1
|
Rooney M, Lambe J, O'Connor A, Dunne S, Mills A, Feeney EL, Gibney ER. Bovine dairy products and flow mediated dilation (FMD): a systematic review of the published evidence. Eur J Nutr 2025; 64:66. [PMID: 39853454 PMCID: PMC11761514 DOI: 10.1007/s00394-024-03574-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025]
Abstract
PURPOSE Evidence suggests bovine dairy products may have neutral or beneficial effects on cardiometabolic health, despite being a source of saturated fat. The dairy matrix, the structure and combination of protein, fat, and other nutrients, and how they interact with each other, is purported to be responsible for these beneficial health effects. Whether this relationship extends to endothelial function, as assessed by flow mediated dilation (FMD), remains to be elucidated. METHODS Three electronic databases (PubMed, Embase and Cochrane Central) were searched from inception until 5th September 2024. This review included randomised controlled trials (RCT) investigating any bovine dairy intervention which considered endothelial function using FMD in humans with a non-dairy or alternative dairy control. RESULTS Of 4,220 records identified, 18 reports from 11 RCT including 508 (53.3% male) participants, examined endothelial function by FMD and were eligible for evidence synthesis. Eight papers reported an improvement, nine reported no effect and one reported a decrease in FMD. The greatest effects were found in those with impaired health at baseline, with whey protein and high dairy intakes observed to be most beneficial. CONCLUSION Bovine dairy intake has neutral or beneficial effects on cardiometabolic health. This review demonstrates that this relationship extends to endothelial function as assessed by FMD. Whey protein and high dairy intakes may be most effective, although further high quality RCT in this area are warranted.
Collapse
Affiliation(s)
- Martina Rooney
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | - Joyce Lambe
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | - Aileen O'Connor
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | - Simone Dunne
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | - Andrea Mills
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | - Emma L Feeney
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland
| | - Eileen R Gibney
- Food for Health Ireland, University College Dublin, Dublin 4, Republic of Ireland.
- Institute of Food and Health, School of Agriculture and Food Sciences, University College Dublin, Dublin 4, Republic of Ireland.
| |
Collapse
|
2
|
Mazur M, Przytuła A, Szymańska M, Popiołek-Kalisz J. Dietary strategies for cardiovascular disease risk factors prevention. Curr Probl Cardiol 2024; 49:102746. [PMID: 39002618 DOI: 10.1016/j.cpcardiol.2024.102746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Nutrition can play a key role in cardiovascular disease risk reduction, and its risk factors modification. This paper aims to present, compare, and summarize the main dietary concepts for preventing the main cardiovascular disease risk factors - obesity, hypertension, and dyslipidemia. The dietary models and macronutrient intakes were compared between main cardiovascular risk factors prevention recommendations. Dietary recommendations related to selected cardiovascular risk factors share the points, that can be suggested as crucial for overall cardiovascular risk factors reduction. Recommendations suggest limiting saturated fatty acids intake to <10% of total caloric intake in obesity, and <7 % in hypercholesterolemia, along with an increased intake of mono- and polyunsaturated fatty acids. In addition, daily dietary fiber intake should reach a level of 25-40 g. The vegetables and fruits should be consumed at a daily minimum level of 200g (or 4-5 portions) each. Salt intake should not exceed 5g/day. Alcohol should be generally avoided, and moderate intake levels (sex-specific) should not be exceeded. It is also worth noting, that proteins are essential for tissue formation and regeneration. Carbohydrates are the main source of energy, but it is necessary to choose products with a low glycemic index. Dietary antioxidants help combat free radicals and prevent cell damage.
Collapse
Affiliation(s)
- Michał Mazur
- Lifestyle Medicine Students' Club, Medical University of Lublin, Poland, ul. Chodzki 7, Lublin 20-093, Poland
| | - Agata Przytuła
- Clinical Dietetics Unit, Medical University of Lublin, Poland, ul. Chodzki 7, Lublin 20-093, Poland
| | - Magdalena Szymańska
- Clinical Dietetics Unit, Medical University of Lublin, Poland, ul. Chodzki 7, Lublin 20-093, Poland
| | - Joanna Popiołek-Kalisz
- Clinical Dietetics Unit, Medical University of Lublin, Poland, ul. Chodzki 7, Lublin 20-093, Poland; Department of Cardiology, Cardinal Wyszynski Hospital in Lublin, Poland, al. Krasnicka 100, Lublin 20-718, Poland.
| |
Collapse
|
3
|
Markey O, Garcimartín A, Vasilopoulou D, Kliem KE, Fagan CC, Humphries DJ, Todd S, Givens DI, Lovegrove JA, Jackson KG. Impact of dairy fat manipulation on endothelial function and lipid regulation in human aortic endothelial cells exposed to human plasma samples: an in vitro investigation from the RESET study. Eur J Nutr 2024; 63:539-548. [PMID: 38093120 PMCID: PMC10899290 DOI: 10.1007/s00394-023-03284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/20/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE Longer-term intake of fatty acid (FA)-modified dairy products (SFA-reduced, MUFA-enriched) was reported to attenuate postprandial endothelial function in humans, relative to conventional (control) dairy. Thus, we performed an in vitro study in human aortic endothelial cells (HAEC) to investigate mechanisms underlying the effects observed in vivo. METHODS This sub-study was conducted within the framework of the RESET study, a 12-week randomised controlled crossover trial with FA-modified and control dairy diets. HAEC were incubated for 24 h with post-intervention plasma samples from eleven adults (age: 57.5 ± 6.0 years; BMI: 25.7 ± 2.7 kg/m2) at moderate cardiovascular disease risk following representative sequential mixed meals. Markers of endothelial function and lipid regulation were assessed. RESULTS Relative to control, HAEC incubation with plasma following the FA-modified treatment increased postprandial NOx production (P-interaction = 0.019), yet up-regulated relative E-selectin mRNA gene expression (P-interaction = 0.011). There was no impact on other genes measured. CONCLUSION Incubation of HAEC with human plasma collected after longer-term dairy fat manipulation had a beneficial impact on postprandial NOx production. Further ex vivo research is needed to understand the impact of partial replacement of SFA with unsaturated fatty acids in dairy foods on pathways involved in endothelial function.
Collapse
Affiliation(s)
- Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Alba Garcimartín
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Pharmacology, Pharmacognosy and Botany Department, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
| | - Kirsty E Kliem
- Department of Animal Sciences, University of Reading, Reading, RG6 6AR, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - David J Humphries
- Department of Animal Sciences, University of Reading, Reading, RG6 6AR, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, RG6 6AX, UK
| | - David I Givens
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Julie A Lovegrove
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, RG6 6DZ, UK.
- Institute for Food, Nutrition, and Health, University of Reading, Reading, RG6 6AR, UK.
| |
Collapse
|
4
|
Muñoz-Alvarez KY, Gutiérrez-Aguilar R, Frigolet ME. Metabolic effects of milk fatty acids: A literature review. NUTR BULL 2024; 49:19-39. [PMID: 38226553 DOI: 10.1111/nbu.12657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Milk and dairy products are known to have a significant role in human development and tissue maintenance due to their high nutritional value. With the higher incidence of obesity and metabolic diseases, nutrition and public health authorities have recommended the intake of fat-free or low-fat dairy due to the saturated fatty acid content of whole-fat products and their effect on serum cholesterol levels. However, recent studies have questioned the association between milk fat consumption and cardiometabolic risk. This literature review aims to compile the scientific evidence of the metabolic effects of milk fatty acids in clinical and basic research studies, as well as their relationship with metabolic disorders and gut microbiota composition. Research shows that various milk fatty acids exert effects on metabolic alterations (obesity, type 2 diabetes and cardiovascular diseases) by modifying glucose homeostasis, inflammation and lipid profile-related factors. Additionally, recent studies have associated the consumption of milk fatty acids with the production of metabolites and the promotion of healthy gut microbiota. From mainly observational studies, evidence suggests that milk and dairy fatty acids are not directly linked to cardiometabolic risk, but further controlled research is necessary to clarify such findings and to assess whether dietary recommendations to choose low-fat dairy foods are necessary for the population for the prevention of obesity and cardiometabolic disease.
Collapse
Affiliation(s)
- Karla Y Muñoz-Alvarez
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México 'Federico Gómez' (HIMFG), Mexico City, Mexico
| | - Ruth Gutiérrez-Aguilar
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México 'Federico Gómez' (HIMFG), Mexico City, Mexico
- División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - María E Frigolet
- Laboratorio de Investigación en Enfermedades Metabólicas: Obesidad y Diabetes, Hospital Infantil de México 'Federico Gómez' (HIMFG), Mexico City, Mexico
| |
Collapse
|
5
|
Pradeilles R, Norris T, Sellem L, Markey O. Effect of Isoenergetic Substitution of Cheese with Other Dairy Products on Blood Lipid Markers in the Fasted and Postprandial State: An Updated and Extended Systematic Review and Meta-Analysis of Randomized Controlled Trials in Adults. Adv Nutr 2023; 14:1579-1595. [PMID: 37717700 PMCID: PMC10721513 DOI: 10.1016/j.advnut.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023] Open
Abstract
Consumption of fat as part of a cheese matrix may differentially affect blood lipid responses when compared with other dairy foods. This systematic review was conducted to compare the impact of consuming equal amounts of fat from cheese and other dairy products on blood lipid markers in the fasted and postprandial state. Searches of PubMed (Medline), Cochrane Central and Embase databases were conducted up to mid-June 2022. Eligible human randomized controlled trials (RCTs) investigated the effect of isoenergetic substitution of hard or semi-hard cheese with other dairy products on blood lipid markers. Risk of bias (RoB) was assessed using the Cochrane RoB 2.0 tool. Random-effects meta-analyses assessed the effect of ≥2 similar dietary replacements on the same blood lipid marker. Of 1491 identified citations, 10 articles were included (RoB: all some concerns). Pooled analyses of 7 RCTs showed a reduction in fasting total cholesterol, LDL-C and HDL-C concentrations after ≥14 d mean daily intake of 135 g cheese (weighted mean difference [WMD]: -0.24 mmol/L; 95% confidence interval (CI): -0.34, -0.15; I2 = 59.8%, WMD: -0.19 mmol/L; 95% CI: -0.27, -0.12; I2 = 42.8%, and WMD: -0.04 mmol/L; 95% CI: -0.08, -0.00; I2 = 58.6%, respectively) relative to ∼52 g/d butter. We found no evidence of a benefit from replacing cheese for ≥14 d with milk on fasting blood lipid markers (n = 2). Limited postprandial RCTs, described in narrative syntheses, suggested that cheese-rich meals may induce differential fed-state lipid responses compared with some other dairy matrix structures, but not butter (n ≤ 2). In conclusion, these findings indicate that dairy fat consumed in the form of cheese has a differential effect on blood lipid responses relative to some other dairy food structures. However, owing to considerable heterogeneity and limited studies, further confirmation from RCTs is warranted. TRIAL REGISTRATION NUMBER: This systematic review protocol was registered at https://www.crd.york.ac.uk/PROSPERO/ as CRD42022299748.
Collapse
Affiliation(s)
- Rebecca Pradeilles
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom; Montpellier Interdisciplinary Centre on Sustainable Agri-Food Systems (UMR MoISA), University of Montpellier, CIRAD, CIHEAM-IAMM, INRAE, Institut Agro, IRD, Montpellier, France
| | - Tom Norris
- Institute of Sport, Exercise and Health, Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London, United Kingdom
| | | | - Oonagh Markey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom; Carenity (ELSE CARE), Paris, France.
| |
Collapse
|
6
|
Fewkes JJ, Kellow NJ, Cowan SF, Williamson G, Dordevic AL. A single, high-fat meal adversely affects postprandial endothelial function: a systematic review and meta-analysis. Am J Clin Nutr 2022; 116:699-729. [PMID: 35665799 PMCID: PMC9437993 DOI: 10.1093/ajcn/nqac153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/29/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Endothelial dysfunction is a predictive risk factor for the development of atherosclerosis and is assessed by flow-mediated dilation (FMD). Although it is known that NO-dependent endothelial dysfunction occurs after consuming a high-fat meal, the magnitude of the effect and the factors that affect the response are unquantified. OBJECTIVES We conducted a systematic review and meta-analysis exploring the quantitative effects of a single high-fat meal on endothelial function and determined the factors that modify the FMD response. METHODS Six databases were systematically searched for original research published up to January 2022. Eligible studies measured fasting and postprandial FMD following consumption of a high-fat meal. Meta-regression was used to analyze the effect of moderator variables. RESULTS There were 131 studies included, of which 90 were suitable for quantitative meta-analysis. A high-fat meal challenge transiently caused endothelial dysfunction, decreasing postprandial FMD at 2 hours [-1.02 percentage points (pp); 95% CI: -1.34 to -0.70 pp; P < 0.01; I2 = 93.3%], 3 hours [-1.04 pp; 95% CI: -1.48 to -0.59 pp; P < 0.001; I2 = 84.5%], and 4 hours [-1.19 pp; 95% CI: -1.53 to -0.84 pp; P < 0.01; I2 = 94.6%]. Younger, healthy-weight participants exhibited a greater postprandial reduction in the FMD percentage change than older, heavier, at-risk groups after a high-fat meal ( P < 0.05). The percentage of fat in the meals was inversely associated with the magnitude of postprandial changes in FMD at 3 hours (P < 0.01). CONCLUSIONS A single, high-fat meal adversely impacts endothelial function, with the magnitude of the impact on postprandial FMD moderated by the fasting FMD, participant age, BMI, and fat content of the meal. Recommendations are made to standardize the design of future postprandial FMD studies and optimize interpretation of results, as high-fat meals are commonly used in clinical studies as a challenge to assess endothelial function and therapeutics. This trial was registered at PROSPERO as CRD42020187244.
Collapse
Affiliation(s)
- Juanita J Fewkes
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Nicole J Kellow
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Stephanie F Cowan
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Gary Williamson
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| | - Aimee L Dordevic
- Department of Nutrition, Dietetics and Food, School of Clinical Sciences, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Markey O, Vasilopoulou D, Kliem KE, Fagan CC, Grandison AS, Sutton R, Humphries DJ, Todd S, Jackson KG, Givens DI, Lovegrove JA. Effect of fat-reformulated dairy food consumption on postprandial flow-mediated dilatation and cardiometabolic risk biomarkers compared with conventional dairy: a randomized controlled trial. Am J Clin Nutr 2022; 115:679-693. [PMID: 35020795 PMCID: PMC8895219 DOI: 10.1093/ajcn/nqab428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Longer-term consumption of SFA-reduced, MUFA-enriched dairy products has been reported to improve fasting flow-mediated dilatation (FMD). Yet, their impact on endothelial function in the postprandial state warrants investigation. OBJECTIVES The aim was to compare the impact of a fatty acid (FA) modified with a conventional (control) dairy diet on the postprandial %FMD (primary outcome) and systemic cardiometabolic responses to representative meals, and retrospectively explore whether treatment effects differ by apolipoprotein E (APOE) or endothelial NO synthase (eNOS) Glu298Asp gene polymorphisms. METHODS In a crossover-design randomized controlled study, 52 adults with moderate cardiovascular disease risk consumed dairy products [38% of total energy intake (%TE) from fat: FA-modified (target: 16%TE SFAs; 14%TE MUFAs) or control (19%TE SFAs; 11%TE MUFAs)] for 12 wk, separated by an 8-wk washout. Blood sampling and FMD measurements (0-480 min) were performed pre- and postintervention after sequential mixed meals that were representative of the assigned dairy diets (0 min, ∼50 g fat; 330 min, ∼30 g fat). RESULTS Relative to preintervention (∆), the FA-modified dairy diet and meals (treatment) attenuated the increase in the incremental AUC (iAUC), but not AUC, for the %FMD response observed with the conventional treatment (-135 ± 69% vs. +199 ± 82% × min; P = 0.005). The ∆ iAUC, but not AUC, for the apoB response decreased after the FA-modified treatment yet increased after the conventional treatment (-4 ± 3 vs. +3 ± 3 mg/mL × min; P = 0.004). The ∆ iAUC decreased for plasma total SFAs (P = 0.003) and trans 18:1 (P < 0.0001) and increased for cis-MUFAs (P < 0.0001) following the conventional relative to the FA-modified treatment. No treatment × APOE or eNOS genotype interactions were evident for any outcome. CONCLUSIONS This study provides novel insights into the longer-term effects of FA-modified dairy food consumption on postprandial cardiometabolic responses.
Collapse
Affiliation(s)
- Oonagh Markey
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Dafni Vasilopoulou
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Kirsty E Kliem
- Animal, Dairy, and Food Chain Sciences, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Colette C Fagan
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Alistair S Grandison
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - Rachel Sutton
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom
| | - David J Humphries
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Kim G Jackson
- Hugh Sinclair Unit of Human Nutrition and Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, United Kingdom,Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | - David I Givens
- Institute for Food, Nutrition, and Health, University of Reading, Reading, United Kingdom
| | | |
Collapse
|