of direct breastfeeding, but not gestational glucose intolerance, were found to be significantly associated with a number of HMOs among secretors and non-secretors. Fucosyllacto-N-hexaose was negatively associated with microbial richness (Chao1) among secretors [B-estimate (SE): -9.3 × 102 (3.4 × 102); P = 0.0082] and difucosyllacto-N-hexaose was negatively associated with microbiota diversity (Shannon index) [-1.7 (0.78); P = 0.029] among secretors. Lacto-N-neotetraose (LNnT) was associated with both microbial B-diversity (weighted UniFrac R2 = 0.040, P = 0.036) and KEGG ortholog B-diversity (Bray-Curtis R2 = 0.039, P = 0.043) in secretors. Additionally, difucosyllactose in secretors and disialyllacto-N-hexaose and LNnT in non-secretors were associated with enrichment of predicted microbial genes encoding for metabolism- and infection-related pathways (P-false discovery rate < 0.1). CONCLUSIONS HMOs are associated with the microbial composition and predicted microbial functions in human milk at 3 mo postpartum. Further research is needed to investigate the role these relations play in maternal and infant health.
Collapse
Affiliation(s)
- Lauren LeMay-Nedjelski
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Michelle R Asbury
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - James Butcher
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvia H Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA
| | - Anthony J Hanley
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Sharon Unger
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatrics, Sinai Health, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
| | - Julia K Copeland
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Pauline W Wang
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Ontario, Canada
| | - Alain Stintzi
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, USA
| | - Deborah L O'Connor
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
- Translational Medicine Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Short- and Long-Term Implications of Human Milk Microbiota on Maternal and Child Health. Int J Mol Sci 2021; 22:ijms222111866. [PMID: 34769296 PMCID: PMC8584477 DOI: 10.3390/ijms222111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022] Open
Abstract
Human milk (HM) is considered the most complete food for infants as its nutritional composition is specifically designed to meet infant nutritional requirements during early life. HM also provides numerous biologically active components, such as polyunsaturated fatty acids, milk fat globules, IgA, gangliosides or polyamines, among others; in addition, HM has a “bifidogenic effect”, a prebiotic effect, as a result of the low concentration of proteins and phosphates, as well as the presence of lactoferrin, lactose, nucleotides and oligosaccharides. Recently, has been a growing interest in HM as a potential source of probiotics and commensal bacteria to the infant gut, which might, in turn, influence both the gut colonization and maturation of infant immune system. Our review aims to address practical approaches to the detection of microbial communities in human breast milk samples, delving into their origin, composition and functions. Furthermore, we will summarize the current knowledge of how HM microbiota dysbiosis acts as a short- and long-term predictor of maternal and infant health. Finally, we also provide a critical view of the role of breast milk-related bacteria as a novel probiotic strategy in the prevention and treatment of maternal and offspring diseases.
Collapse
|
27
|
Yao Y, Cai X, Ye Y, Wang F, Chen F, Zheng C. The Role of Microbiota in Infant Health: From Early Life to Adulthood. Front Immunol 2021; 12:708472. [PMID: 34691021 PMCID: PMC8529064 DOI: 10.3389/fimmu.2021.708472] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
From early life to adulthood, the microbiota play a crucial role in the health of the infant. The microbiota in early life are not only a key regulator of infant health but also associated with long-term health. Pregnancy to early life is the golden time for the establishment of the infant microbiota, which is affected by both environmental and genetic factors. Recently, there is an explosion of the studies on the role of microbiota in human diseases, but the application to disease or health is relatively limited because many aspects of human microbiota remain controversial, especially about the infant microbiota. Therefore, a critical and conclusive review is necessary to understand fully the relationship between the microbiota and the health of infant. In this article, we introduce in detail the role of microbiota in the infant from pregnancy to early life to long-term health. The main contents of this article include the relationship between the maternal microbiota and adverse pregnancy outcomes, the establishment of the neonatal microbiota during perinatal period and early life, the composition of the infant gut microbiota, the prediction of the microbiota for long-term health, and the future study directions of microbiota.
Collapse
Affiliation(s)
- Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Xiaoyu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Fengying Chen
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital School of Medicine Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Cortés-Macías E, Selma-Royo M, Martínez-Costa C, Collado MC. Breastfeeding Practices Influence the Breast Milk Microbiota Depending on Pre-Gestational Maternal BMI and Weight Gain over Pregnancy. Nutrients 2021; 13:1518. [PMID: 33946343 PMCID: PMC8146841 DOI: 10.3390/nu13051518] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 01/04/2023] Open
Abstract
Breastfeeding is critical for adequate neonatal microbial and immune system development affecting neonate health outcomes in the short and long term. There is a great interest in ascertaining which are the maternal factors contributing to the milk microbiota and the potential relevance for the developing infant. Thus, our study aimed to characterize the effect of mixed and exclusive breastfeeding practices on the milk microbiota and to determine the impact of pre-pregnancy body mass index (BMI) and weight gain over pregnancy on its composition. Breast milk samples from 136 healthy women were collected within the first month post-partum and milk microbiota profiling was analyzed by 16S rRNA gene sequencing. Information on breastfeeding habits and maternal-infant clinical data were recorded. Breastfeeding practices (exclusive vs. mixed), maternal pre-gestational BMI, and weight gain over pregnancy contributed to the milk microbiota variation. Pre-gestational normal-weight women with exclusive breastfeeding habits harbored a significantly higher abundance of Bifidobacterium genus, and also, higher alpha-diversity compared to the rest of the women. Our results confirm the importance of controlling weight during pregnancy and breastfeeding practices in terms of milk microbiota. Further studies to clarify the potential impact of these maternal factors on milk and infant development and health will be necessary.
Collapse
Affiliation(s)
- Erika Cortés-Macías
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (E.C.-M.); (M.S.-R.)
| | - Marta Selma-Royo
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (E.C.-M.); (M.S.-R.)
| | - Cecilia Martínez-Costa
- Department of Pediatrics, INCLIVA Research Institute, School of Medicine, University of Valencia, 46003 Valencia, Spain;
- Pediatric Gastroenterology and Nutrition Section, Hospital Clínico Universitario Valencia, INCLIVA, 46010 Valencia, Spain
| | - Maria Carmen Collado
- Department of Biotechnology, Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), 46980 Valencia, Spain; (E.C.-M.); (M.S.-R.)
| |
Collapse
|
29
|
McGuire MK, McGuire MA. Mapping the Human Milk Microbiome: Impetus for a Long-Awaited Renaissance in Maternal and Infant Nutrition Research? J Nutr 2021; 151:278-280. [PMID: 33326999 DOI: 10.1093/jn/nxaa373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 01/24/2023] Open
Affiliation(s)
- Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, USA
| | - Mark A McGuire
- Department of Animal, Veterinary, and Food Sciences, University of Idaho, Moscow, ID, USA
| |
Collapse
|