1
|
Chang X, Qu HQ, Liu Y, Glessner JT, Hakonarson H. Mitochondrial DNA Haplogroup K Is Protective Against Autism Spectrum Disorder Risk in Populations of European Ancestry. J Am Acad Child Adolesc Psychiatry 2024; 63:835-844. [PMID: 38072244 PMCID: PMC11186604 DOI: 10.1016/j.jaac.2023.09.550] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 09/23/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE Accumulative evidence indicates a critical role of mitochondrial function in autism spectrum disorders (ASD), implying that ASD risk may be linked to mitochondrial dysfunction due to DNA (mtDNA) variations. Although a few studies have explored the association between mtDNA variations and ASD, the role of mtDNA in ASD is still unclear. Here, we aimed to investigate whether mitochondrial DNA haplogroups are associated with the risk of ASD. METHOD Two European cohorts and an Ashkenazi Jewish (AJ) cohort were analyzed, including 2,062 ASD patients in comparison with 4,632 healthy controls. DNA samples were genotyped using Illumina HumanHap550/610 and Illumina 1M arrays, inclusive of mitochondrial markers. Mitochondrial DNA (mtDNA) haplogroups were identified from genotyping data using HaploGrep2. A mitochondrial genome imputation pipeline was established to detect mtDNA variants. We conducted a case-control study to investigate potential associations of mtDNA haplogroups and variants with the susceptibility to ASD. RESULTS We observed that the ancient adaptive mtDNA haplogroup K was significantly associated with decreased risk of ASD by the investigation of 2 European cohorts including a total of 2,006 cases and 4,435 controls (odds ratio = 0.64, P=1.79 × 10-5), and we replicated this association in an Ashkenazi Jewish (AJ) cohort including 56 cases and 197 controls (odds ratio = 0.35, P = 9.46 × 10-3). Moreover, we demonstrate that the mtDNA variants rs28358571, rs28358584, and rs28358280 are significantly associated with ASD risk. Further expression quantitative trait loci (eQTLs) analysis indicated that the rs28358584 and rs28358280 genotypes are associated with expression levels of nearby genes in brain tissues, suggesting those mtDNA variants may confer risk for ASD via regulation of expression levels of genes encoded by the mitochondrial genome. CONCLUSION This study helps to shed light on the contribution of mitochondria in ASD and provides new insights into the genetic mechanism underlying ASD, suggesting the potential involvement of mtDNA-encoded proteins in the development of ASD. PLAIN LANGUAGE SUMMARY Increasing evidence indicates that mitochondrial dysfunction may be linked to autism spectrum disorder (ASD). This study investigated potential associations of mitochondrial DNA (mtDNA) variants in 2 European and Ashkenazi Jewish cohorts including 2,062 individuals with ASD and 4,632 healthy controls. Researchers found that the ancient mtDNA haplogroup K was linked to a reduced risk of ASD in both European and Ashkenazi Jewish populations. Additionally, specific mtDNA variants were associated with ASD risk and were shown to influence the expression of nearby genes in the brain. These findings highlight the potential involvement of mtDNA in ASD development, offering new insights into the genetic mechanisms underlying the disorder.
Collapse
Affiliation(s)
- Xiao Chang
- Children's Hospital of Philadelphia, Pennsylvania, United States; Shandong First Medical University & Shandong Academy of Medical Sciences, Shandong, China.
| | - Hui-Qi Qu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | - Yichuan Liu
- Children's Hospital of Philadelphia, Pennsylvania, United States
| | | | - Hakon Hakonarson
- Children's Hospital of Philadelphia, Pennsylvania, United States; The Perelman School of Medicine, University of Pennsylvania, Pennsylvania, United States and Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
2
|
Guan Q, Zhang X, Liu J, Zhou C, Zhu J, Wu H, Zhuo Z, He J. ALKBH5 gene polymorphisms and risk of neuroblastoma in Chinese children from Jiangsu Province. CANCER INNOVATION 2024; 3:e103. [PMID: 38946930 PMCID: PMC11212286 DOI: 10.1002/cai2.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 07/02/2024]
Abstract
Background Neuroblastoma is one of the most common extracranial malignant solid tumors in children. AlkB homolog 5 (ALKBH5) is an RNA N6-methyladenosine (m6A) demethylase that plays a critical role in tumorigenesis and development. We assessed the association between single nucleotide polymorphisms (SNPs) in ALKBH5 and the risk of neuroblastoma in a case-control study including 402 patients and 473 non-cancer controls. Methods Genotyping was determined by the TaqMan method. The association between ALKBH5 polymorphisms (rs1378602 and rs8400) and the risk of neuroblastoma was evaluated using the odds ratio (OR) and 95% confidence interval (CI). Results We found no strong association of ALKBH5 rs1378602 and rs8400 with neuroblastoma risk. Further stratification analysis by age, sex, primary site, and clinical stage showed that the rs1378602 AG/AA genotype was associated with a lower risk of neuroblastoma in males (adjusted OR = 0.58, 95% CI = 0.35-0.97, p = 0.036) and children with retroperitoneal neuroblastoma (adjusted OR = 0.58, 95% CI = 0.34-0.98, p = 0.040). Conclusions ALKBH5 SNPs do not seem to be associated with neuroblastoma risk. More studies are required to confirm this negative result and reveal the relationship between gene polymorphisms of the m6A modifier ALKBH5 and neuroblastoma.
Collapse
Affiliation(s)
- Qian Guan
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xinxin Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jiabin Liu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Chunlei Zhou
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Jinhong Zhu
- Department of Clinical Laboratory, BiobankHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Haiyan Wu
- Department of PathologyChildren's Hospital of Nanjing Medical UniversityNanjingJiangsuChina
| | - Zhenjian Zhuo
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenGuangdongChina
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou Women and Children's Medical CenterGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Kaneva K, Schurr TG, Tatarinova TV, Buckley J, Merkurjev D, Triska P, Liu X, Done J, Maglinte DT, Deapen D, Hwang A, Schiffman JD, Triche TJ, Biegel JA, Gai X. Mitochondrial DNA haplogroup, genetic ancestry, and susceptibility to Ewing sarcoma. Mitochondrion 2022; 67:6-14. [PMID: 36115539 PMCID: PMC9997094 DOI: 10.1016/j.mito.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/30/2022] [Accepted: 09/09/2022] [Indexed: 01/11/2023]
Abstract
Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.
Collapse
Affiliation(s)
- Kristiyana Kaneva
- Division of Hematology, Oncology, and Blood and Marrow Transplant Program, Children's Center for Cancer and Blood Diseases, Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Theodore G Schurr
- Department of Anthropology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jonathan Buckley
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daria Merkurjev
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Petr Triska
- Department of Pediatric Hematology and Oncology, Charles University, Prague, Czech Republic
| | - Xiyu Liu
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - James Done
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis T Maglinte
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Dennis Deapen
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amie Hwang
- Cancer Surveillance Program, Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA; PEEL Therapeutics, Inc., Salt Lake City, UT, USA
| | - Timothy J Triche
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaclyn A Biegel
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA; Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Chang X, Liu Y, Glessner J, Hou C, Qu H, Nguyen K, Sleiman P, Lee L, Diskin SJ, Maris JM, Hakonarson H. Identification of Mitochondrial DNA Variants Associated With Risk of Neuroblastoma. J Natl Cancer Inst 2022; 114:910-913. [PMID: 35134187 PMCID: PMC9194614 DOI: 10.1093/jnci/djac012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 02/04/2023] Open
Abstract
Neuroblastoma is a childhood cancer that originates in the developing sympathetic nervous system. We previously reported a crucial role of mitochondrial DNA haplogroups in the pathology of neuroblastoma. To pinpoint mitochondrial DNA variants associated with neuroblastoma risk, we applied a mitochondrial genome imputation pipeline to the single nucleotide polymorphisms array data of 2 pediatric cohorts containing a total of 2404 neuroblastoma patients and 9310 cancer-free controls. All statistical tests were 2-sided. The single nucleotide variant, rs2853493, was statistically significantly associated with neuroblastoma risk in the discovery cohort (odds ratio = 0.62, 95% confidence interval = 0.53 to 0.72, P < .001) and further confirmed in the replication cohort (odds ratio = 0.75, 95% confidence interval = 0.62 to 0.90, P = .002). Further, expression quantitative trait loci analysis indicated genotypes of rs2853493 were associated with expression levels of MT-CYB gene expression in neuroblastoma cells, suggesting rs2853493 may confer risk to neuroblastoma via regulating the expression level of its nearby genes.
Collapse
Affiliation(s)
- Xiao Chang
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yichuan Liu
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Glessner
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cuiping Hou
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Huiqi Qu
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kenny Nguyen
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patrick Sleiman
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lobin Lee
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sharon J Diskin
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Oncology and Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - John M Maris
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Philadelphia, PA , USA
- Division of Oncology and Center for Childhood Cancer Research, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania School of Medicine , Philadelphia, PA, USA
- Division of Human Genetics, The Children’s Hospital of Philadelphia, Ph iladelphia, PA, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
5
|
High Grade of Amplification of Six Regions on Chromosome 2p in a Neuroblastoma Patient with Very Poor Outcome: The Putative New Oncogene TSSC1. Cancers (Basel) 2021; 13:cancers13225792. [PMID: 34830942 PMCID: PMC8616235 DOI: 10.3390/cancers13225792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/02/2022] Open
Abstract
Simple Summary Here, a case of neuroblastoma (NB) carrying a high-grade amplification of six loci besides MYCN is described. Since the patient had a very poor outcome, we postulated that these DNA co-amplifications might have a synergistic effect in increasing NB cell proliferation. In order to verify this hypothesis, we analyzed in silico the impact of high expression of the genes located within the amplifications on the NB patients’ outcome using a large dataset integrating three different platforms. These analyses disclosed that high expression of the TSSC1 gene was the most significantly associated with reduced overall survival of NB patients, suggesting that it may have a potential prognostic role in NB in both MYCN amplified and MYCN not amplified tumors. Further studies on TSSC1 interactions and functioning could lead to possible focused therapies for high-risk NB patients. Abstract We observed a case of high-risk neuroblastoma (NB) carried by a 28-month-old girl, displaying metastatic disease and a rapid decline of clinical conditions. By array-CGH analysis of the tumor tissue and of the metastatic bone marrow aspirate cells, we found a high-grade amplification of six regions besides MYCN on bands 2p25.3–p24.3. The genes involved in these amplifications were MYT1L, TSSC1, CMPK2, RSAD2, RNF144A, GREB1, NTSR2, LPIN1, NBAS, and the two intergenic non-protein coding RNAs LOC730811 and LOC339788. We investigated if these DNA co-amplifications may have an effect on enhancing tumor aggressiveness. We evaluated the association between the high expression of the amplified genes and NB patient’s outcome using the integration of gene expression data of 786 NB samples profiled with different public platforms from patients with at least five-year follow-up. NB patients with high expression of the TSSC1 gene were associated with a reduced survival rate. Immunofluorescence staining on primary tumor tissues confirmed that the TSSC1 protein expression was high in the relapsed or dead stage 4 cases, but it was generally low in NB patients in complete remission. TSSC1 appears as a putative new oncogene in NB.
Collapse
|
6
|
Kaneva K, O’Halloran K, Triska P, Liu X, Merkurjev D, Bootwalla M, Ryutov A, Cotter JA, Ostrow D, Biegel JA, Gai X. The spectrum of mitochondrial DNA (mtDNA) mutations in pediatric CNS tumors. Neurooncol Adv 2021; 3:vdab074. [PMID: 34337412 PMCID: PMC8320689 DOI: 10.1093/noajnl/vdab074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND We previously established the landscape of mitochondrial DNA (mtDNA) mutations in 23 subtypes of pediatric malignancies, characterized mtDNA mutation profiles among these subtypes, and provided statistically significant evidence for a contributory role of mtDNA mutations to pediatric malignancies. METHODS To further delineate the spectrum of mtDNA mutations in pediatric central nervous system (CNS) tumors, we analyzed 545 tumor-normal paired whole-genome sequencing datasets from the Children's Brain Tumor Tissue Consortium. RESULTS Germline mtDNA variants were used to determine the haplogroup, and maternal ancestry, which was not significantly different among tumor types. Among 166 (30.5%) tumors we detected 220 somatic mtDNA mutations, primarily missense mutations (36.8%), as well as 22 loss-of-function mutations. Different pediatric CNS tumor subtypes had distinct mtDNA mutation profiles. The number of mtDNA mutations per tumor ranged from 0.20 (dysembryoplastic neuroepithelial tumor [DNET]) to 0.75 (meningiomas). The average heteroplasmy was 10.7%, ranging from 4.6% in atypical teratoid/rhabdoid tumor (AT/RT) to 26% in diffuse intrinsic pontine glioma. High-grade gliomas had a significant higher number of mtDNA mutations per sample than low-grade gliomas (0.6 vs 0.27) (P = .004), with almost twice as many missense mtDNA mutations per sample (0.24 vs 0.11), and higher average heteroplasmy levels (16% vs 10%). Recurrent mtDNA mutations may represent hotspots which may serve as biologic markers of disease. CONCLUSIONS Our findings demonstrate varying contributions of mtDNA mutations in different subtypes of CNS tumors. Sequencing the mtDNA genome may ultimately be used to characterize CNS tumors at diagnosis and monitor disease progression.
Collapse
Affiliation(s)
- Kristiyana Kaneva
- Division of Hematology-Oncology, Neuro-Oncology & Stem Cell Transplantation, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA,Present address: Tempus Labs, Inc., Chicago, Illinois, USA
| | - Katrina O’Halloran
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Petr Triska
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine of Charles University, Prague, Czech Republic
| | - Xiyu Liu
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Daria Merkurjev
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Moiz Bootwalla
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Alex Ryutov
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jennifer A Cotter
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Dejerianne Ostrow
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Jaclyn A Biegel
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA
| | - Xiaowu Gai
- Department of Pathology, Children’s Hospital Los Angeles, Los Angeles, California, USA,Corresponding Author: Xiaowu Gai, PhD, Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Mailstop #173, Los Angeles, CA 90027, USA ()
| |
Collapse
|
7
|
Jiang S, Richaud M, Vieugué P, Rama N, Delcros J, Siouda M, Sanada M, Redavid A, Ducarouge B, Hervieu M, Breusa S, Manceau A, Gattolliat C, Gadot N, Combaret V, Neves D, Ortiz‐Cuaran S, Saintigny P, Meurette O, Walter T, Janoueix‐Lerosey I, Hofman P, Mulligan P, Goldshneider D, Mehlen P, Gibert B. Targeting netrin-3 in small cell lung cancer and neuroblastoma. EMBO Mol Med 2021; 13:e12878. [PMID: 33719214 PMCID: PMC8033513 DOI: 10.15252/emmm.202012878] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 02/01/2021] [Accepted: 02/07/2021] [Indexed: 01/16/2023] Open
Abstract
The navigation cue netrin-1 is well-documented for its key role in cancer development and represents a promising therapeutic target currently under clinical investigation. Phase 1 and 2 clinical trials are ongoing with NP137, a humanized monoclonal antibody against netrin-1. Interestingly, the epitope recognized by NP137 in netrin-1 shares 90% homology with its counterpart in netrin-3, the closest member to netrin-1 in humans, for which little is known in the field of cancer. Here, we unveiled that netrin-3 appears to be expressed specifically in human neuroblastoma (NB) and small cell lung cancer (SCLC), two subtypes of neuroectodermal/neuroendocrine lineages. Netrin-3 and netrin-1 expression are mutually exclusive, and the former is driven by the MYCN oncogene in NB, and the ASCL-1 or NeuroD1 transcription factors in SCLC. Netrin-3 expression is correlated with disease stage, aggressiveness, and overall survival in NB. Mechanistically, we confirmed the high affinity of netrin-3 for netrin-1 receptors and we demonstrated that netrin-3 genetic silencing or interference using NP137, delayed tumor engraftment, and reduced tumor growth in animal models. Altogether, these data support the targeting of netrin-3 in NB and SCLC.
Collapse
Affiliation(s)
- Shan Jiang
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Mathieu Richaud
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Pauline Vieugué
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Nicolas Rama
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Jean‐Guy Delcros
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Small Molecules for Biological TargetsCentre de Recherche en Cancérologie de LyonUMR INSERM 1052 – CNRS 5286 ISPB RockefellerLyonFrance
| | - Maha Siouda
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Mitsuaki Sanada
- Toray Industries, Inc.New Frontiers Research LabsKanagawaJapan
| | - Anna‐Rita Redavid
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | | | - Maëva Hervieu
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Silvia Breusa
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Ambroise Manceau
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | | | - Nicolas Gadot
- Centre de Recherche en Cancérologie de LyonCentre Léon BérardLyonFrance
| | - Valérie Combaret
- Centre de Recherche en Cancérologie de LyonCentre Léon BérardLyonFrance
| | | | - Sandra Ortiz‐Cuaran
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Pierre Saintigny
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Olivier Meurette
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
| | - Thomas Walter
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Hospices Civils de LyonHôpital Edouard HerriotService de Gastroentérologie et d’Oncologie DigestiveLyon Cedex 03France
| | | | - Paul Hofman
- Laboratory of Clinical and Experimental PathologyUniversité Côte d'AzurCHU NiceFHU OncoAgePasteur HospitalNiceFrance
| | - Peter Mulligan
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | | | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory‐ Equipe labellisée ‘La Ligue’LabEx DEVweCANInstitut PLAsCANCentre de Recherche en Cancérologie de LyonINSERM U1052‐CNRS UMR5286Université de LyonCentre Léon BérardLyonFrance
- Univ LyonCentre Léon BérardCentre de Recherche en Cancérologie de LyonUniversité Claude Bernard Lyon 1INSERM 1052CNRS 5286LyonFrance
| |
Collapse
|
8
|
Zhu Z, Liu Y, Wu D, Wang H. Association Between Mitochondrial DNA Copy Number and Head and Neck Squamous Cell Carcinoma: A Systematic Review and Dose-Response Meta-Analysis. Med Sci Monit 2021; 27:e928327. [PMID: 33468984 PMCID: PMC7830846 DOI: 10.12659/msm.928327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The association between mitochondrial DNA (mtDNA) copy number and head and neck squamous cell carcinoma (HNSCC) risk remains unclear. Therefore, we aimed to evaluate the relationship between mtDNA copy number and HNSCC risk. Material/Methods We searched PubMed, Web of Science, and EMBASE until August 2020. Studies that assessed the association between mtDNA copy number and HNSCC as the outcome of interest were included. We performed a 2-class and dose-response meta-analysis to assess the association between cancer risk and mtDNA. Results Eight articles (2 cohort studies and 6 case-control studies) with a total of 3913 patients were included in our meta-analysis. The overall results showed that mean mtDNA copy number level from 9 studies was 0.71 higher in patients with cancer than in non-cancer controls (the standardized mean differences (SMD) 0.71, 95% CI: 0.28–1.15, P<0.001). However, when 4 studies were pooled by dichotomizing mtDNA copy number at the median value into high- and low-content groups, no significant association between mtDNA content and overall cancer risk was found (odds ratio (OR)=0.87, 95% CI: 0.52–1.44, P=0.584). Furthermore, we observed a non-linear association from 3 studies between increased mtDNA copy number levels (P for nonlinearity <0.001). Conclusions The elevated mtDNA copy number could predict the risk of HNSCC as a biomarker. Moreover, there was non-linear relationship of risk between HNSCC and mtDNA copy number.
Collapse
Affiliation(s)
- Zhu Zhu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China (mainland)
| | - Yixiu Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, China (mainland)
| | - Didi Wu
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, China (mainland)
| | - Hongpeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, Chongqing, China (mainland)
| |
Collapse
|
9
|
Mitochondrial DNA haplogroups and risk of attention deficit and hyperactivity disorder in European Americans. Transl Psychiatry 2020; 10:370. [PMID: 33139694 PMCID: PMC7608630 DOI: 10.1038/s41398-020-01064-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/13/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022] Open
Abstract
Although mitochondrial dysfunction has been implicated in the pathophysiology of attention deficit and hyperactivity disorder ADHD, the role of mitochondrial DNA (mtDNA) has not been extensively investigated. To determine whether mtDNA haplogroups influence risk of ADHD, we performed a case-control study comprising 2076 ADHD cases and 5078 healthy controls, all of whom were European decedents recruited from The Children's Hospital of Philadelphia (CHOP). Associations between eight major European mtDNA Haplogroups and ADHD risk were assessed in three independent European cohorts. Meta-analysis of the three studies indicated that mtDNA haplogroups K (odds ratio = 0.69, P = 2.24 × 10-4, Pcorrected = 1.79 × 10-3) and U (odds ratio = 0.77, P = 8.88 × 10-4, Pcorrected = 7.11 × 10-3) were significantly associated with reduced risk of ADHD. In contrast, haplogroup HHV* (odds ratio = 1.18, P = 2.32 × 10-3, Pcorrected = 0.019) was significantly associated with increased risk of ADHD. Our results provide novel insight into the genetic basis of ADHD, implicating mitochondrial mechanisms in the pathophysiology of this relatively common psychiatric disorder.
Collapse
|
10
|
Capasso M, Montella A, Tirelli M, Maiorino T, Cantalupo S, Iolascon A. Genetic Predisposition to Solid Pediatric Cancers. Front Oncol 2020; 10:590033. [PMID: 33194750 PMCID: PMC7656777 DOI: 10.3389/fonc.2020.590033] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Progresses over the past years have extensively improved our capacity to use genome-scale analyses—including high-density genotyping and exome and genome sequencing—to identify the genetic basis of pediatric tumors. In particular, exome sequencing has contributed to the evidence that about 10% of children and adolescents with tumors have germline genetic variants associated with cancer predisposition. In this review, we provide an overview of genetic variations predisposing to solid pediatric tumors (medulloblastoma, ependymoma, astrocytoma, neuroblastoma, retinoblastoma, Wilms tumor, osteosarcoma, rhabdomyosarcoma, and Ewing sarcoma) and outline the biological processes affected by the involved mutated genes. A careful description of the genetic basis underlying a large number of syndromes associated with an increased risk of pediatric cancer is also reported. We place particular emphasis on the emerging view that interactions between germline and somatic alterations are a key determinant of cancer development. We propose future research directions, which focus on the biological function of pediatric risk alleles and on the potential links between the germline genome and somatic changes. Finally, the importance of developing new molecular diagnostic tests including all the identified risk germline mutations and of considering the genetic predisposition in screening tests and novel therapies is emphasized.
Collapse
Affiliation(s)
- Mario Capasso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | | | - Matilde Tirelli
- CEINGE Biotecnologie Avanzate, Naples, Italy.,European School of Molecular Medicine, Università Degli Studi di Milano, Milan, Italy
| | - Teresa Maiorino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Sueva Cantalupo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Achille Iolascon
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy.,CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|