1
|
Martinez Lyons A, Boulter L. NOTCH signalling - a core regulator of bile duct disease? Dis Model Mech 2023; 16:dmm050231. [PMID: 37605966 PMCID: PMC10461466 DOI: 10.1242/dmm.050231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023] Open
Abstract
The Notch signalling pathway is an evolutionarily conserved mechanism of cell-cell communication that mediates cellular proliferation, fate determination and maintenance of stem/progenitor cell populations across tissues. Although it was originally identified as a critical regulator of embryonic liver development, NOTCH signalling activation has been associated with the pathogenesis of a number of paediatric and adult liver diseases. It remains unclear, however, what role NOTCH actually plays in these pathophysiological processes and whether NOTCH activity represents the reactivation of a conserved developmental programme that is essential for adult tissue repair. In this Review, we explore the concepts that NOTCH signalling reactivation in the biliary epithelium is a reiterative and essential response to bile duct damage and that, in disease contexts in which biliary epithelial cells need to be regenerated, NOTCH signalling supports ductular regrowth. Furthermore, we evaluate the recent literature on NOTCH signalling as a critical factor in progenitor-mediated hepatocyte regeneration, which indicates that the mitogenic role for NOTCH signalling in biliary epithelial cell proliferation has also been co-opted to support other forms of epithelial regeneration in the adult liver.
Collapse
Affiliation(s)
| | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
- CRUK Scottish Centre, Institute of Genetics and Cancer, Edinburgh EH4 2XU, UK
| |
Collapse
|
2
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
3
|
Stolz BJ, Kaeppler J, Markelc B, Braun F, Lipsmeier F, Muschel RJ, Byrne HM, Harrington HA. Multiscale topology characterizes dynamic tumor vascular networks. SCIENCE ADVANCES 2022; 8:eabm2456. [PMID: 35687679 PMCID: PMC9187234 DOI: 10.1126/sciadv.abm2456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
Advances in imaging techniques enable high-resolution three-dimensional (3D) visualization of vascular networks over time and reveal abnormal structural features such as twists and loops, and their quantification is an active area of research. Here, we showcase how topological data analysis, the mathematical field that studies the "shape" of data, can characterize the geometric, spatial, and temporal organization of vascular networks. We propose two topological lenses to study vasculature, which capture inherent multiscale features and vessel connectivity, and surpass the single-scale analysis of existing methods. We analyze images collected using intravital and ultramicroscopy modalities and quantify spatiotemporal variation of twists, loops, and avascular regions (voids) in 3D vascular networks. This topological approach validates and quantifies known qualitative trends such as dynamic changes in tortuosity and loops in response to antibodies that modulate vessel sprouting; furthermore, it quantifies the effect of radiotherapy on vessel architecture.
Collapse
Affiliation(s)
| | - Jakob Kaeppler
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Bostjan Markelc
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Franziska Braun
- Data Science, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Munich, Munich, Germany
| | - Florian Lipsmeier
- Digital Biomarkers, pRED Informatics, Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Ruth J. Muschel
- Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Helen M. Byrne
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Heather A. Harrington
- Mathematical Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Notch signaling pathway: architecture, disease, and therapeutics. Signal Transduct Target Ther 2022; 7:95. [PMID: 35332121 PMCID: PMC8948217 DOI: 10.1038/s41392-022-00934-y] [Citation(s) in RCA: 529] [Impact Index Per Article: 176.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
The NOTCH gene was identified approximately 110 years ago. Classical studies have revealed that NOTCH signaling is an evolutionarily conserved pathway. NOTCH receptors undergo three cleavages and translocate into the nucleus to regulate the transcription of target genes. NOTCH signaling deeply participates in the development and homeostasis of multiple tissues and organs, the aberration of which results in cancerous and noncancerous diseases. However, recent studies indicate that the outcomes of NOTCH signaling are changeable and highly dependent on context. In terms of cancers, NOTCH signaling can both promote and inhibit tumor development in various types of cancer. The overall performance of NOTCH-targeted therapies in clinical trials has failed to meet expectations. Additionally, NOTCH mutation has been proposed as a predictive biomarker for immune checkpoint blockade therapy in many cancers. Collectively, the NOTCH pathway needs to be integrally assessed with new perspectives to inspire discoveries and applications. In this review, we focus on both classical and the latest findings related to NOTCH signaling to illustrate the history, architecture, regulatory mechanisms, contributions to physiological development, related diseases, and therapeutic applications of the NOTCH pathway. The contributions of NOTCH signaling to the tumor immune microenvironment and cancer immunotherapy are also highlighted. We hope this review will help not only beginners but also experts to systematically and thoroughly understand the NOTCH signaling pathway.
Collapse
|
5
|
Zhdanovskaya N, Firrincieli M, Lazzari S, Pace E, Scribani Rossi P, Felli MP, Talora C, Screpanti I, Palermo R. Targeting Notch to Maximize Chemotherapeutic Benefits: Rationale, Advanced Strategies, and Future Perspectives. Cancers (Basel) 2021; 13:cancers13205106. [PMID: 34680255 PMCID: PMC8533696 DOI: 10.3390/cancers13205106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The Notch signaling pathway regulates cell proliferation, apoptosis, stem cell self-renewal, and differentiation in a context-dependent fashion both during embryonic development and in adult tissue homeostasis. Consistent with its pleiotropic physiological role, unproper activation of the signaling promotes or counteracts tumor pathogenesis and therapy response in distinct tissues. In the last twenty years, a wide number of studies have highlighted the anti-cancer potential of Notch-modulating agents as single treatment and in combination with the existent therapies. However, most of these strategies have failed in the clinical exploration due to dose-limiting toxicity and low efficacy, encouraging the development of novel agents and the design of more appropriate combinations between Notch signaling inhibitors and chemotherapeutic drugs with improved safety and effectiveness for distinct types of cancer. Abstract Notch signaling guides cell fate decisions by affecting proliferation, apoptosis, stem cell self-renewal, and differentiation depending on cell and tissue context. Given its multifaceted function during tissue development, both overactivation and loss of Notch signaling have been linked to tumorigenesis in ways that are either oncogenic or oncosuppressive, but always context-dependent. Notch signaling is critical for several mechanisms of chemoresistance including cancer stem cell maintenance, epithelial-mesenchymal transition, tumor-stroma interaction, and malignant neovascularization that makes its targeting an appealing strategy against tumor growth and recurrence. During the last decades, numerous Notch-interfering agents have been developed, and the abundant preclinical evidence has been transformed in orphan drug approval for few rare diseases. However, the majority of Notch-dependent malignancies remain untargeted, even if the application of Notch inhibitors alone or in combination with common chemotherapeutic drugs is being evaluated in clinical trials. The modest clinical success of current Notch-targeting strategies is mostly due to their limited efficacy and severe on-target toxicity in Notch-controlled healthy tissues. Here, we review the available preclinical and clinical evidence on combinatorial treatment between different Notch signaling inhibitors and existent chemotherapeutic drugs, providing a comprehensive picture of molecular mechanisms explaining the potential or lacking success of these combinations.
Collapse
Affiliation(s)
- Nadezda Zhdanovskaya
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Mariarosaria Firrincieli
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
| | - Sara Lazzari
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Eleonora Pace
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Pietro Scribani Rossi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Maria Pia Felli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Claudio Talora
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
| | - Isabella Screpanti
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Correspondence: (I.S.); (R.P.)
| | - Rocco Palermo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; (N.Z.); (M.F.); (S.L.); (E.P.); (P.S.R.); (C.T.)
- Center for Life Nano Science, Istituto Italiano di Tecnologia, 00161 Rome, Italy
- Correspondence: (I.S.); (R.P.)
| |
Collapse
|
6
|
Thippu Jayaprakash K, Michael A. Notch Inhibition: a Promising Strategy to Improve Radiosensitivity and Curability of Radiotherapy. Clin Oncol (R Coll Radiol) 2020; 33:e44-e49. [PMID: 32680694 DOI: 10.1016/j.clon.2020.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Affiliation(s)
- K Thippu Jayaprakash
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Cancer Centre, Addenbrooke's Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK; Department of Oncology, The Queen Elizabeth Hospital King's Lynn NHS Foundation Trust, King's Lynn, UK.
| | - A Michael
- Department of Clinical and Experimental Medicine, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK; Department of Oncology, St Luke's Cancer Centre, Royal Surrey County Hospital, Guildford, UK
| |
Collapse
|
7
|
Xiu MX, Liu YM, Kuang BH. The Role of DLLs in Cancer: A Novel Therapeutic Target. Onco Targets Ther 2020; 13:3881-3901. [PMID: 32440154 PMCID: PMC7213894 DOI: 10.2147/ott.s244860] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 04/06/2020] [Indexed: 12/18/2022] Open
Abstract
Delta-like ligands (DLLs) control Notch signaling. DLL1, DLL3 and DLL4 are frequently deregulated in cancer and influence tumor growth, the tumor vasculature and tumor immunity, which play different roles in cancer progression. DLLs have attracted intense research interest as anti-cancer therapeutics. In this review, we discuss the role of DLLs in cancer and summarize the emerging DLL-relevant targeting methods to aid future studies.
Collapse
Affiliation(s)
- Meng-Xi Xiu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Yuan-Meng Liu
- Medical School of Nanchang University, Nanchang, People's Republic of China
| | - Bo-Hai Kuang
- Medical School of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
High-Dose Radiation Increases Notch1 in Tumor Vasculature. Int J Radiat Oncol Biol Phys 2019; 106:857-866. [PMID: 31759078 PMCID: PMC8048139 DOI: 10.1016/j.ijrobp.2019.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/29/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The aim of this study is to characterize the effects of high-dose radiation therapy (HDRT) on Notch signaling components of the tumor vasculature. METHODS AND MATERIALS Human umbilical vein endothelial cells monolayers were exposed to different single fraction doses of irradiation; ribonucleic acid RNA was isolated and polymerase chain reaction was performed for Notch signaling components. The vascular response to radiation therapy was examined in a xenograft model of neuroblastoma. Tumors were treated with 0 Gy, 2 Gy, and 12 Gy single fraction doses and analyzed by double immunofluorescence staining for Notch1, Notch ligands Jagged1 and Dll4, and the endothelial cell (EC) marker endomucin. To assess the role of Notch in vivo, NGP xenograft tumors expressing Fc or Notch1-1-24-decoy (a novel Notch inhibitor) were treated with 0 Gy and 12 Gy. Immunofluorescence staining for endomucin and endomucin/αSMA was performed to analyze the effect of combination treatment on tumor EC and endothelial-to-mesenchymal-transition (EndMT), respectively. RESULTS In human umbilical vein endothelial cells monolayers doses ≥8 Gy increased expression of NOTCH1, JAG1, and Notch target genes HEY1 and HEY2 as early as 6 hours after irradiation. In vivo, 12 Gy significantly increased Notch1 and Jagged1 in tumor ECs compared with 0 Gy or 2 Gy after 72 hours. Combining HDRT with Notch inhibition using the Notch1-1-24-decoy resulted in a greater loss of EC coverage of tumor vessels than HDRT alone at 6 hours and 72 hours post treatment. Notch inhibition reduced EndMT induced by HDRT, as indicated by diminished αSMA staining in ECs. CONCLUSIONS HDRT induced Notch1 expression and increased Notch1 signaling in the endothelial component of tumor vasculature, which was not observed with lower doses. This increase in Notch1 activation might protect tumor vessels from HDRT induced damage and regulate EndMT process.
Collapse
|
9
|
Masiero M, Li D, Whiteman P, Bentley C, Greig J, Hassanali T, Watts S, Stribbling S, Yates J, Bealing E, Li JL, Chillakuri C, Sheppard D, Serres S, Sarmiento-Soto M, Larkin J, Sibson NR, Handford PA, Harris AL, Banham AH. Development of Therapeutic Anti-JAGGED1 Antibodies for Cancer Therapy. Mol Cancer Ther 2019; 18:2030-2042. [PMID: 31395687 PMCID: PMC7611158 DOI: 10.1158/1535-7163.mct-18-1176] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/19/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023]
Abstract
The role of Notch signaling and its ligand JAGGED1 (JAG1) in tumor biology has been firmly established, making them appealing therapeutic targets for cancer treatment. Here, we report the development and characterization of human/rat-specific JAG1-neutralizing mAbs. Epitope mapping identified their binding to the Notch receptor interaction site within the JAG1 Delta/Serrate/Lag2 domain, where E228D substitution prevented effective binding to the murine Jag1 ortholog. These antibodies were able to specifically inhibit JAG1-Notch binding in vitro, downregulate Notch signaling in cancer cells, and block the heterotypic JAG1-mediated Notch signaling between endothelial and vascular smooth muscle cells. Functionally, in vitro treatment impaired three-dimensional growth of breast cancer cell spheroids, in association with a reduction in cancer stem cell number. In vivo testing showed variable effects on human xenograft growth when only tumor-expressed JAG1 was targeted (mouse models) but a more robust effect when stromal-expressed Jag1 was also targeted (rat MDA-MB-231 xenograft model). Importantly, treatment of established triple receptor-negative breast cancer brain metastasis in rats showed a significant reduction in neoplastic growth. MRI imaging demonstrated that this was associated with a substantial improvement in blood-brain barrier function and tumor perfusion. Lastly, JAG1-targeting antibody treatment did not cause any detectable toxicity, further supporting its clinical potential for cancer therapy.
Collapse
Affiliation(s)
- Massimo Masiero
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Demin Li
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Pat Whiteman
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Carol Bentley
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenny Greig
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tasneem Hassanali
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Watts
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Stephen Stribbling
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jenna Yates
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ellen Bealing
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ji-Liang Li
- CRUK Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Devon Sheppard
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Sébastien Serres
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Manuel Sarmiento-Soto
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - James Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Nicola R Sibson
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Penny A Handford
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adrian L Harris
- CRUK Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Alison H Banham
- NDCLS, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
10
|
Ray J, Hoey C, Huang X, Jeon J, Taeb S, Downes MR, Boutros PC, Liu SK. MicroRNA‑198 suppresses prostate tumorigenesis by targeting MIB1. Oncol Rep 2019; 42:1047-1056. [PMID: 31322262 PMCID: PMC6667842 DOI: 10.3892/or.2019.7234] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/12/2019] [Indexed: 01/11/2023] Open
Abstract
MicroRNAs are small non-coding RNA molecules which act as modulators of gene function, and have been identified as playing important roles in cancer as both tumor suppressors and oncogenes. The present study aimed to examine the role of miR-198 in prostate cancer aggression by analyzing how it influences several hallmarks of cancer. Abundance of miR-198 in prostate cancer and association with clinical characteristics was analyzed using a CPC-Gene prostate cancer dataset. Overexpression of miR-198 was performed using transient transfection of miR-198 mimic prior to assaying proliferation, cell cycle, and colony formation in LNCaP and DU145 cell lines using standard protocols. In vivo tumor formation in athymic nude mice was examined using LNCaP xenografts with stable overexpression conferred using lentiviral miR-198 transduction. Protein and mRNA abundance of MIB1 was determined using western blotting and RT-qPCR respectively, while miR-198 binding to MIB1 was validated using a luciferase reporter assay. miR-198 abundance was lower in high Gleason grade prostate cancer relative to intermediate and low-grade cancer. Overexpression of miR-198 diminished proliferation of prostate cancer cell lines, increased G0/G1 cell cycle arrest, and significantly impaired colony formation. Elevated miR-198 abundance was also demonstrated to impair tumor formation in vivo using LNCaP xenografts. Mindbomb E3 ubiquitin protein ligase 1 (MIB1) was demonstrated to be directly targeted by miR-198, and knockdown of MIB1 recapitulated the effects of miR-198 on proliferation and colony formation. The present evidence supports miR-198 as an important tumor suppressor in prostate cancer, and demonstrates for the first time that it acts by targeting MIB1. The present study reinforces the importance and complexity of miRNA in regulating prostate cancer aggression.
Collapse
Affiliation(s)
- Jessica Ray
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Christianne Hoey
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Jouhyun Jeon
- Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Samira Taeb
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Michelle R Downes
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| |
Collapse
|
11
|
Metastasis is impaired by endothelial-specific Dll4 loss-of-function through inhibition of epithelial-to-mesenchymal transition and reduction of cancer stem cells and circulating tumor cells. Clin Exp Metastasis 2019; 36:365-380. [PMID: 31119445 DOI: 10.1007/s10585-019-09973-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/13/2019] [Indexed: 01/09/2023]
Abstract
Systemic inhibition of Dll4 has been shown to thoroughly reduce cancer metastasis. The exact cause of this effect and whether it is endothelial mediated remains to be clarified. Therefore, we proposed to analyze the impact of endothelial Dll4 loss-of-function on metastasis induction on three early steps of the metastatic process, regulation of epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC) frequency and circulating tumor cell (CTC) number. For this, Lewis Lung Carcinoma (LLC) cells were used to model mouse tumor metastasis in vivo, by subcutaneous transplantation into endothelial-specific Dll4 loss-of-function mice. We observed that endothelial-specific Dll4 loss-of-function is responsible for the tumor vascular regression that leads to the reduction of tumor burden. It induces an increase in tumoral blood vessel density, but the neovessels are poorly perfused, with increased leakage and reduced perivascular maturation. Unexpectedly, although hypoxia was increased in the tumor, the number and burden of macro-metastasis was significantly reduced. This is likely to be a consequence of the observed reduction in both EMT and CSC numbers caused by the endothelial-specific Dll4 loss-of-function. This multifactorial context may explain the concomitantly observed reduction of the circulating tumor cell count. Furthermore, our results suggest that endothelial Dll4/Notch-function mediates tumor hypoxia-driven increase of EMT. Therefore, it appears that endothelial Dll4 may constitute a promising target to prevent metastasis.
Collapse
|
12
|
Effective Therapy Using a Liposomal siRNA that Targets the Tumor Vasculature in a Model Murine Breast Cancer with Lung Metastasis. MOLECULAR THERAPY-ONCOLYTICS 2018; 11:102-108. [PMID: 30534584 PMCID: PMC6280606 DOI: 10.1016/j.omto.2018.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022]
Abstract
Although metastatic cancer is a major cause of death for cancer patients, no efficacious treatment for metastasis is available. We previously showed that the growth of a primary tumor could be inhibited by the administration of an anti-angiogenic small interfering RNA (siRNA) that is encapsulated in an RGD peptide-modified lipid nanoparticle (RGD-LNP). We herein report on the delivery of siRNA by an RGD-LNP to the vasculature is also effective for treating metastatic tumors. We compared the RGD-LNP with the polyethylene glycol (PEG)ylated LNP (PEG-LNP) in terms of accumulation in a lung-metastasized model. Despite malformed structure of vasculature in the metastasized lung, the accumulation of the PEG-LNP in the metastasized lung was lower than that for the RGD-LNP, which suggests that the delivery strategy based on vascular permeability is not completely effective for targeting metastasis tumors. The systemic injection of the RGD-LNP induced a significant silencing in the metastasized vasculature, but not in the normal lung. In addition, the continuous injection of the RGD-LNP encapsulating siRNA against a delta-like ligand 4 (DLL4) drastically prolonged the overall survival of metastasized model mice. Accordingly, our current findings suggest that vasculature targeting would be more effective than enhanced permeability and retention effect-based therapy for the treatment of metastatic cancer.
Collapse
|
13
|
Li Y, Hickson JA, Ambrosi DJ, Haasch DL, Foster-Duke KD, Eaton LJ, DiGiammarino EL, Panchal SC, Jiang F, Mudd SR, Zhang C, Akella SS, Gao W, Ralston SL, Naumovski L, Gu J, Morgan-Lappe SE. ABT-165, a Dual Variable Domain Immunoglobulin (DVD-Ig) Targeting DLL4 and VEGF, Demonstrates Superior Efficacy and Favorable Safety Profiles in Preclinical Models. Mol Cancer Ther 2018; 17:1039-1050. [PMID: 29592882 DOI: 10.1158/1535-7163.mct-17-0800] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/28/2017] [Accepted: 03/08/2018] [Indexed: 11/16/2022]
Abstract
Antiangiogenic therapy is a clinically validated modality in cancer treatment. To date, all approved antiangiogenic drugs primarily inhibit the VEGF pathway. Delta-like ligand 4 (DLL4) has been identified as a potential drug target in VEGF-independent angiogenesis and tumor-initiating cell (TIC) survival. A dual-specific biologic targeting both VEGF and DLL4 could be an attractive strategy to improve the effectiveness of anti-VEGF therapy. ABT-165 was uniquely engineered using a proprietary dual-variable domain immunoglobulin (DVD-Ig) technology based on its ability to bind and inhibit both DLL4 and VEGF. In vivo, ABT-165 induced significant tumor growth inhibition compared with either parental antibody treatment alone, due, in part, to the disruption of functional tumor vasculature. In combination with chemotherapy agents, ABT-165 also induced greater antitumor response and outperformed anti-VEGF treatment. ABT-165 displayed nonlinear pharmacokinetic profiles in cynomolgus monkeys, with an apparent terminal half-life > 5 days at a target saturation dose. In a GLP monkey toxicity study, ABT-165 was well-tolerated at doses up to 200 mg/kg with non-adverse treatment-related histopathology findings limited to the liver and thymus. In summary, ABT-165 represents a novel antiangiogenic strategy that potently inhibits both DLL4 and VEGF, demonstrating favorable in vivo efficacy, pharmacokinetic, and safety profiles in preclinical models. Given these preclinical attributes, ABT-165 has progressed to a phase I study. Mol Cancer Ther; 17(5); 1039-50. ©2018 AACR.
Collapse
Affiliation(s)
- Yingchun Li
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | - Fang Jiang
- Oncology Discovery, AbbVie Inc., North Chicago, Illinois
| | - Sarah R Mudd
- Translational Imaging, AbbVie Inc., North Chicago, Illinois
| | - Catherine Zhang
- Drug Metabolism and Pharmacokinetics - Bioanalysis, AbbVie Biotherapeutics, Redwood City, California
| | - Surekha S Akella
- Preclinical Safety, AbbVie Biotherapeutics, Redwood City, California
| | - Wenqing Gao
- Drug Metabolism and Pharmacokinetics, AbbVie Inc., North Chicago, Illinois
| | | | - Louie Naumovski
- Oncology Early Development, AbbVie Inc., Redwood City, California
| | - Jijie Gu
- AbbVie Bioresearch Center, Worcester, Massachusetts
| | | |
Collapse
|
14
|
Venkatesh V, Nataraj R, Thangaraj GS, Karthikeyan M, Gnanasekaran A, Kaginelli SB, Kuppanna G, Kallappa CG, Basalingappa KM. Targeting Notch signalling pathway of cancer stem cells. Stem Cell Investig 2018; 5:5. [PMID: 29682512 DOI: 10.21037/sci.2018.02.02] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) have been defined as cells within tumor that possess the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. CSCs have been increasingly identified in blood cancer, prostate, ovarian, lung, melanoma, pancreatic, colon, brain and many more malignancies. CSCs have slow growth rate and are resistant to chemotherapy and radiotherapy that lead to the failure of traditional current therapy. Eradicating the CSCs and recurrence, is promising aspect for the cure of cancer. The CSCs like any other stem cells activate the signal transduction pathways that involve the development and tissue homeostasis, which include Notch signaling pathway. The new treatment targets these pathway that control stem-cell replication, survival and differentiation that are under development. Notch inhibitors either single or in combination with chemotherapy drugs have been developed to treat cancer and its recurrence. This approach of targeting signaling pathway of CSCs represents a promising future direction for the therapeutic strategy to cure cancer.
Collapse
Affiliation(s)
- Vandana Venkatesh
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Raghu Nataraj
- Division of Molecular Biology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Gopenath S Thangaraj
- Division of Biotechnology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Murugesan Karthikeyan
- Senior Lecturer, Department of Microbiology, Faculty of Medicine, Quest International University Perak, Malaysia
| | - Ashok Gnanasekaran
- Senior Lecturer, Department of Microbiology, Faculty of Medicine, Quest International University Perak, Malaysia
| | - Shanmukhappa B Kaginelli
- Division of Medical Physics, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| | - Gobianand Kuppanna
- Department of Microbiology, Vivekanandha College of Arts and Sciences for Women, Elayampalayam, Tiruchengode. Tamil Nadu, India
| | | | - Kanthesh M Basalingappa
- Division of Biochemistry, Faculty of Life Sciences, JSS Academy of Higher Education and Research, (Deemed to be University), Mysuru, India
| |
Collapse
|
15
|
Abstract
Comprehensive genomic analyses have been performed for head and neck squamous cell carcinoma (HNSCC), revealing a significant rate of NOTCH1 mutations and identifying NOTCH1 as the second most frequently mutated gene after TP53. Most NOTCH1 mutations are considered inactivating, indicating that NOTCH1 is a tumor suppressor gene. On the other hand, cohorts from Asian populations with HNSCC have shown activating NOTCH1 mutations. HNSCC with NOTCH1 mutations have a worse prognosis than the NOTCH1 wild-type tumors. Additional data on other NOTCH family members have shown that NOTCH promotes HNSCC progression. NOTCH family members, including NOTCH pathway genes, are upregulated in HNSCC compared with normal tissues, and inhibition of the NOTCH pathway decreases cell proliferation and invasion. NOTCH activity in HNSCC is therefore contextual, and NOTCH in HNSCC is considered to have a bimodal role as a tumor suppressor and an oncogene. In this review, recent understandings of NOTCH pathway genes, including NOTCH genes, in HNSCC are described. In addition, the implications of NOTCH pathway alteration for HNSCC-specific NOTCH-targeted cancer therapy are explored.
Collapse
Affiliation(s)
- T Fukusumi
- 1 Moores Cancer Center, University of California, La Jolla, CA, USA
| | - J A Califano
- 1 Moores Cancer Center, University of California, La Jolla, CA, USA
| |
Collapse
|
16
|
Dobranowski P, Ban F, Contreras-Sanz A, Cherkasov A, Black PC. Perspectives on the discovery of NOTCH2-specific inhibitors. Chem Biol Drug Des 2017; 91:691-706. [PMID: 29078041 DOI: 10.1111/cbdd.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/18/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
The Notch pathway is a cell-cell communication system where membrane-bound ligands interact with the extracellular region of Notch receptors to induce intracellular, downstream effects on gene expression. Aberrant Notch signaling promotes tumorigenesis, and the Notch pathway has tremendous potential for novel targeting strategies in cancer treatment. While γ-secretase inhibitors as Notch-inhibiting agents are already promising in clinical trials, they are highly non-specific with adverse side-effects. One of the underlying challenges is that two of the four known human Notch paralogs, NOTCH1 and 2, share very high structural similarity but play opposing roles in some tumorigenesis pathways. This perspective explores the feasibility of developing Notch-specific small molecule inhibitors targeting the anti-NOTCH2 antibody-binding epitopes or the "S2-Leu-plug-binding site" using a computer-aided drug discovery approach.
Collapse
Affiliation(s)
- Peter Dobranowski
- Department of Pediatrics, British Columbia Children's Hospital Research, Vancouver, British Columbia, Canada.,University of British Columbia, Vancouver, British Columbia, Canada
| | - Fuqiang Ban
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Alberto Contreras-Sanz
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Artem Cherkasov
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Peter C Black
- University of British Columbia, Vancouver, British Columbia, Canada.,Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
17
|
Oon CE, Bridges E, Sheldon H, Sainson RC, Jubb A, Turley H, Leek R, Buffa F, Harris AL, Li JL. Role of Delta-like 4 in Jagged1-induced tumour angiogenesis and tumour growth. Oncotarget 2017; 8:40115-40131. [PMID: 28445154 PMCID: PMC5522274 DOI: 10.18632/oncotarget.16969] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/11/2017] [Indexed: 12/20/2022] Open
Abstract
Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics.
Collapse
Affiliation(s)
- Chern Ein Oon
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Esther Bridges
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Helen Sheldon
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Richard C.A. Sainson
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adrian Jubb
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Helen Turley
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Russell Leek
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Francesca Buffa
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Adrian L. Harris
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ji-Liang Li
- Molecular Oncology Laboratories, Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Institute of Translational and Stratified Medicine, Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, UK
| |
Collapse
|
18
|
Kowalski-Chauvel A, Gouaze-Andersson V, Vignolle-Vidoni A, Delmas C, Toulas C, Cohen-Jonathan-Moyal E, Seva C. Targeting progastrin enhances radiosensitization of colorectal cancer cells. Oncotarget 2017; 8:58587-58600. [PMID: 28938581 PMCID: PMC5601677 DOI: 10.18632/oncotarget.17274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/20/2017] [Indexed: 12/11/2022] Open
Abstract
A high percentage of advanced rectal cancers are resistant to radiation. Therefore, increasing the efficacy of radiotherapy by targeting factors involved in radioresistance seems to be an attractive strategy. Here we demonstrated that the pro-hormone progastrin (PG), known to be over-expressed in CRC, and recognized as a pro-oncogenic factor, is a radioresistance factor that can be targeted to sensitize resistant rectal cancers to radiations. First, we observed an increase in PG mRNA expression under irradiation. Our results also demonstrated that down-regulating PG mRNA expression using a shRNA strategy, significantly increases the sensitivity to irradiation (IR) in a clonogenic assay of different colorectal cancer cell lines. We also showed that the combination of PG gene down-regulation and IR strongly inhibits tumours progression in vivo. Then, we demonstrated that targeting PG gene radiosensitizes cancer cells by increasing radio-induced apoptosis shown by an increase in annexin V positive cells, caspases activation and PARP cleavage. We also observed the up-regulation of the pro-apoptotic pathway, JNK and the induction of the expression of pro-apoptotic factors such as BIM. In addition, we demonstrated in this study that inhibition of PG gene expression enhances radiation-induced DNA damage. Our data also suggest that, in addition to increase radio-induced apoptosis, targeting PG gene also leads to the inhibition of the survival pathways, AKT and ERK induced by IR. Taken together, our results highlight the role of PG in radioresistance and provide a preclinical proof of concept that PG represents an attractive target for sensitizing resistant rectal tumours to irradiation. .
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France
| | - Valerie Gouaze-Andersson
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France
| | - Alix Vignolle-Vidoni
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France
| | - Caroline Delmas
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France.,IUCT Oncopole, Toulouse, France
| | - Christine Toulas
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France.,IUCT Oncopole, Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France.,IUCT Oncopole, Toulouse, France
| | - Catherine Seva
- Cancer Research Center of Toulouse (CRCT), UMR1037 Inserm/University Toulouse III Paul Sabatier, Toulouse, France
| |
Collapse
|
19
|
Häggblad Sahlberg S, Mortensen AC, Haglöf J, Engskog MKR, Arvidsson T, Pettersson C, Glimelius B, Stenerlöw B, Nestor M. Different functions of AKT1 and AKT2 in molecular pathways, cell migration and metabolism in colon cancer cells. Int J Oncol 2016; 50:5-14. [PMID: 27878243 PMCID: PMC5182003 DOI: 10.3892/ijo.2016.3771] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/12/2016] [Indexed: 01/07/2023] Open
Abstract
AKT is a central protein in many cellular pathways such as cell survival, proliferation, glucose uptake, metabolism, angiogenesis, as well as radiation and drug response. The three isoforms of AKT (AKT1, AKT2 and AKT3) are proposed to have different physiological functions, properties and expression patterns in a cell type-dependent manner. As of yet, not much is known about the influence of the different AKT isoforms in the genome and their effects in the metabolism of colorectal cancer cells. In the present study, DLD-1 isogenic AKT1, AKT2 and AKT1/2 knockout colon cancer cell lines were used as a model system in conjunction with the parental cell line in order to further elucidate the differences between the AKT isoforms and how they are involved in various cellular pathways. This was done using genome wide expression analyses, metabolic profiling and cell migration assays. In conclusion, downregulation of genes in the cell adhesion, extracellular matrix and Notch-pathways and upregulation of apoptosis and metastasis inhibitory genes in the p53-pathway, confirm that the knockout of both AKT1 and AKT2 will attenuate metastasis and tumor cell growth. This was verified with a reduction in migration rate in the AKT1 KO and AKT2 KO and most explicitly in the AKT1/2 KO. Furthermore, the knockout of AKT1, AKT2 or both, resulted in a reduction in lactate and alanine, suggesting that the metabolism of carbohydrates and glutathione was impaired. This was further verified in gene expression analyses, showing downregulation of genes involved in glucose metabolism. Additionally, both AKT1 KO and AKT2 KO demonstrated an impaired fatty acid metabolism. However, genes were upregulated in the Wnt and cell proliferation pathways, which could oppose this effect. AKT inhibition should therefore be combined with other effectors to attain the best effect.
Collapse
Affiliation(s)
- Sara Häggblad Sahlberg
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Anja C Mortensen
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Jakob Haglöf
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Mikael K R Engskog
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Torbjörn Arvidsson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Curt Pettersson
- Division of Analytical Pharmaceutical Chemistry, Department of Medicinal Chemistry, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Bengt Glimelius
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Bo Stenerlöw
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Marika Nestor
- Department of Immunology, Genetics and Pathology, The Rudbeck Laboratory, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
20
|
Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, Krylov SN, Fokas E, Boutros PC, Liu SK. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget 2016; 6:22439-51. [PMID: 26068950 PMCID: PMC4673174 DOI: 10.18632/oncotarget.4210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNA contribute to tumor radiation resistance, which is an important clinical problem, and thus we are interested in identifying and characterizing their function. We demonstrate that miR-620 contributes to radiation resistance in cancer cells by increasing proliferation, and decreasing the G2/M block. We identify the hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (HPGD/15-PGDH) tumor suppressor gene as a direct miR-620 target, which results in increased prostaglandin E2 (PGE2) levels. Furthermore, we show that siRNA targeting of HPGD or administration of exogenous PGE2 recapitulates radioresistance. Targeting of the EP2 receptor that responds to PGE2 using pharmacological or genetic approaches, abrogates radioresistance. Tumor xenograft experiments confirm that miR-620 increases proliferation and tumor radioresistance in vivo. Regulation of PGE2 levels via targeting of HPGD by miR-620 is an innovative manner by which a microRNA can induce radiation resistance.
Collapse
Affiliation(s)
- Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Samira Taeb
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sahar Jahangiri
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Elina Korpela
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ivan Cadonic
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nancy Yu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Emmanouil Fokas
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Department of Oncology, University of Oxford, Oxford, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Nox2 contributes to the arterial endothelial specification of mouse induced pluripotent stem cells by upregulating Notch signaling. Sci Rep 2016; 6:33737. [PMID: 27642005 PMCID: PMC5027389 DOI: 10.1038/srep33737] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/02/2016] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) have a crucial role in stem-cell differentiation; however, the mechanisms by which ROS regulate the differentiation of stem cells into endothelial cells (ECs) are unknown. Here, we determine the role of ROS produced by NADPH oxidase 2 (Nox2) in the endothelial-lineage specification of mouse induced-pluripotent stem cells (miPSCs). When wild-type (WT) and Nox2-knockout (Nox2−/−) miPSCs were differentiated into ECs (miPSC-ECs), the expression of endothelial markers, arterial endothelial markers, pro-angiogenic cytokines, and Notch pathway components was suppressed in the Nox2−/− cells but increased in both WT and Nox2−/− miPSCs when Nox2 expression was upregulated. Higher levels of Nox2 expression increased Notch signaling and arterial EC differentiation, and this increase was abolished by the inhibition of ROS generation or by the silencing of Notch1 expression. Nox2 deficiency was associated with declines in the survival and angiogenic potency of miPSC-ECs, and capillary and arterial density were lower in the ischemic limbs of mice after treatment with Nox2−/− miPSC-ECs than WT miPSC-EC treatment. Taken together, these observations indicate that Nox2-mediated ROS production promotes arterial EC specification in differentiating miPSCs by activating the Notch signaling pathway and contributes to the angiogenic potency of transplanted miPSC-derived ECs.
Collapse
|
22
|
Johansson E, Rönö B, Johansson M, Lindgren D, Möller C, Axelson H, Smith EMK. Simultaneous targeted activation of Notch1 and Vhl-disruption in the kidney proximal epithelial tubular cells in mice. Sci Rep 2016; 6:30739. [PMID: 27491826 PMCID: PMC4974510 DOI: 10.1038/srep30739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 07/07/2016] [Indexed: 01/01/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, representing approximately 75% of all renal neoplasms. ccRCC is known to be strongly associated with silencing of the von Hippel Lindau (VHL) tumor suppressor gene, yet VHL deficiency alone does not seem to be sufficient to drive the oncogenic transformation of normal renal epithelium and induce renal tumorigenesis. We, and others, have previously suggested that constitutive activation of the Notch signaling pathway, alongside with VHL loss, contribute to the oncogenic features of ccRCC. Here we report a prevailing hyperactivation of the Notch1 receptor in human ccRCC relative to the healthy counterpart. To explore the consequences of the elevated Notch1 signaling observed in ccRCC patient material, we made use of a conditional mouse model based on concurrent ectopic expression of constitutively active Notch1 (NICD1) and deletion of the Vhl gene. Histological examination of the kidneys of the conditional mice demonstrate the existence of nests of dysplastic cells with a clear cytoplasm as a consequence of lipid accumulation, thus displaying a one important hallmark of human ccRCC.
Collapse
Affiliation(s)
- Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Birgitte Rönö
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Martin Johansson
- Center for Molecular Pathology, Department of Translational Medicine, Skåne University Hospital, 205 02 Malmö, Sweden
| | - David Lindgren
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Christina Möller
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Håkan Axelson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| | - Emma M K Smith
- Division of Translational Cancer Research, Department of Laboratory Medicine, Medicon Village, Building 404 A3, Scheelevägen 8, 404A3, 223 63 Lund, Sweden
| |
Collapse
|
23
|
Yahyanejad S, Theys J, Vooijs M. Targeting Notch to overcome radiation resistance. Oncotarget 2016; 7:7610-28. [PMID: 26713603 PMCID: PMC4884942 DOI: 10.18632/oncotarget.6714] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy represents an important therapeutic strategy in the treatment of cancer cells. However, it often fails to eliminate all tumor cells because of the intrinsic or acquired treatment resistance, which is the most common cause of tumor recurrence. Emerging evidences suggest that the Notch signaling pathway is an important pathway mediating radiation resistance in tumor cells. Successful targeting of Notch signaling requires a thorough understanding of Notch regulation and the context-dependent interactions between Notch and other therapeutically relevant pathways. Understanding these interactions will increase our ability to design rational combination regimens that are more likely to be safe and effective. Here we summarize the role of Notch in mediating resistance to radiotherapy, the different strategies to block Notch in cancer cells and how treatment scheduling can improve tumor response. Finally, we discuss a need for reliable Notch related biomarkers in specific tumors to measure pathway activity and to allow identification of a subset of patients who are likely to benefit from Notch targeted therapies.
Collapse
Affiliation(s)
- Sanaz Yahyanejad
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Jan Theys
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| | - Marc Vooijs
- Department of Radiotherapy (MAASTRO)/GROW, School for Developmental Biology and Oncology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
24
|
Xiao YF, Yong X, Tang B, Qin Y, Zhang JW, Zhang D, Xie R, Yang SM. Notch and Wnt signaling pathway in cancer: Crucial role and potential therapeutic targets (Review). Int J Oncol 2015; 48:437-49. [PMID: 26648421 DOI: 10.3892/ijo.2015.3280] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 10/19/2015] [Indexed: 11/05/2022] Open
Abstract
There is no radical cure for all cancer types. The most frequently used therapies are surgical treatment, radiotherapy and chemotherapy. However, recrudescence, radiation resistance and chemotherapy resistance are the most challenging issues in clinical practice. To address these issues, they should be further studied at the molecular level, and the signaling pathways involved represent a promising avenue for this research. In the present review, we mainly discuss the components and mechanisms of activation of the Notch and Wnt signaling pathways, and we summarize the recent research efforts on these two pathways in different cancers. We also evaluate the ideal drugs that could target these two signaling pathways for cancer therapy, summarize alterations in the Notch and Wnt signaling pathways in cancer, and discuss potential signaling inhibitors as effective drugs for cancer therapy.
Collapse
Affiliation(s)
- Yu-Feng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Xin Yong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Yong Qin
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Jian-Wei Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Dan Zhang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Rui Xie
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| |
Collapse
|
25
|
Notch signaling: an emerging therapeutic target for cancer treatment. Cancer Lett 2015; 369:20-7. [PMID: 26341688 DOI: 10.1016/j.canlet.2015.07.048] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/14/2022]
Abstract
The Notch pathway is involved in cell proliferation, differentiation and survival. The Notch signaling pathway is one of the most commonly activated signaling pathways in cancer. Alterations include activating mutations and amplification of the Notch pathway, which play key roles in the progression of cancer. Accumulating evidence suggests that the pharmacological inhibition of this pathway can overcome chemoresistance. Efforts have been taken to develop Notch inhibitors as a single agent or in combination with clinically used chemotherapeutics to treat cancer. Some Notch inhibitors have been demonstrated to have therapeutic efficacy in preclinical studies. This review summarizes the recent studies and clinical evaluations of the Notch inhibitors in cancer.
Collapse
|
26
|
Zhou B, Wang H, Liu R, Wang M, Deng H, Giglio BC, Gill PS, Shan H, Li Z. PET Imaging of Dll4 Expression in Glioblastoma and Colorectal Cancer Xenografts Using (64)Cu-Labeled Monoclonal Antibody 61B. Mol Pharm 2015; 12:3527-34. [PMID: 26288060 DOI: 10.1021/acs.molpharmaceut.5b00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Delta-like ligand 4 (Dll4) expressed in tumor cells plays a key role to promote tumor growth of numerous cancer types. Based on a novel antihuman Dll4 monoclonal antibody (61B), we developed a (64)Cu-labeled probe for positron emission tomography (PET) imaging of tumor Dll4 expression. In this study, 61B was conjugated with the (64)Cu-chelator DOTA through lysine on the antibody. Human IgG (hIgG)-DOTA, which did not bind to Dll4, was also prepared as a control. The Dll4 binding activity of the probes was evaluated through the bead-based binding assay with Dll4-alkaline phosphatase. The resulting PET probes were evaluated in U87MG glioblastoma and HT29 colorectal cancer xenografts in athymic nude mice. Our results demonstrated that the 61B-DOTA retained (77.2 ± 3.7) % Dll4 binding activity of the unmodified 61B, which is significantly higher than that of hIgG-DOTA (0.06 ± 0.03) %. Confocal microscopy analysis confirmed that 61B-Cy5.5, but not IgG-Cy5.5, predominantly located within the U87MG and HT29 cells cytoplasm. U87MG cells showed higher 61B-Cy5.5 binding as compared to HT29 cells. In U87MG xenografts, 61B-DOTA-(64)Cu demonstrated remarkable tumor accumulation (10.5 ± 1.7 and 10.2 ± 1.2%ID/g at 24 and 48 h postinjection, respectively). In HT29 xenografts, tumor accumulation of 61B-DOTA-(64)Cu was significantly lower than that of U87MG (7.3 ± 1.3 and 6.6 ± 1.3%ID/g at 24 and 48 h postinjection, respectively). The tumor accumulation of 61B-DOTA-(64)Cu was significantly higher than that of hIgG-DOTA-(64)Cu in both xenografts models. Immunofluorescence staining of the tumor tissues further confirmed that tumor accumulation of 61B-Cy5.5 was correlated well with in vivo PET imaging data using 61B-DOTA-(64)Cu. In conclusion, 61B-DOTA-(64)Cu PET probe was successfully synthesized and demonstrated prominent tumor uptake by targeting Dll4. 61B-DOTA-(64)Cu has great potential to be used for noninvasive Dll4 imaging, which could be valuable for tumor detection, Dll4 expression level evaluation, and Dll4-based treatment monitoring.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630, China.,Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Hui Wang
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Ren Liu
- Department of Pathology, University of Southern California , Los Angeles, California 90033, United States
| | - Mengzhe Wang
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Huaifu Deng
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Benjamin C Giglio
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| | - Parkash S Gill
- Department of Pathology, University of Southern California , Los Angeles, California 90033, United States
| | - Hong Shan
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-sen University , Guangzhou 510630, China.,Interventional Radiology Institute, Sun Yat-sen University , Guangzhou 510630, China
| | - Zibo Li
- Biomedical Research Imaging Center, Department of Radiology, University of North Carolina , Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
27
|
Liu YR, Guan YY, Luan X, Lu Q, Wang C, Liu HJ, Gao YG, Yang SC, Dong X, Chen HZ, Fang C. Delta-like ligand 4-targeted nanomedicine for antiangiogenic cancer therapy. Biomaterials 2014; 42:161-71. [PMID: 25542804 DOI: 10.1016/j.biomaterials.2014.11.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/08/2014] [Accepted: 11/24/2014] [Indexed: 01/20/2023]
Abstract
Tumor angiogenesis is a multistep process involved with multiple molecular events in cancer microenvironment. Several molecular-targeted agents aiming to suppress tumor angiogenesis have been successfully translated into cancer clinic. However, new strategies are still urgently desired to be excavated to overcome the poor response and resistance in some antiangiogenic therapies. Recently, Delta-like ligand 4 (Dll4) is identified to be specifically over-expressed on tumor vascular endothelial cells (EC), and the Dll4-Notch pathway serves as a critical regulator in the development and maintenance of tumor angiogenesis. The intensively up-regulated phenotype of Dll4 on the membrane of tumor vascular EC implies that Dll4 may act as a targetable address for drug delivery system (DDS) to achieve targeted antiangiogenic cancer therapy. Here, a nano-DDS, GD16 peptide (H2N-GRCTNFHNFIYICFPD-CONH2, containing a disulfide bond between Cys3 and Cys13) conjugated nanoparticles loading paclitaxel (GD16-PTX-NP), which can specifically target the angiogenic marker Dll4, was fabricated for the investigation of antiangiogenic therapeutic efficacy in human head and neck cancer FaDu (Dll4-negative) xenograft in nude mice. The results demonstrate that GD16-PTX-NP achieved controlled drug release and exhibited favorable in vivo long-circulating feature. GD16-PTX-NP exerted enhanced antiangiogenic activity in the inhibition of human umbilical vein endothelial cell (HUVEC) viability, motility, migration, and tube formation, and in the Matrigel plug model as well, which can be definitely ascribed to the active internalization mediated by the interaction of GD16 and the over-expressed Dll4 on EC. GD16-PTX-NP showed accurate in vivo tumor neovasculature targeting property in FaDu tumor, where the paclitaxel was specifically delivered into the tumor vascular EC, leading to significant apoptosis of tumor vascular EC and necrosis of tumor tissues. The antiangiogenic activity of GD16-PTX-NP significantly contributed to its in vivo anticancer efficacy in Fadu tumor; moreover, no overt toxicity to the mice was observed. Our research firstly presents the potency and significance of a Dll4-targeted nanomedicine in antiangiogenic cancer therapy.
Collapse
Affiliation(s)
- Ya-Rong Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Ying-Yun Guan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xin Luan
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Chao Wang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hai-Jun Liu
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Yun-Ge Gao
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Hong-Zhuan Chen
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
28
|
Mesci A, Taeb S, Huang X, Jairath R, Sivaloganathan D, Liu SK. Pea3 expression promotes the invasive and metastatic potential of colorectal carcinoma. World J Gastroenterol 2014; 20:17376-17387. [PMID: 25516649 PMCID: PMC4265596 DOI: 10.3748/wjg.v20.i46.17376] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/05/2014] [Accepted: 07/22/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the function of Pea3 in colorectal carcinoma (CRC) invasion and metastatic potential.
METHODS: The expression of Pea3 during clinical progression of human CRC was investigated using Oncomine Research Edition. To assay Pea3 expression in established CRC cell lines, we performed western blotting of cell lysates. We employed shRNA-mediated knockdown of Pea3 in HCT116 (HCT) and LS174T CRC cells which was confirmed by real-time quantitative PCR (qPCR) and western blotting. Transwell invasion assays, MTS proliferation assays, anoikis assays, and fluorometric matrix metalloprotease (MMP) assays were performed to determine the effects of Pea3 knockdown on invasion, proliferation, anoikis and MMP activity in CRC cells in vitro. Alterations in epithelial-mesenchymal transition (EMT) and matrix metalloprotease (MMP) mRNA levels were determined by qPCR. CRC cells were injected into the flanks of nude mice to generate xenografts and tumor growth monitored with serial calliper measurements. To assay metastatic potential, CRC cells were injected into the spleen of nude mice, and histological analysis performed on the livers 21 d later.
RESULTS: We demonstrated that reduction of Pea3 expression in CRC cells significantly impaired their invasive capacity (HCT.shPea3, 0.28 ± 0.04 fold, P < 0.01; LS.shPea3, 0.15 ± 0.04 fold; SW.shPea3, 0.23 ± 0.03, P < 0.01), reduced anoikis resistance (HCT.shPea3 75.4% ± 1.9% viable cells vs HCT.shCtrl 88.6% ± 0.6% viable cells, P < 0.01; LS.shPea3 71.7% ± 0.5% viable cells vs LS.Ctrl 89.6% ± 0.3% viable cells, P < 0.005, but had no effect on proliferation (HCT.shCtrl AUC 5098 ± 123 vs HCT.shPea3 5689 ± 151, P < 0.05; LS.shCtrl AUC 5600 ± 324.1 vs LS.shPea3 6423 ± 400, P < 0.05). In vivo, HCT.shPea3 and HCT.shCtrl tumour xenografts grew at a similar rate (HCT.shPea3 2.64 ± 0.82 fold vs HCT.shCtrl 2.88 ± 0.80 fold, P > 0.05). In keeping with a pro-metastatic function for Pea3 in CRC, several EMT markers and MMPs were downregulated in shPea3-expressing cells, suggesting that Pea3 may exert its effects through these processes. A reduction in overall MMP activity was observed in HCT.shPea3 cells compared to their control counterparts (HCT.shPea3 0.61 ± 0.04 fold, P < 0.005). This translated in vivo to the complete absence of metastases in the livers of mice that were grafted with CRC cells lacking Pea3. Conversely, CRC cells expressing Pea3 formed liver metastases in all mice.
CONCLUSION: Our study implicates Pea3 as a mediator of metastases, and provides a biological rationale for the adverse prognosis associated with elevated Pea3 expression in human CRC.
Collapse
|
29
|
Kushwah R, Guezguez B, Lee JB, Hopkins CI, Bhatia M. Pleiotropic roles of Notch signaling in normal, malignant, and developmental hematopoiesis in the human. EMBO Rep 2014; 15:1128-38. [PMID: 25252682 DOI: 10.15252/embr.201438842] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Notch signaling pathway is evolutionarily conserved across species and plays an important role in regulating cell differentiation, proliferation, and survival. It has been implicated in several different hematopoietic processes including early hematopoietic development as well as adult hematological malignancies in humans. This review focuses on recent developments in understanding the role of Notch signaling in the human hematopoietic system with an emphasis on hematopoietic initiation from human pluripotent stem cells and regulation within the bone marrow. Based on recent insights, we summarize potential strategies for treatment of human hematological malignancies toward the concept of targeting Notch signaling for fate regulation.
Collapse
Affiliation(s)
- Rahul Kushwah
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Borhane Guezguez
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jung Bok Lee
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Claudia I Hopkins
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mickie Bhatia
- McMaster Stem Cell and Cancer Research Institute (SCC-RI), Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada Department of Biochemistry and Biomedical Sciences, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
30
|
Dubrovska A. Report on the International Workshop 'Cancer stem cells: the mechanisms of radioresistance and biomarker discovery'. Int J Radiat Biol 2014; 90:607-14. [PMID: 24844377 DOI: 10.3109/09553002.2014.920968] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of the Workshop "Cancer stem cells: The mechanisms of radioresistance and biomarker discovery", which was held on 23-24 September 2013 at OncoRay - National Center for Radiation Research in Oncology in Dresden, Germany, was to bring together the most recent viewpoints and insights about: (i) the molecular characterization and regulation of CSC, (ii) the mechanisms of CSC radioresistance, and (iii) the discovery of new CSC targeting therapeutics and biomarkers. In this report some research aspects presented in these three topics are highlighted.
Collapse
Affiliation(s)
- Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden , German Cancer Consortium (DKTK) Dresden, and German Cancer Research Center (DKFZ) Heidelberg , Germany
| |
Collapse
|
31
|
El Kaffas A, Nofiele J, Giles A, Cho S, Liu SK, Czarnota GJ. Dll4-notch signalling blockade synergizes combined ultrasound-stimulated microbubble and radiation therapy in human colon cancer xenografts. PLoS One 2014; 9:e93888. [PMID: 24736631 PMCID: PMC3988033 DOI: 10.1371/journal.pone.0093888] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Tumour vasculature acts as an essential lifeline for tumour progression and facilitates metastatic spread. Novel vascular targeting strategies aiming to sustain vascular shutdown could potentially induce substantial damage, resulting in a significant tumour growth delay. We investigated the combination of two novel complementary vascular targeting agents with radiation therapy in a strategy aiming to sustain vascular disruption. Experiments were carried out with delta-like ligand 4 (Dll4) blockade (angiogenesis deregulator) treatment administered in combination with a radiation-based vascular destruction treatment in a highly aggressive well-perfused colon cancer tumour line implanted in female athymic nude mice. Tumours were treated with permutations of radiation, ultrasound-stimulated microbubbles (USMB) and Dll4 monoclonal antibody (mAb). Tumour vascular response was assessed with three-dimensional power Doppler ultrasound to measure active flow and immunohistochemistry. Tumour response was assessed with histochemical assays and longitudinal measurements of tumour volume. Our results suggest a significant tumour response in animals treated with USMB combined with radiation, and Dll4 mAb, leading to a synergistic tumour growth delay of up to 24 days. This is likely linked to rapid cell death within the tumour and a sustained tumour vascular shutdown. We conclude that the triple combination treatments cause a vascular shutdown followed by a sustained inhibition of angiogenesis and tumour cell death, leading to a rapid tumour vascular-based ‘collapse’ and a significant tumour growth delay.
Collapse
Affiliation(s)
- Ahmed El Kaffas
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Joris Nofiele
- Departments of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anoja Giles
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Song Cho
- Department of Oncology Research, MedImmune, Maryland, United States of America
| | - Stanley K. Liu
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Gregory J. Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Imaging Research and Physical Sciences, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
- Departments of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
32
|
Tran E, Chow A, Goda T, Wong A, Blakely K, Rocha M, Taeb S, Hoang VC, Liu SK, Emmenegger U. Context-dependent role of ATG4B as target for autophagy inhibition in prostate cancer therapy. Biochem Biophys Res Commun 2013; 441:726-31. [PMID: 24184480 DOI: 10.1016/j.bbrc.2013.10.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 10/22/2013] [Indexed: 01/13/2023]
Abstract
ATG4B belongs to the autophagin family of cysteine proteases required for autophagy, an emerging target of cancer therapy. Developing pharmacological ATG4B inhibitors is a very active area of research. However, detailed studies on the role of ATG4B during anticancer therapy are lacking. By analyzing PC-3 and C4-2 prostate cancer cells overexpressing dominant negative ATG4B(C74A)in vitro and in vivo, we show that the effects of ATG4B(C74A) are cell type, treatment, and context-dependent. ATG4B(C74A) expression can either amplify the effects of cytotoxic therapies or contribute to treatment resistance. Thus, the successful clinical application of ATG4B inhibitors will depend on finding predictive markers of response.
Collapse
Affiliation(s)
- Elisa Tran
- Biological Sciences, Sunnybrook Research Institute, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huang X, Taeb S, Jahangiri S, Emmenegger U, Tran E, Bruce J, Mesci A, Korpela E, Vesprini D, Wong CS, Bristow RG, Liu FF, Liu SK. miRNA-95 Mediates Radioresistance in Tumors by Targeting the Sphingolipid Phosphatase SGPP1. Cancer Res 2013; 73:6972-86. [DOI: 10.1158/0008-5472.can-13-1657] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Strategies for optimizing the response of cancer and normal tissues to radiation. Nat Rev Drug Discov 2013; 12:526-42. [PMID: 23812271 DOI: 10.1038/nrd4003] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Approximately 50% of all patients with cancer receive radiation therapy at some point during the course of their treatment, and the majority of these patients are treated with curative intent. Despite recent advances in the planning of radiation treatment and the delivery of image-guided radiation therapy, acute toxicity and potential long-term side effects often limit the ability to deliver a sufficient dose of radiation to control tumours locally. In the past two decades, a better understanding of the hallmarks of cancer and the discovery of specific signalling pathways by which cells respond to radiation have provided new opportunities to design molecularly targeted therapies to increase the therapeutic window of radiation therapy. Here, we review efforts to develop approaches that could improve outcomes with radiation therapy by increasing the probability of tumour cure or by decreasing normal tissue toxicity.
Collapse
|
35
|
High NOTCH activity induces radiation resistance in non small cell lung cancer. Radiother Oncol 2013; 108:440-445. [PMID: 23891097 DOI: 10.1016/j.radonc.2013.06.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE Patients with advanced NSCLC have survival rates <15%. The NOTCH pathway plays an important role during lung development and physiology but is often deregulated in lung cancer, making it a potential therapeutic target. We investigated NOTCH signaling in NSCLC and hypothesized that high NOTCH activity contributes to radiation resistance. MATERIALS AND METHODS NOTCH signaling in NSCLC patient samples was investigated using quantitative RT-PCR. H460 NSCLC cells with either high or blocked NOTCH activity were generated and their radiation sensitivity monitored using clonogenic assays. In vivo, xenograft tumors were irradiated and response assessed using growth delay. Microenvironmental parameters were analyzed by immunohistochemistry. RESULTS Patients with high NOTCH activity in tumors showed significantly worse disease-free survival. In vitro, NOTCH activity did not affect the proliferation or intrinsic radiosensitivity of NSCLC cells. In contrast, xenografts with blocked NOTCH activity grew slower than wild type tumors. Tumors with high NOTCH activity grew significantly faster, were more hypoxic and showed a radioresistant phenotype. CONCLUSIONS We demonstrate an important role for NOTCH in tumor growth and correlate high NOTCH activity with poor prognosis and radioresistance. Blocking NOTCH activity in NSCLC might be a promising intervention to improve outcome after radiotherapy.
Collapse
|
36
|
Yu SD, Liu FY, Wang QR. Notch inhibitor: a promising carcinoma radiosensitizer. Asian Pac J Cancer Prev 2013; 13:5345-51. [PMID: 23317182 DOI: 10.7314/apjcp.2012.13.11.5345] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Radiotherapy is an important part of modern cancer management for many malignancies, and enhancing the radiosensitivity of tumor cells is critical for effective cancer therapies. The Notch signaling pathway plays a key role in regulation of numerous fundamental cellular processes. Further, there is accumulating evidence that dysregulated Notch activity is involved in the genesis of many human cancers. As such, Notch inhibitors are attractive therapeutic agents, although as for other anticancer agents, they exhibit significant and potential side effects. Thus, Notch inhibitors may be best used in combination with other agents or therapy. Herein, we describe evidence supporting the use of Notch inhibitors as novel and potent radiosensitizers in cancer therapy.
Collapse
Affiliation(s)
- Shu-Dong Yu
- Department of Otolaryngology, Qianfoshan Hospital Affiliated to Shandong University, Shandong, China.
| | | | | |
Collapse
|
37
|
Abstract
The notch signalling pathway is involved in differentiation, proliferation, angiogenesis, vascular remodelling, and apoptosis. Deregulated expression of notch receptors, ligands, and targets is observed in many solid tumours, including prostate cancer. Hypoxia is a common feature of prostate tumours, leading to increased gene instability, reduced treatment response, and increased tumour aggressiveness. The notch signalling pathway is known to regulate vascular cell fate and is responsive to hypoxia-inducible factors. Evidence to date suggests similar, therapeutically exploitable, behaviour of notch-activated and hypoxic prostate cancer cells.
Collapse
|
38
|
Capaccione KM, Pine SR. The Notch signaling pathway as a mediator of tumor survival. Carcinogenesis 2013; 34:1420-30. [PMID: 23585460 DOI: 10.1093/carcin/bgt127] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Notch signaling pathway is evolutionarily conserved and responsible for cell fate determination in the developing embryo and mature tissue. At the molecular level, ligand binding activates Notch signaling by liberating the Notch intracellular domain, which then translocates into the nucleus and activates gene transcription. Despite the elegant simplicity of this pathway, which lacks secondary messengers or a signaling cascade, Notch regulates gene expression in a highly context- and cell-type-dependent manner. Notch signaling is frequently dysregulated, most commonly by overactivation, across many cancers and confers a survival advantage on tumors, leading to poorer outcomes for patients. Recent studies demonstrate how Notch signaling increases tumor cell proliferation and provide evidence that active Notch signaling maintains the cancer stem-cell pool, induces epithelial-mesenchymal transition and promotes chemoresistance. These studies imply that pharmacological inhibition of Notch signaling may refine control of cancer therapy and improve patient survival. Gamma secretase inhibitors (GSIs) are drugs that inhibit Notch signaling and may be successful in controlling cancer cell growth in conjunction with standard chemotherapy, but substantial side effects have hampered their widespread use. Recent efforts have been aimed at the development of antibodies against specific Notch receptors and ligands with the hope of limiting side effects while providing the same therapeutic benefit as GSIs. Together, studies characterizing Notch signaling and modulation have offered hope that refined methods targeting Notch may become powerful tools in anticancer therapeutics.
Collapse
Affiliation(s)
- Kathleen M Capaccione
- Department of Medicine, The Cancer Institute of New Jersey, UMDNJ/Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | | |
Collapse
|
39
|
Abstract
The small and large intestines are tubular organs composed of several tissue types. The columnar epithelium that lines the inner surface of the intestines distinguishes the digestive physiology of each region of the intestine and consists of several distinct cell types that are rapidly and continually renewed by intestinal stem cells that reside near the base of the crypts of Lieberkühn. Notch signaling controls the fate of intestinal stem cells by regulating the expression of Hes genes and by repressing Atoh1. Alternate models of Notch pathway control of cell fate determination are presented. Roles for Notch signaling in development of the intestine, including mesenchymal and neural cells, are discussed. The oncogenic activities of Notch in colorectal cancer, as well as the tumor suppressive activities of Atoh1, are reviewed. Therapeutic targeting of the Notch pathway in colorectal cancers is discussed, along with potential caveats.
Collapse
Affiliation(s)
- Taeko K Noah
- Division of Gastroenterology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
40
|
High DLL4 expression in tumour-associated vessels predicts for favorable radiotherapy outcome in locally advanced squamous cell head-neck cancer (HNSCC). Angiogenesis 2012; 16:343-51. [PMID: 23108591 DOI: 10.1007/s10456-012-9318-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/16/2012] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Expression of the DLL4 (a notch pathway ligand) by tumor-associated endothelium is a postulated marker of vascular maturity and functionality. As vascular functionality is an important parameter defining chemotherapy and oxygen intra-tumoral distribution, we investigated the role of DLL4 expression in tumour vasculature in the efficacy of radio-chemotherapy for HNSCC patients. MATERIALS AND METHODS Sixty-five biopsy specimens from HNSCC patients with inoperable disease were immunohistochemically examined using anti-CD31 (pan-endothelial cell marker) and anti-DLL4 antibodies and the vascular density (VD) was recorded. Patients were treated with platinum based hypofractionated accelerated conformal radiotherapy. The median follow-up period was 24 months (4-80 months). RESULTS Using the 33rd and 66th percentiles cases were grouped in three categories of low, medium and high CD31+ or DLL4+ VD. The percentage of vessels expressing DLL4 (DLL4-ratio) ranged from 17 to 100 % (mean 71 %), showing substantial variation among cases. In accordance with previous published studies, a biphasic pattern of association of CD31+ VD with poor outcome was noted. Cases with a medium VD had a significantly better local relapse free survival (LRFS) compared to cases of high VD (p = 0.0005, HR 0.15) and of low VD (p = 0.02, HR 0.28). High DLL4/CD31 ratio defined improved LRFS in both these subgroups of poor prognosis. CONCLUSIONS The expression of DLL4 is associated with reduced radio-resistance, presumably by reducing hypoxia and improving chemotherapy accessibility. Using the combination of CD31 and DLL4 staining, a classification is suggested so that HNSCCs are categorized in sub-groups to be targeted by different anti-angiogenic and hypoxia targeting agents.
Collapse
|
41
|
Kuramoto T, Goto H, Mitsuhashi A, Tabata S, Ogawa H, Uehara H, Saijo A, Kakiuchi S, Maekawa Y, Yasutomo K, Hanibuchi M, Akiyama SI, Sone S, Nishioka Y. Dll4-Fc, an Inhibitor of Dll4-Notch Signaling, Suppresses Liver Metastasis of Small Cell Lung Cancer Cells through the Downregulation of the NF-κB Activity. Mol Cancer Ther 2012; 11:2578-87. [DOI: 10.1158/1535-7163.mct-12-0640] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Fokas E, McKenna WG, Muschel RJ. The impact of tumor microenvironment on cancer treatment and its modulation by direct and indirect antivascular strategies. Cancer Metastasis Rev 2012; 31:823-42. [DOI: 10.1007/s10555-012-9394-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Tumour lineage-homing cell-penetrating peptides as anticancer molecular delivery systems. Nat Commun 2012; 3:951. [PMID: 22805558 DOI: 10.1038/ncomms1952] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 06/13/2012] [Indexed: 11/08/2022] Open
Abstract
Cell-penetrating peptides have gained attention owing to their promise in noninvasive delivery systems. Among the identified cell-penetrating peptides, the TAT peptide has been preferentially used for transduction into cells of diverse origins. However, this activity is nonselective between neoplastic and non-neoplastic cells. Here we describe artificial cell-penetrating peptides that are selectively and efficiently incorporated into human tumour cells, according to their lineage. Ten representative tumour lineage-homing cell-penetrating peptides were obtained by screening of a random peptide library constructed using messenger RNA display technology, and some of the isolates were further modified by amino-acid substitution. Their advantageous tumour cell-targeting ability is corroborated in an in vivo mouse model for imaging and growth suppression of metastatic xenoplant tumours. These cell-penetrating peptides are potentially useful for the efficient targeting of human neoplasms in a tumour origin-dependent manner, and provide a framework for the development of peptide-based anti-tumour technologies.
Collapse
|
44
|
Kleibeuker EA, Griffioen AW, Verheul HM, Slotman BJ, Thijssen VL. Combining angiogenesis inhibition and radiotherapy: A double-edged sword. Drug Resist Updat 2012; 15:173-82. [DOI: 10.1016/j.drup.2012.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/20/2012] [Accepted: 04/11/2012] [Indexed: 01/01/2023]
|
45
|
Rizzo P, Miele L, Ferrari R. The Notch pathway: a crossroad between the life and death of the endothelium. Eur Heart J 2012; 34:2504-9. [PMID: 22645188 DOI: 10.1093/eurheartj/ehs141] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Paola Rizzo
- Department of Cardiology and LTTA Centre, University Hospital of Ferrara, Ferrara, Italy
| | | | | |
Collapse
|
46
|
Kozin SV, Duda DG, Munn LL, Jain RK. Neovascularization after irradiation: what is the source of newly formed vessels in recurring tumors? J Natl Cancer Inst 2012; 104:899-905. [PMID: 22572994 DOI: 10.1093/jnci/djs239] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Local relapse of tumors after radiation therapy remains a challenge in oncology. To devise rational approaches for preventing this relapse, we have to improve our understanding of how new vessels form in previously irradiated tumors. We propose that tumor regrowth after local irradiation is dependent on blood vessel formation by local endothelial cells without the need for recruitment of endothelial precursor cells from distant nonirradiated tissues or bone marrow. We also suggest that infiltrating myeloid bone marrow-derived cells promote survival of local endothelial cells during the early period after irradiation and angiogenesis during the later stage of tumor regrowth, both via paracrine mechanisms.
Collapse
Affiliation(s)
- Sergey V Kozin
- Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, 100 Blossom Street, Cox-734, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
47
|
New pathways and mechanisms regulating and responding to Delta-like ligand 4-Notch signalling in tumour angiogenesis. Biochem Soc Trans 2012; 39:1612-8. [PMID: 22103496 DOI: 10.1042/bst20110721] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Notch signalling is a key pathway controlling angiogenesis in normal tissues and tumours. This has become a major focus of development of anticancer therapy, but to develop this appropriately, we need further understanding of the mechanisms of regulation of Dll4 (Delta-like ligand 4), a key endothelial Notch ligand. Dll4 and VEGF (vascular endothelial growth factor) cross-talk, with VEGF up-regulation of Dll4 and Dll4 down-regulating VEGFR (VEGF receptor) signalling. Both are essential for normal angiogenesis, and blockade of one may produce compensatory changes in the other. The present review considers recent developments in the regulation of Dll4 expression and functions, its role as a mechanism of resistance to anti-angiogenic therapy, and methods needed to develop effective therapy against this target.
Collapse
|
48
|
Masuda S. Re: Delta-like ligand 4-Notch blockade and tumor radiation response. J Natl Cancer Inst 2012; 104:421; author reply 421-2. [PMID: 22266472 DOI: 10.1093/jnci/djs006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|