1
|
Kichina JV, Maslov A, Kandel ES. PAK1 and Therapy Resistance in Melanoma. Cells 2023; 12:2373. [PMID: 37830586 PMCID: PMC10572217 DOI: 10.3390/cells12192373] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023] Open
Abstract
Malignant melanoma claims more lives than any other skin malignancy. While primary melanomas are usually cured via surgical excision, the metastatic form of the disease portents a poor prognosis. Decades of intense research has yielded an extensive armamentarium of anti-melanoma therapies, ranging from genotoxic chemo- and radiotherapies to targeted interventions in specific signaling pathways and immune functions. Unfortunately, even the most up-to-date embodiments of these therapies are not curative for the majority of metastatic melanoma patients, and the need to improve their efficacy is widely recognized. Here, we review the reports that implicate p21-regulated kinase 1 (PAK1) and PAK1-related pathways in the response of melanoma to various therapeutic modalities. Ample data suggest that PAK1 may decrease cell sensitivity to programmed cell death, provide additional stimulation to growth-promoting molecular pathways, and contribute to the creation of an immunosuppressive tumor microenvironment. Accordingly, there is mounting evidence that the concomitant inhibition of PAK1 enhances the potency of various anti-melanoma regimens. Overall, the available information suggests that a safe and effective inhibition of PAK1-dependent molecular processes would enhance the potency of the currently available anti-melanoma treatments, although considerable challenges in implementing such strategies still exist.
Collapse
Affiliation(s)
- Julia V. Kichina
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Alexei Maslov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| | - Eugene S. Kandel
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Elm & Carlton St., Buffalo, NY 14263, USA
| |
Collapse
|
2
|
Dasgupta A, Sierra L, Tsang SV, Kurenbekova L, Patel T, Rajapakse K, Shuck RL, Rainusso N, Landesman Y, Unger T, Coarfa C, Yustein JT. Targeting PAK4 Inhibits Ras-Mediated Signaling and Multiple Oncogenic Pathways in High-Risk Rhabdomyosarcoma. Cancer Res 2021; 81:199-212. [PMID: 33168646 PMCID: PMC7878415 DOI: 10.1158/0008-5472.can-20-0854] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
Rhabdomyosarcoma (RMS) is the most prevalent pediatric soft-tissue sarcoma. Multimodal treatment, including surgery and traditional chemotherapy with radiotherapy, has contributed to improvements in overall survival rates. However, patients with recurrent or metastatic disease have 5-year survival rates of less than 30%. One reason for the lack of therapeutic advancement is identification and targeting of critical signaling nodes. p21-activated kinases (PAK) are a family of serine/threonine kinases downstream of multiple critical tumorigenic receptor tyrosine kinase receptors and oncogenic regulators, including IGFR and RAS signaling, that significantly contribute to aggressive malignant phenotypes. Here, we report that RMS cell lines and tumors exhibit enhanced PAK4 expression levels and activity, which are further activated by growth factors involved in RMS development. Molecular perturbation of PAK4 in multiple RMS models in vitro and in vivo resulted in inhibition of RMS development and progression. Fusion-positive and -negative RMS models were sensitive to two PAK4 small-molecule inhibitors, PF-3758309 and KPT-9274, which elicited significant antitumor and antimetastatic potential in several primary and metastatic in vivo models, including a relapsed RMS patient-derived xenograft model. Transcriptomic analysis of PAK4-targeted tumors revealed inhibition of the RAS-GTPase, Hedgehog, and Notch pathways, along with evidence of activation of antitumor immune response signatures. This PAK4-targeting gene signature showed prognostic significance for patients with sarcoma. Overall, our results show for the first time that PAK4 is a novel and viable therapeutic target for the treatment of high-risk RMS. SIGNIFICANCE: These data demonstrate a novel oncogenic role for PAK4 in rhabdomyosarcoma and show that targeting PAK4 activity is a promising viable therapeutic option for advanced rhabdomyosarcoma.
Collapse
Affiliation(s)
- Atreyi Dasgupta
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Laura Sierra
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Susan V Tsang
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
| | - Lyazat Kurenbekova
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Tajhal Patel
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakse
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Ryan L Shuck
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | - Nino Rainusso
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas
| | | | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| | - Jason T Yustein
- Texas Children's Cancer and Hematology Centers and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, Texas.
- Integrative Molecular and Biological Sciences Program, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Comprehensive Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
3
|
Solé C, Tramonti D, Schramm M, Goicoechea I, Armesto M, Hernandez LI, Manterola L, Fernandez-Mercado M, Mujika K, Tuneu A, Jaka A, Tellaetxe M, Friedländer MR, Estivill X, Piazza P, Ortiz-Romero PL, Middleton MR, Lawrie CH. The Circulating Transcriptome as a Source of Biomarkers for Melanoma. Cancers (Basel) 2019; 11:cancers11010070. [PMID: 30634628 PMCID: PMC6356785 DOI: 10.3390/cancers11010070] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/18/2022] Open
Abstract
The circulating transcriptome is a valuable source of cancer biomarkers, which, with the exception of microRNAs (miRNAs), remains relatively unexplored. To elucidate which RNAs are present in plasma from melanoma patients and which could be used to distinguish cancer patients from healthy individuals, we used next generation sequencing (NGS), and validation was carried out by qPCR and/or ddPCR. We identified 442 different microRNAs in samples, eleven of which were differentially expressed (p < 0.05). Levels of miR-134-5p and miR-320a-3p were significantly down-regulated (p < 0.001) in melanoma samples (n = 96) compared to healthy controls (n = 28). Differentially expressed protein-encoding mRNA 5'-fragments were enriched for the angiopoietin, p21-activated kinase (PAK), and EIF2 pathways. Levels of ATM1, AMFR, SOS1, and CD109 gene fragments were up-regulated (p < 0.001) in melanoma samples (n = 144) compared to healthy controls (n = 41) (AUC = 0.825). Over 40% of mapped reads were YRNAs, a class of non-coding RNAs that to date has been little explored. Expression levels of RNY3P1, RNY4P1, and RNY4P25 were significantly higher in patients with stage 0 disease than either healthy controls or more advanced stage disease (p < 0.001). In conclusion, we have identified a number of novel RNA biomarkers, which, most importantly, we validated in multi-center retrospective and prospective cohorts, suggesting potential diagnostic use of these RNA species.
Collapse
Affiliation(s)
- Carla Solé
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Daniela Tramonti
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK.
| | - Maike Schramm
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
- Faculty of Biosciences, University of Heidelberg, Heidelberg 69120, Germany.
| | - Ibai Goicoechea
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - María Armesto
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Luiza I Hernandez
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Lorea Manterola
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | | | - Karmele Mujika
- Onkologikoa-Oncology Institute Gipuzkoa, Gipuzkoa 20012, Spain.
| | - Anna Tuneu
- Department of Dermatology, Hospital Universitario de Donostia, San Sebastian 20012, Spain.
| | - Ane Jaka
- Department of Dermatology, Hospital Universitario de Donostia, San Sebastian 20012, Spain.
| | - Maitena Tellaetxe
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
| | - Marc R Friedländer
- Genomics and Disease group, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08002, Spain.
- Hospital del Mar Research Institute (IMIM), Barcelona 08003, Spain.
- Science for Life Laboratory, The Wenner-Gren Institute, Stockholm University, Stockholm SE-106 9, Sweden.
| | - Xavier Estivill
- Genomics and Disease group, Centre for Genomic Regulation (CRG), Barcelona 08003, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona 08002, Spain.
- Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Barcelona 08002, Spain.
- Hospital del Mar Research Institute (IMIM), Barcelona 08003, Spain.
| | - Paolo Piazza
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
- Imperial BRC Genomics Facility, Imperial College London, London SW7 2AZ, UK.
| | - Pablo L Ortiz-Romero
- Department of Dermatology, 12 de Octubre Hospital, Madrid 28041, Spain.
- Medical School, Universidad Complutense, Institute i+12, Centro de Investigación Biomédica en Red en Oncologia (CIBERONC), Madrid 28040, Spain.
| | - Mark R Middleton
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK.
| | - Charles H Lawrie
- Molecular Oncology group, Biodonostia Research Institute, San Sebastián 20012, Spain.
- Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK.
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain.
| |
Collapse
|
4
|
Sutton SK, Carter DR, Kim P, Tan O, Arndt GM, Zhang XD, Baell J, Noll BD, Wang S, Kumar N, McArthur GA, Cheung BB, Marshall GM. A novel compound which sensitizes BRAF wild-type melanoma cells to vemurafenib in a TRIM16-dependent manner. Oncotarget 2018; 7:52166-52178. [PMID: 27447557 PMCID: PMC5239542 DOI: 10.18632/oncotarget.10700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 05/29/2016] [Indexed: 11/25/2022] Open
Abstract
There is an urgent need for better therapeutic options for advanced melanoma patients, particularly those without the BRAFV600E/K mutation. In melanoma cells, loss of TRIM16 expression is a marker of cell migration and metastasis, while the BRAF inhibitor, vemurafenib, induces melanoma cell growth arrest in a TRIM16-dependent manner. Here we identify a novel small molecule compound which sensitized BRAF wild-type melanoma cells to vemurafenib. High throughput, cell-based, chemical library screening identified a compound (C012) which significantly reduced melanoma cell viability, with limited toxicity for normal human fibroblasts. When combined with the BRAFV600E/K inhibitor, vemurafenib, C012 synergistically increased vemurafenib potency in 5 BRAFWT and 4 out of 5 BRAFV600E human melanoma cell lines (Combination Index: CI < 1), and, dramatically reduced colony forming ability. In addition, this drug combination was significantly anti-tumorigenic in vivo in a melanoma xenograft mouse model. The combination of vemurafenib and C012 markedly increased expression of TRIM16 protein, and knockdown of TRIM16 significantly reduced the growth inhibitory effects of the vemurafenib and C012 combination. These findings suggest that the combination of C012 and vemurafenib may have therapeutic potential for the treatment of melanoma, and, that reactivation of TRIM16 may be an effective strategy for patients with this disease.
Collapse
Affiliation(s)
- Selina K Sutton
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Australia, New South Wales, Australia
| | - Daniel R Carter
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Australia, New South Wales, Australia
| | - Patrick Kim
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Australia, New South Wales, Australia
| | - Owen Tan
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia
| | - Greg M Arndt
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia
| | - Xu Dong Zhang
- Priority Research Centre for Cancer Research Oncology and Immunology Unit, University of Newcastle, New South Wales, Australia
| | - Jonathan Baell
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Benjamin D Noll
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales Australia, New South Wales, Australia
| | - Grant A McArthur
- Translational Research Laboratory, Peter MacCallum Cancer Centre, Victoria, Australia
| | - Belamy B Cheung
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Australia, New South Wales, Australia
| | - Glenn M Marshall
- Children's Cancer Institute for Medical Research, Lowy Cancer Research Centre, University of New South Wales, New South Wales, Australia.,School of Women's and Children's Health, University of New South Wales Australia, New South Wales, Australia.,Kids Cancer Centre, Sydney Children's Hospital, New South Wales, Australia
| |
Collapse
|