1
|
Hasegawa Y, Noll AL, Lang DJ, Akfaly EM, Liu Z, Bolling BW. Low-fat yogurt consumption maintains biomarkers of immune function relative to nondairy control food in women with elevated BMI: A randomized controlled crossover trial. Nutr Res 2024; 129:1-13. [PMID: 39153426 DOI: 10.1016/j.nutres.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
Yogurt consumption may help reduce chronic inflammation associated with obesity. However, the underlying mechanism(s) by which yogurt consumption modulates the immune system have not been validated in human intervention studies. We hypothesized that 4-week yogurt consumption (12 oz/day) attenuates systemic inflammation by modulating the proportion of circulating T helper (Th) 17 and regulatory T (Treg) cells in adult women with elevated body mass index (BMI). To test the hypothesis, we conducted a randomized crossover dietary intervention study consisted of a 4-week dietary intervention in which participants consumed 12 oz of either low-fat dairy yogurt or a soy pudding control snack per day, with a 4-week washout between treatments. Thirty-nine healthy adult women with a BMI between 25 and 40 kg/m2 were enrolled and 20 completed the study. Changes in the biometrics, circulating T cells, and markers of systemic and colonic inflammation were assessed between the 2 treatment groups, as well as 24-hour diet recalls were conducted at baseline and following each treatment. The primary study outcome, the change in the proportion of circulating Th17 cells, was unaffected by the treatments. Secondary outcome measures, circulating Treg, Th17, and markers of chronic inflammation, were maintained by yogurt treatment, whereas circulating Treg was increased and interleukin-10 was reduced by control snack treatment. However, circulating Treg changes were not associated with changes to other biomarkers of inflammation, implying other immune cells and/or tissues may mediate circulating biomarkers of chronic inflammation. This study was approved by the University of Wisconsin-Madison institutional review board and registered at ClinicalTrials.gov NCT04149418.
Collapse
Affiliation(s)
- Yu Hasegawa
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Andrea L Noll
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - David J Lang
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Elizabeth M Akfaly
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Zhenhua Liu
- School of Public Health & Health Science, University of Massachusetts-Amherst, Amherst, MA, USA
| | - Bradley W Bolling
- Department of Food Science, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
2
|
Li W, Hakkak R. Feeding soy protein concentrates with low or high isoflavone decreases liver inflammation by reducing lipopolysaccharide translocation. Front Nutr 2023; 10:1278158. [PMID: 38075211 PMCID: PMC10699199 DOI: 10.3389/fnut.2023.1278158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/25/2023] [Indexed: 04/30/2025] Open
Abstract
Lipopolysaccharide (LPS) translocation and inflammation contribute to the increased risk of chronic diseases, including non-alcoholic fatty liver disease (NAFLD), associated with obesity. Previously, we reported that feeding soy protein with high or low (negligible) isoflavone reduces liver steatosis in obese Zucker rats, and the reduced steatosis is accompanied by decreased serum C-reactive protein levels. The current study investigated the effect of feeding soy protein concentrate (SPC) with high or low isoflavone (HIF or LIF) on liver inflammation and LPS translocation in obese Zucker rats. Six-week-old male lean (L, n = 21) and obese (O, n = 21) Zucker rats were fed casein control, SPC-LIF, or SPC-HIF diets for 18 weeks. At the end of 18 weeks, the expression levels of tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein-1 (MCP-1), inducible nitric oxide synthase (iNOS), arginase 1 (ARG1), lipopolysaccharide binding protein (LBP), myeloperoxidase (MPO), and sterol regulatory element-binding protein 1 (SREBP-1) were significantly higher in obese rats compared to lean rats. Compared to the casein control diet, both the SPC-LIF and SPC-HIF diets significantly decreased TNF-α, MCP-1, iNOS, and LBP expression in obese rats, which is accompanied by significantly less LPS staining in liver slides from SPC-LIF-and SPC-HIF-fed obese rats compared to the casein control diet-fed obese rats. Taken together, the SPC-LIF and SPC-HIF diets attenuated liver inflammation in obese Zucker rats, likely by decreasing LPS translocation.
Collapse
Affiliation(s)
- Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Research Institute, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
3
|
Jung SM, Kaur A, Amen RI, Oda K, Rajaram S, Sabatè J, Haddad EH. Effect of the Fermented Soy Q-CAN ® Product on Biomarkers of Inflammation and Oxidation in Adults with Cardiovascular Risk, and Canonical Correlations between the Inflammation Biomarkers and Blood Lipids. Nutrients 2023; 15:3195. [PMID: 37513613 PMCID: PMC10383246 DOI: 10.3390/nu15143195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Systemic low-grade inflammation plays a key role in the development of cardiovascular disease (CVD) but the process may be modulated by consuming fermented soy foods. Here, we aim to evaluate the effect of a fermented soy powder Q-CAN® on inflammatory and oxidation biomarkers in subjects with cardiovascular risk. In a randomized crossover trial, 27 adults (mean age ± SD, 51.6 ± 13.5 y) with a mean BMI ± SD of 32.3 ± 7.3 kg/m2 consumed 25 g daily of the fermented soy powder or an isoenergic control powder of sprouted brown rice for 12 weeks each. Between-treatment results showed a 12% increase in interleukin-1 receptor agonist (IL-1Ra) in the treatment group, whereas within-treatment results showed 23% and 7% increases in interleukin-6 (IL-6) and total antioxidant status (TAS), respectively. The first canonical correlation coefficient (r = 0.72) between inflammation markers and blood lipids indicated a positive association between high-sensitivity C-reactive protein (hsCRP) and IL-1Ra with LDL-C and a negative association with HDL-C that explained 62% of the variability in the biomarkers. These outcomes suggest that blood lipids and inflammatory markers are highly correlated and that ingestion of the fermented soy powder Q-CAN® may increase IL-1Ra, IL-6, and TAS in individuals with CVD risk factors.
Collapse
Affiliation(s)
- Sarah M Jung
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
- Rongxiang Xu College of Health and Human Services, California State University Los Angeles, Los Angeles, CA 90032, USA
| | - Amandeep Kaur
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Rita I Amen
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Keiji Oda
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Sujatha Rajaram
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Joan Sabatè
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ella H Haddad
- Center for Nutrition, Healthy Lifestyle and Disease Prevention, Loma Linda University, Loma Linda, CA 92350, USA
| |
Collapse
|
4
|
Soy Extract, Rich in Hydroxylated Isoflavones, Exhibits Antidiabetic Properties In Vitro and in Drosophila melanogaster In Vivo. Nutrients 2023; 15:nu15061392. [PMID: 36986122 PMCID: PMC10054920 DOI: 10.3390/nu15061392] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
In the context of the growing prevalence of type 2 diabetes (T2DM), control of postprandial hyperglycemia is crucial for its prevention. Blood glucose levels are determined by various factors including carbohydrate hydrolyzing enzymes, the incretin system and glucose transporters. Furthermore, inflammatory markers are recognized predictors of diabetes outcome. Although there is some evidence that isoflavones may exhibit anti-diabetic properties, little is known about to what extent their corresponding hydroxylated metabolites may affect glucose metabolism. We evaluated the ability of a soy extract before (pre-) and after (post-) fermentation to counteract hyperglycemia in vitro and in Drosophila melanogaster in vivo. Fermentation with Aspergillus sp. JCM22299 led to an enrichment of hydroxy-isoflavones (HI), including 8-hydroxygenistein, 8-hydroxyglycitein and 8-hydroxydaidzein, accompanied by an enhanced free radical scavenging activity. This HI-rich extract demonstrated inhibitory activity towards α-glucosidase and a reduction of dipeptidyl peptidase-4 enzyme activity. Both the pre- and post-fermented extracts significantly inhibited the glucose transport via sodium-dependent glucose transporter 1. Furthermore, the soy extracts reduced c-reactive protein mRNA and secreted protein levels in interleukin-stimulated Hep B3 cells. Finally, supplementation of a high-starch D. melanogaster diet with post-fermented HI-rich extract decreased the triacylglyceride content of female fruit flies, confirming its anti-diabetic properties in an in vivo model.
Collapse
|
5
|
Li W, Twaddle NC, Spray B, Nounamo B, Monzavi-Karbassi B, Hakkak R. Feeding Soy Protein Concentrates with Low and High Isoflavones Alters 9 and 18 Weeks Serum Isoflavones and Inflammatory Protein Levels in Lean and Obese Zucker Rats. J Med Food 2023; 26:120-127. [PMID: 36720082 DOI: 10.1089/jmf.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Soy's anti-inflammatory properties contribute to the health benefits of soy foods. This study was designed to investigate the bioavailability of soy isoflavones and whether the isoflavone content of soy protein concentrate diet would affect serum inflammatory proteins in an obese (fa/fa) Zucker rat model. Six-week-old male lean (L) and obese (O) Zucker rats were fed a casein control diet (C), soy protein concentrate with low isoflavones (SPC-LIF), or soy protein concentrate with high isoflavones (SPC-HIF) (7 rats/dietary group) before being killed at 9 and 18 weeks. Serum samples were analyzed for isoflavones and inflammatory proteins. At both time points, serum total (aglycone + conjugates) genistein, daidzein, and equol concentrations were significantly higher in L-SPC-HIF and O-SPC-HIF groups compared with L-SPC-LIF and O-SPC-LIF groups, respectively, and were not detectable in either L-C or O-C groups. At week 9, serum C-reactive protein (CRP) concentration was significantly lower in O-SPC-HIF group compared with O-C and O-SPC-LIF group, whereas proteins tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels did not differ between any groups. At week 18, serum CRP levels in both O-SPC-HIF and O-SPC-LIF groups were significantly lower compared with the O-C group. TNF-α level was higher in the O-SPC-LIF group compared with both O-C and O-SPC-HIF groups, whereas IL-6 levels were not different between any groups. Taken together, feeding Zucker rats SPC-LIF and SPC-HIF diets led to different serum isoflavone concentrations in both L and O Zucker rats and altered CRP and TNF-α levels in obese Zucker rats compared with controls.
Collapse
Affiliation(s)
- Wei Li
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Nathan C Twaddle
- Division of Biochemical Toxicology of National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Beverly Spray
- Division of Biostatistics Core, Arkansas Children's Research Institute, Little Rock, Arkansas, USA
| | - Bernice Nounamo
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | - Reza Hakkak
- Department of Dietetics and Nutrition, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Division of Biostatistics Core, Arkansas Children's Research Institute, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
6
|
Paul AK, Lim CL, Apu MAI, Dolma KG, Gupta M, de Lourdes Pereira M, Wilairatana P, Rahmatullah M, Wiart C, Nissapatorn V. Are Fermented Foods Effective against Inflammatory Diseases? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2481. [PMID: 36767847 PMCID: PMC9915096 DOI: 10.3390/ijerph20032481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/21/2023] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Fermented foods have been used over the centuries in various parts of the world. These foods are rich in nutrients and are produced naturally using various biological tools like bacteria and fungi. Fermentation of edible foods has been rooted in ancient cultures to keep food for preservation and storage for a long period of time with desired or enhanced nutritional values. Inflammatory diseases like rheumatoid arthritis, osteoarthritis, and chronic inflammatory pain are chronic disorders that are difficult to treat, and current treatments for these disorders fail due to various adverse effects of prescribed medications over a long period of time. Fermented foods containing probiotic bacteria and fungi can enhance the immune system, improve gastrointestinal health, and lower the risk of developing various inflammatory diseases. Foods prepared from vegetables by fermentation, like kimchi, sauerkraut, soy-based foods, or turmeric, lack proper clinical and translational experimental studies. The current review has focused on the effectiveness of various fermented foods or drinks used over centuries against inflammation, arthritis, and oxidative stress. We also described potential limitations on the efficacies or usages of these fermented products to provide an overarching picture of the research field.
Collapse
Affiliation(s)
- Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chooi Ling Lim
- Division of Applied Biomedical Science and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok 737102, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Re-search University, New Delhi 110017, India
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Lalmatia, Dhaka 1207, Bangladesh
| | - Christophe Wiart
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
7
|
Deng H, Gao S, Zhang W, Zhang T, Li N, Zhou J. High Titer of ( S)-Equol Synthesis from Daidzein in Escherichia coli. ACS Synth Biol 2022; 11:4043-4053. [PMID: 36282480 DOI: 10.1021/acssynbio.2c00378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
(S)-Equol is the terminal metabolite of daidzein and plays important roles in human health. However, due to anaerobic inefficiency, limited productivity in (S)-equol-producing strains often hinders (S)-equol mass production. Here, a multi-enzyme cascade system was designed to generate a higher (S)-equol titer. First, full reversibility of the (S)-equol synthesis pathway was found and a blocking reverse conversion strategy was established. As biosynthetic genes are present in the microbial genome, an effective daidzein reductase was chosen using evolutionary principles. And our analyses showed that NADPH was crucial for the pathway. In response to this, a novel NADPH pool was redesigned after analyzing a cofactor metabolism model. By adjusting synthesis pathway genes at the right expression level, the entire synthesis pathway can take place smoothly. Thus, the cascade system was optimized by regulating the gene expression intensity. Finally, after optimizing fermentation conditions, a 5 L bioreactor was used to generate a high (S)-equol production titer (3418.5 mg/L), with a conversion rate of approximately 85.9%. This study shows a feasible green process route for the production of (S)-equol.
Collapse
Affiliation(s)
- Hanning Deng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Song Gao
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weiping Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan 250101, Shandong, China
| | - Tianmeng Zhang
- Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan 250101, Shandong, China
| | - Ning Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China.,Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.,Bloomage Biotechnology Corporation Limited, 678 Tianchen Street, Jinan 250101, Shandong, China
| |
Collapse
|
8
|
Qi X, Chiavaroli L, Lee D, Ayoub-Charette S, Khan TA, Au-Yeung F, Ahmed A, Cheung A, Liu Q, Blanco Mejia S, Choo VL, de Souza RJ, Wolever TMS, Leiter LA, Kendall CWC, Jenkins DJA, Sievenpiper JL. Effect of Important Food Sources of Fructose-Containing Sugars on Inflammatory Biomarkers: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Nutrients 2022; 14:3986. [PMID: 36235639 PMCID: PMC9572084 DOI: 10.3390/nu14193986] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fructose-containing sugars as sugar-sweetened beverages (SSBs) may increase inflammatory biomarkers. Whether this effect is mediated by the food matrix at different levels of energy is unknown. To investigate the role of food source and energy, we conducted a systematic review and meta-analysis of controlled trials on the effect of different food sources of fructose-containing sugars on inflammatory markers at different levels of energy control. METHODS MEDLINE, Embase, and the Cochrane Library were searched through March 2022 for controlled feeding trials ≥ 7 days. Four trial designs were prespecified by energy control: substitution (energy matched replacement of sugars); addition (excess energy from sugars added to diets); subtraction (energy from sugars subtracted from diets); and ad libitum (energy from sugars freely replaced). The primary outcome was C-reactive protein (CRP). Secondary outcomes were tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6). Independent reviewers extracted data and assessed risk of bias. GRADE assessed certainty of evidence. RESULTS We identified 64 controlled trials (91 trial comparisons, n = 4094) assessing 12 food sources (SSB; sweetened dairy; sweetened dairy alternative [soy]; 100% fruit juice; fruit; dried fruit; mixed fruit forms; sweetened cereal grains and bars; sweets and desserts; added nutritive [caloric] sweetener; mixed sources [with SSBs]; and mixed sources [without SSBs]) at 4 levels of energy control over a median 6-weeks in predominantly healthy mixed weight or overweight/obese adults. Total fructose-containing sugars decreased CRP in addition trials and had no effect in substitution, subtraction or ad libitum trials. No effect was observed on other outcomes at any level of energy control. There was evidence of interaction/influence by food source: substitution trials (sweetened dairy alternative (soy) and 100% fruit juice decreased, and mixed sources (with SSBs) increased CRP); and addition trials (fruit decreased CRP and TNF-α; sweets and desserts (dark chocolate) decreased IL-6). The certainty of evidence was moderate-to-low for the majority of analyses. CONCLUSIONS Food source appears to mediate the effect of fructose-containing sugars on inflammatory markers over the short-to-medium term. The evidence provides good indication that mixed sources that contain SSBs increase CRP, while most other food sources have no effect with some sources (fruit, 100% fruit juice, sweetened soy beverage or dark chocolate) showing decreases, which may be dependent on energy control. CLINICALTRIALS gov: (NCT02716870).
Collapse
Affiliation(s)
- XinYe Qi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Danielle Lee
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Sabrina Ayoub-Charette
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Tauseef A. Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Fei Au-Yeung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Amna Ahmed
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Annette Cheung
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Qi Liu
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
| | - Vivian L. Choo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Family and Community Medicine, University of Toronto, Toronto, ON M5G1V7, Canada
| | - Russell J. de Souza
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S4K1, Canada
- Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON L8L2X2, Canada
| | - Thomas M. S. Wolever
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- INQUIS Clinical Research Ltd. (Formerly GI Labs), Toronto, ON M5C2N8, Canada
| | - Lawrence A. Leiter
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B1T8, Canada
| | - Cyril W. C. Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N5E5, Canada
| | - David J. A. Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B1T8, Canada
| | - John L. Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S1A8, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B1T8, Canada
| |
Collapse
|
9
|
Bovbjerg ML. Current Resources for Evidence-Based Practice, May 2022. J Obstet Gynecol Neonatal Nurs 2022; 51:349-357. [PMID: 35429460 DOI: 10.1016/j.jogn.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
An extensive review of new resources to support the provision of evidence-based care for women and infants. The current column includes a discussion of the roles of researchers and clinicians in fostering evidence-based practice, diagnostic test accuracy in suspected preeclampsia, and the effectiveness of decision-making tools in patients with pre-pregnancy morbidities.
Collapse
|