1
|
Tan Y, Matsuzaki J, Saito Y, Suzuki H. Environmental factors in gastric carcinogenesis and preventive intervention strategies. Genes Environ 2025; 47:5. [PMID: 40045434 PMCID: PMC11881338 DOI: 10.1186/s41021-025-00328-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 03/09/2025] Open
Abstract
Gastric cancer, a significant global health concern, arises from a complex interplay of genetic and environmental factors. Helicobacter pylori (H. pylori) infection is a major risk factor that can be mitigated through eradication strategies. Epstein-Barr virus (EBV) infection causes a distinct subtype of gastric cancer called EBV-associated gastric cancer. The gastric microbiome, a dynamic ecosystem, is also involved in carcinogenesis, particularly dysbiosis and specific bacterial species such as Streptococcus anginosus. Long-term use of proton pump inhibitors and potassium-competitive acid blockers also increases the risk of gastric cancer, whereas non-steroidal anti-inflammatory drugs including aspirin may have a protective effect. Smoking significantly increases the risk, and cessation can reduce it. Dietary factors such as high intake of salt, processed meats, and red meat may increase the risk, whereas a diet rich in fruits and vegetables may be protective. Extracellular vesicles, which are small membrane-bound structures released by cells, modulate the tumor microenvironment and may serve as biomarkers for risk stratification and as therapeutic targets in gastric cancer. This review highlights the multifaceted etiology of gastric cancer and its risk factors and emphasizes the importance of a multi-pronged approach to prevention including H. pylori eradication and modification of lifestyle factors, as well as the potential of microbiome-based and EV-based interventions. Further research is needed to refine risk stratification and to develop personalized prevention strategies.
Collapse
Affiliation(s)
- Yuzhi Tan
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Juntaro Matsuzaki
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Hidekazu Suzuki
- Department of Gastroenterology and Hepatology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, 259-1193, Kanagawa, Japan.
| |
Collapse
|
2
|
Uno H, Takeuchi H, Abe I, Yoshino T, Taguchi T, Hirakawa Y, Matsunaga T, Tanaka T. PCR- and wash-free detection of serum miRNA via signaling probe hybridization. Biotechnol Bioeng 2025; 122:159-166. [PMID: 39397338 DOI: 10.1002/bit.28859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/15/2024]
Abstract
Detection of microRNAs (miRNAs) in the serum is an effective liquid biopsy technique for cancer diagnosis. However, conventional diagnostic methods are time-consuming and complex. Therefore, in this study, we established a signaling probe-based DNA microarray system for miRNA detection. PCR, fluorescence labeling, and washing are not necessary for signaling probes. Four probes were designed using different miRNAs as diagnostic cancer markers. The developed system is useful for various miRNAs, regardless of their target lengths (18-26-mer) and GC content (36%-89%). Here, all the assays were performed within 40 min. Overall, our signaling probe-based DNA hybridization system facilitates the simple and rapid detection of serum miRNAs without the need for gene amplification, fluorescence labeling and washing.
Collapse
Affiliation(s)
- Haruka Uno
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiyori Takeuchi
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ishin Abe
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoko Yoshino
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | | | - Yuko Hirakawa
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Yokogawa Electric Corporation, Tokyo, Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsuyoshi Tanaka
- Division of Biotechnology and Life Science, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
3
|
Nourian R, Motamedi SA, Pourfard M. BHBA-GRNet: Cancer detection through improved gene expression profiling using Binary Honey Badger Algorithm and Gene Residual-based Network. Comput Biol Med 2025; 184:109348. [PMID: 39615230 DOI: 10.1016/j.compbiomed.2024.109348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024]
Abstract
Cancer, a pervasive and devastating disease, remains a leading global cause of mortality, emphasizing the growing urgency for effective detection methods. Gene Expression Microarray (GEM) data has emerged as a crucial tool in this context, offering insights into early cancer detection and treatment. While deep learning methods offer promise in detecting various cancers through GEM analysis, they suffer from high dimensionality inherent in gene sequences, preventing optimal detection performance across diverse cancer types. Additionally, existing methods often resort to synthetic features and data augmentation to enhance performance. To address these challenges and enhance accuracy, a novel Binary Honey Badger Algorithm (BHBA) integrated with the Gene Residual Network (GRNet) method has been proposed. Our approach capitalizes on BHBA's feature reduction mechanism, eliminating the need for additional preprocessing steps. Comprehensive evaluations on three well-established datasets representing lung and blood-type cancers demonstrate that our method reduces GEM data size by approximately 40 % and achieves a superior accuracy improvement of around 1 % in lung cancer types compared to state-of-the-art methods.
Collapse
Affiliation(s)
- Reza Nourian
- Electrical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, 15875-4413, Tehran, 159163-4311, Iran.
| | - Seyed Ahmad Motamedi
- Electrical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, 15875-4413, Tehran, 159163-4311, Iran.
| | - Mohammadreza Pourfard
- Electrical Engineering Department, Amirkabir University of Technology, No. 350, Hafez Ave, Valiasr Square, 15875-4413, Tehran, 159163-4311, Iran.
| |
Collapse
|
4
|
Ochiya T, Hashimoto K, Shimomura A. Prospects for liquid biopsy using microRNA and extracellular vesicles in breast cancer. Breast Cancer 2025; 32:10-15. [PMID: 38554234 PMCID: PMC11717869 DOI: 10.1007/s12282-024-01563-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/29/2024] [Indexed: 04/01/2024]
Abstract
Among the analytes circulating in body fluids, microRNAs, a type of non-coding RNA and known to exist 2655 in primates, have attracted attention as a novel biomarker for cancer screening. MicroRNAs are signaling molecules with important gene expression regulatory functions that can simultaneously control many gene functions and multiple different pathways in living organisms. These microRNAs are transported in extracellular vesicles (EVs), which are lipid bilayers with 50-150 nm in diameter, and are used as communication tools between cells. Furthermore, the EVs that carry these microRNAs circulate in the bloodstream and have other important implications for understanding the pathogenesis and diagnosis of breast cancer. The greatest benefit from cancer screening is the reduction in breast cancer mortality rate through early detection. Other benefits include reduced incidence of breast cancer, improved quality of life, prognosis prediction, contribution to personalized medicine, and relative healthcare cost containment. This paper outlines the latest developments in liquid biopsy for breast cancer, especially focusing on microRNA and EV diagnostics.
Collapse
Affiliation(s)
- Takahiro Ochiya
- Department of Molecular and Cellular Medicine, Center for Future Medical Research, Institute of Medical Science, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjyuku-ku, Tokyo, 160-0023, Japan.
| | - Kazuki Hashimoto
- Department of Breast Surgery, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Akihiko Shimomura
- Department of Breast and Medical Oncology, Genetic Medicine, General Medical Oncology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| |
Collapse
|
5
|
Otsuka K, Kuriki D, Kamachi K, Tanaka A, Matsuoka R. Analysis of the Effects of Short-Term Pterostilbene Intake on Healthy Participants: A Pilot Study. J Nutr Sci Vitaminol (Tokyo) 2025; 71:70-80. [PMID: 40024751 DOI: 10.3177/jnsv.71.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Pterostilbene, a polyphenolic compound and an analog of resveratrol, exerts various biological activities and has higher bioavailability and metabolic stability than resveratrol. However, the effectiveness of pterostilbene intake in humans, particularly its effect on blood microRNA (miRNA) expression levels, has not been evaluated. Accordingly, this pilot study aimed to investigate the effects of pterostilbene on blood biochemistry and blood miRNA expression levels and the safety of continuous intake at doses of 10 or 100 mg/d over 12 wk. A double-blind, placebo-controlled parallel-arm comparison trial was conducted with 30 healthy men. In the analysis of blood miRNA expression levels, miR-34a and miR-193b showed very high increases at week 4 and after week 4 of intake, respectively, suggesting that the responders might be present among participants in the pterostilbene intake group. No adverse events were reported during the trial in any participant, and no abnormalities were observed upon examination by the responsible physician. Thus, pterostilbene intake would regulate blood miRNA expression levels, and the results can be utilized in human studies investigating miRNA expression levels with functional food ingredients.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Division of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute
- R&D Division, Kewpie Corporation Sengawa Kewport
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University
- Tokyo NODAI Research Institute, Tokyo University of Agriculture
| | - Daisuke Kuriki
- Division of Translational Oncology, Fundamental Innovative Oncology Core, National Cancer Center Research Institute
- R&D Division, Kewpie Corporation Sengawa Kewport
| | | | | | | |
Collapse
|
6
|
Wakamatsu K, Maruyama A, Okazumi S. Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer. J Clin Med 2024; 14:98. [PMID: 39797181 PMCID: PMC11721468 DOI: 10.3390/jcm14010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). Methods: The published miRNA abnormalities were searched in the microRNA Cancer Association Database. Plasma samples were collected from patients with GC (n = 26) and controls (n = 17). The sensitivity and specificity of polyadenylation RT-PCR (PA-RT) and stem-loop RT-PCR (SL-RT) were compared. Statistical comparisons between patients with GC and controls were performed to identify miRNA biomarkers, and correlation analyses between the threshold cycle (Ct) values of miRNAs and various blood biochemical parameters were performed to elucidate the confounding factors. Results: mir-17, mir-21, mir-31, mir-99b, mir-222, and U6 were selected. PA-RT showed greater sensitivity and lower specificity than SL-RT (PA-RT vs. SL-RT, mean Ct: 19.6 vs. 29.2; coefficient of variation: 0.42 vs. 0.10). Adopting SL-RT owing to its higher specificity, only mir-222 was significantly upregulated in patients with GC (GC vs. control, miRNA expression: 15.4 vs. 5.27, p = 0.0098). Regarding the correlation between blood biochemical parameters and cells with miRNA expression, mir-31 and mir-99b were correlated with blood urea nitrogen, mir-17, mir-21, and mir-99b were negatively correlated with platelets, and mir-21 was correlated with neutrophils. No obvious correlations were noted between mir-222 expression and blood parameters. Receiver operating characteristic (ROC) curve analysis indicated that mir-222 identified GC patients with a maximum area under the curve (0.73, 95% confidence interval 0.57-0.89). Conclusions: Plasma mir-222 was confirmed to be dysregulated in patients with GC, irrespective of blood biochemical parameters.
Collapse
Affiliation(s)
- Kotaro Wakamatsu
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan;
| | - Atsushi Maruyama
- Department of Life Science and Technology, Institute of Science Tokyo, 4259 B-57 Nagatsuta-cho, Midori, Yokohama 226-8501, Kanagawa, Japan;
| | - Shinichi Okazumi
- Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan;
| |
Collapse
|
7
|
Hu Z, Lai C, Liu H, Man J, Chen K, Ouyang Q, Zhou Y. Identification and validation of screening models for breast cancer with 3 serum miRNAs in an 11,349 samples mixed cohort. Breast Cancer 2024; 31:1046-1058. [PMID: 39028497 DOI: 10.1007/s12282-024-01619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/13/2024] [Indexed: 07/20/2024]
Abstract
PURPOSE The study focuses on enhancing breast cancer (BC) prognosis through early detection, aiming to establish a non-invasive, clinically viable BC screening method using specific serum miRNA levels. METHODS Involving 11,349 participants across BC, 11 other cancer types, and control groups, the study identified serum biomarkers through feature selection and developed two BC screening models using six machine learning algorithms. These models underwent evaluation across test, internal, and external validation sets, assessing performance metrics like accuracy, sensitivity, specificity, and the area under the curve (AUC). Subgroup analysis was conducted to test model stability. RESULTS Based on the three serum miRNA biomarkers (miR-1307-3p, miR-5100, and miR-4745-5p), a BC screening model, SM4BC3miR model, was developed. This model achieved AUC performances of 0.986, 0.986, and 0.939 on the test, internal, and external sets, respectively. Furthermore, the SSM4BC model, utilizing ratio scores of miR-1307-3p/miR-5100 and miR-4745-5p/miR-5100, showed AUCs of 0.973, 0.980, and 0.953, respectively. Subgroup analyses underscored both models' robustness and stability. CONCLUSION This research introduced the SM4BC3miR and SSM4BC models, leveraging three specific serum miRNA biomarkers for breast cancer screening. Demonstrating high accuracy and stability, these models present a promising approach for early detection of breast cancer. However, their practical application and effectiveness in clinical settings remain to be further validated.
Collapse
Affiliation(s)
- Zhensheng Hu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Cong Lai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hongze Liu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Jianping Man
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China
| | - Kai Chen
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yinfeng Road No. 33, HaiZhu District, Guangzhou, 510260, China
| | - Qian Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Breast Surgery, Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Yinfeng Road No. 33, HaiZhu District, Guangzhou, 510260, China.
| | - Yi Zhou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 74 Zhongshan 2Nd Road, Yuexiu District, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Kawai M, Fukuda A, Otomo R, Obata S, Minaga K, Asada M, Umemura A, Uenoyama Y, Hieda N, Morita T, Minami R, Marui S, Yamauchi Y, Nakai Y, Takada Y, Ikuta K, Yoshioka T, Mizukoshi K, Iwane K, Yamakawa G, Namikawa M, Sono M, Nagao M, Maruno T, Nakanishi Y, Hirai M, Kanda N, Shio S, Itani T, Fujii S, Kimura T, Matsumura K, Ohana M, Yazumi S, Kawanami C, Yamashita Y, Marusawa H, Watanabe T, Ito Y, Kudo M, Seno H. Early detection of pancreatic cancer by comprehensive serum miRNA sequencing with automated machine learning. Br J Cancer 2024; 131:1158-1168. [PMID: 39198617 PMCID: PMC11442445 DOI: 10.1038/s41416-024-02794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 06/26/2024] [Accepted: 07/03/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Pancreatic cancer is often diagnosed at advanced stages, and early-stage diagnosis of pancreatic cancer is difficult because of nonspecific symptoms and lack of available biomarkers. METHODS We performed comprehensive serum miRNA sequencing of 212 pancreatic cancer patient samples from 14 hospitals and 213 non-cancerous healthy control samples. We randomly classified the pancreatic cancer and control samples into two cohorts: a training cohort (N = 185) and a validation cohort (N = 240). We created ensemble models that combined automated machine learning with 100 highly expressed miRNAs and their combination with CA19-9 and validated the performance of the models in the independent validation cohort. RESULTS The diagnostic model with the combination of the 100 highly expressed miRNAs and CA19-9 could discriminate pancreatic cancer from non-cancer healthy control with high accuracy (area under the curve (AUC), 0.99; sensitivity, 90%; specificity, 98%). We validated high diagnostic accuracy in an independent asymptomatic early-stage (stage 0-I) pancreatic cancer cohort (AUC:0.97; sensitivity, 67%; specificity, 98%). CONCLUSIONS We demonstrate that the 100 highly expressed miRNAs and their combination with CA19-9 could be biomarkers for the specific and early detection of pancreatic cancer.
Collapse
Affiliation(s)
- Munenori Kawai
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan.
| | - Ryo Otomo
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Shunsuke Obata
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Kosuke Minaga
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masanori Asada
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Uenoyama
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Nobuhiro Hieda
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Toshihiro Morita
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Ryuki Minami
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Yuki Yamauchi
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Yoshitaka Nakai
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Kozo Ikuta
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Kenta Mizukoshi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Kosuke Iwane
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Go Yamakawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mio Namikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Makoto Sono
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Munemasa Nagao
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Mitsuharu Hirai
- Research and Development Division, ARKRAY, Inc., Yousuien-nai, 59 Gansuin-cho, Kamigyo-ku, Kyoto, Japan
| | - Naoki Kanda
- Department of Gastroenterology and Hepatology, Takatsuki Red Cross Hospital, Takatsuki, Japan
| | - Seiji Shio
- Division of Gastroenterology, Shinko Hospital, Kobe, Japan
| | - Toshinao Itani
- Department of Gastroenterology and Hepatology, Kobe City Nishi-Kobe Medical Center, Kobe, Japan
| | - Shigehiko Fujii
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Toshiyuki Kimura
- Department of Gastroenterology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Kazuyoshi Matsumura
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Shiga, Japan
| | - Masaya Ohana
- Department of Gastroenterology, Tenri Hospital, Nara, Japan
| | - Shujiro Yazumi
- Department of Gastroenterology and Hepatology, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Japan
| | - Chiharu Kawanami
- Department of Gastroenterology, Otsu Red Cross Hospital, Shiga, Japan
| | - Yukitaka Yamashita
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Tomohiro Watanabe
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Yoshito Ito
- Department of Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
9
|
Kohaar I, Hodges NA, Srivastava S. Biomarkers in Cancer Screening: Promises and Challenges in Cancer Early Detection. Hematol Oncol Clin North Am 2024; 38:869-888. [PMID: 38782647 PMCID: PMC11222039 DOI: 10.1016/j.hoc.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cancer continues to be one the leading causes of death worldwide, primarily due to the late detection of the disease. Cancers detected at early stages may enable more effective intervention of the disease. However, most cancers lack well-established screening procedures except for cancers with an established early asymptomatic phase and clinically validated screening tests. There is a critical need to identify and develop assays/tools in conjunction with imaging approaches for precise screening and detection of the aggressive disease at an early stage. New developments in molecular cancer screening and early detection include germline testing, synthetic biomarkers, and liquid biopsy approaches.
Collapse
Affiliation(s)
- Indu Kohaar
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Nicholas A Hodges
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA
| | - Sudhir Srivastava
- Cancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, NIH, 9609 Medical Center Drive, NCI Shady Grove Building, Rockville, MD 20850, USA.
| |
Collapse
|
10
|
Kolokotronis T, Majchrzak-Stiller B, Buchholz M, Mense V, Strotmann J, Peters I, Skrzypczyk L, Liffers ST, Menkene LM, Wagner M, Glanemann M, Betsou F, Ammerlaan W, Schmidt R, Schröder C, Uhl W, Braumann C, Höhn P. Differential miRNA and Protein Expression Reveals miR-1285, Its Targets TGM2 and CDH-1, as Well as CD166 and S100A13 as Potential New Biomarkers in Patients with Diabetes Mellitus and Pancreatic Adenocarcinoma. Cancers (Basel) 2024; 16:2726. [PMID: 39123454 PMCID: PMC11311671 DOI: 10.3390/cancers16152726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024] Open
Abstract
Early detection of PDAC remains challenging due to the lack of early symptoms and the absence of reliable biomarkers. The aim of the present project was to identify miRNA and proteomics signatures discriminating PDAC patients with DM from nondiabetic PDAC patients. Proteomics analysis and miRNA array were used for protein and miRNA screening. We used Western blotting and Real-Time Quantitative Reverse Transcription polymerase chain reaction (qRT-PCR) for protein and miRNA validation. Comparisons between experimental groups with normal distributions were performed using one-way ANOVA followed by Tukey's post hoc test, and pairwise tests were performed using t-tests. p ≤ 0.05 was considered statistically significant. Protein clusters of differentiation 166 (CD166), glycoprotein CD63 (CD63), S100 calcium-binding protein A13 (S100A13), and tumor necrosis factor-β (TNF-β) were detected in the proteomics screening. The miRNA assay revealed a differential miRNA 1285 regulation. Previously described target proteins of miR-1285 cadherin-1 (CDH-1), cellular Jun (c-Jun), p53, mothers against decapentaplegic homolog 4 (Smad4), human transglutaminase 2 (TGM2) and yes-associated protein (YAP), were validated via Western blotting. miR-1285-3p was successfully validated as differentially regulated in PDAC + DM via qRT-PCR. Overall, our data suggest miRNA1285-3p, TGM2, CDH-1, CD166, and S100A13 as potential meaningful biomarker candidates to characterize patients with PDAC + DM. Data are available via ProteomeXchange with the identifier PXD053169.
Collapse
Affiliation(s)
- Theodoros Kolokotronis
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Britta Majchrzak-Stiller
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Marie Buchholz
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Vanessa Mense
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Johanna Strotmann
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Ilka Peters
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Lea Skrzypczyk
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Sven-Thorsten Liffers
- University Hospital Essen, Bridging Institute for Experimental Tumor Therapy, West German Tumor Center Essen, Hufelandstr. 55, 45147 Essen, Germany;
| | - Louise Massia Menkene
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Mathias Wagner
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Matthias Glanemann
- Institute of Pathology and Surgical Clinic, University Hospital of Saarland, Kirrberger Str. 100, 66424 Homburg, Germany; (L.M.M.); (M.W.)
| | - Fay Betsou
- CRBIP, Institut Pasteur, Université Paris Cite, 25 rue du Dr Roux, 75015 Paris, France;
| | - Wim Ammerlaan
- IBBL (Integrated BioBank of Luxembourg), 1, Rue Louis Rech, L-3555 Dudelange, Luxembourg;
| | - Ronny Schmidt
- Sciomics GmbH, Karl-Landsteiner Str. 6, 69151 Heidelberg, Germany; (R.S.); (C.S.)
| | - Christoph Schröder
- Sciomics GmbH, Karl-Landsteiner Str. 6, 69151 Heidelberg, Germany; (R.S.); (C.S.)
| | - Waldemar Uhl
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| | - Chris Braumann
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
- Department of General, Visceral and Vascular Surgery, EvK Gelsenkirchen, University Duisburg-Essen, Munckelstr. 27, 45879 Gelsenkirchen, Germany
| | - Philipp Höhn
- St. Josef Hospital Bochum, Surgical Clinic, Ruhr-University Bochum, Gudrunstr. 56, 44791 Bochum, Germany; (B.M.-S.); (M.B.); (V.M.); (J.S.); (I.P.); (L.S.); (W.U.); (C.B.); (P.H.)
| |
Collapse
|
11
|
Torii Y, Suzuki T, Fukuda Y, Haruta K, Yamaguchi M, Horiba K, Kawada JI, Ito Y. MicroRNA expression profiling of urine exosomes in children with congenital cytomegalovirus infection. Sci Rep 2024; 14:5475. [PMID: 38443656 PMCID: PMC10914720 DOI: 10.1038/s41598-024-56106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/01/2024] [Indexed: 03/07/2024] Open
Abstract
Congenital cytomegalovirus (cCMV) infection can damage the central nervous system in infants; however, its prognosis cannot be predicted from clinical evaluations at the time of birth. Urinary exosomes can be used to analyze neuronal damage in neuronal diseases. To investigate the extent of neuronal damage in patients with cCMV, exosomal miRNA expression in the urine was investigated in cCMV-infected infants and controls. Microarray analysis of miRNA was performed in a cohort of 30 infants, including 11 symptomatic cCMV (ScCMV), 7 asymptomatic cCMV (AScCMV), and one late-onset ScCMV cases, and 11 healthy controls (HC). Hierarchical clustering analysis revealed the distinct expression profile of ScCMV. The patient with late-onset ScCMV was grouped into the ScCMV cluster. Pathway enrichment analysis of the target mRNAs differed significantly between the ScCMV and HC groups; this analysis also revealed that pathways related to brain development were linked to upregulated pathways. Six miRNAs that significantly different between groups (ScCMV vs. HC and ScCMV vs. AScCMV) were selected for digital PCR in another cohort for further validation. Although these six miRNAs seemed insufficient for predicting ScCMV, expression profiles of urine exosomal miRNAs can reveal neurological damage in patients with ScCMV compared to those with AcCMV or healthy infants.
Collapse
Affiliation(s)
- Yuka Torii
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Takako Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yuto Fukuda
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kazunori Haruta
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Makoto Yamaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Kazuhiro Horiba
- Pathogen Genomics Center, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-Ku, Tokyo, 162-8640, Japan
| | - Jun-Ichi Kawada
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-Cho, Showa-Ku, Nagoya, 466-8550, Japan
| | - Yoshinori Ito
- Department of Pediatrics, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, 480-1195, Japan.
| |
Collapse
|
12
|
Sathipati SY, Tsai MJ, Aimalla N, Moat L, Shukla S, Allaire P, Hebbring S, Beheshti A, Sharma R, Ho SY. An evolutionary learning-based method for identifying a circulating miRNA signature for breast cancer diagnosis prediction. NAR Genom Bioinform 2024; 6:lqae022. [PMID: 38406797 PMCID: PMC10894035 DOI: 10.1093/nargab/lqae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/11/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Breast cancer (BC) is one of the most commonly diagnosed cancers worldwide. As key regulatory molecules in several biological processes, microRNAs (miRNAs) are potential biomarkers for cancer. Understanding the miRNA markers that can detect BC may improve survival rates and develop new targeted therapeutic strategies. To identify a circulating miRNA signature for diagnostic prediction in patients with BC, we developed an evolutionary learning-based method called BSig. BSig established a compact set of miRNAs as potential markers from 1280 patients with BC and 2686 healthy controls retrieved from the serum miRNA expression profiles for the diagnostic prediction. BSig demonstrated outstanding prediction performance, with an independent test accuracy and area under the receiver operating characteristic curve were 99.90% and 0.99, respectively. We identified 12 miRNAs, including hsa-miR-3185, hsa-miR-3648, hsa-miR-4530, hsa-miR-4763-5p, hsa-miR-5100, hsa-miR-5698, hsa-miR-6124, hsa-miR-6768-5p, hsa-miR-6800-5p, hsa-miR-6807-5p, hsa-miR-642a-3p, and hsa-miR-6836-3p, which significantly contributed towards diagnostic prediction in BC. Moreover, through bioinformatics analysis, this study identified 65 miRNA-target genes specific to BC cell lines. A comprehensive gene-set enrichment analysis was also performed to understand the underlying mechanisms of these target genes. BSig, a tool capable of BC detection and facilitating therapeutic selection, is publicly available at https://github.com/mingjutsai/BSig.
Collapse
Affiliation(s)
| | - Ming-Ju Tsai
- Hinda and Arthur Marcus Institute for Aging Research at Hebrew Senior Life, Boston, MA 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02131, USA
| | - Nikhila Aimalla
- Department of Internal Medicine-Pediatrics, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Luke Moat
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Patrick Allaire
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Scott Hebbring
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Rohit Sharma
- Department of Surgical Oncology, Marshfield Clinic Health System, Marshfield, WI 54449, USA
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- College of Health Sciences, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Biomedical Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
13
|
Chen SC, Fan KC, Yen IW, Yang CY, Lin CH, Hsu CY, Lyu YP, Juan HC, Lin HH, Lin MS, Shih SR, Li HY, Kuo CH. Serum vascular adhesion protein-1 is associated with twelve-year risk of incident cancer, cancer mortality, and all-cause mortality: a community-based cohort study. Front Oncol 2023; 13:1308353. [PMID: 38162479 PMCID: PMC10754676 DOI: 10.3389/fonc.2023.1308353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Background Vascular adhesion protein-1 (VAP-1), a dual-function glycoprotein, has been reported to play a crucial role in inflammation and tumor progression. We conducted a community-based cohort study to investigate whether serum VAP-1 could be a potential biomarker for predicting incident cancers and mortality. Method From 2006 to 2018, we enrolled 889 cancer-free subjects at baseline. Serum VAP-1 levels were measured using a time-resolved immunofluorometric assay. Cancer and vital status of the participants were obtained by linking records with the computerized cancer registry and death certificates in Taiwan. Results During a median follow-up of 11.94 years, 69 subjects developed incident cancers and 66 subjects died, including 29 subjects who died from malignancy. Subjects in the highest tertile of serum VAP-1 had a significantly higher risk of cancer incidence (p=0.0006), cancer mortality (p=0.0001), and all-cause mortality (p=0.0002) than subjects in the other tertiles. The adjusted hazard ratios per one standard deviation increase in serum VAP-1 concentrations were 1.28 for cancer incidence (95% CI=1.01-1.62), 1.60 for cancer mortality (95% CI=1.14-2.23), and 1.38 for all-cause mortality (95% CI=1.09-1.75). The predictive performance of serum VAP-1 was better than that of gender, smoking, body mass index, hypertension, diabetes, and estimated glomerular filtration rate but lower than that of age for cancer incidence, cancer mortality, and all-cause mortality, as evidenced by higher increments in concordance statistics and area under the receiver operating characteristic curve. Conclusion Serum VAP-1 levels are associated with a 12-year risk of incident cancer, cancer mortality, and all-cause mortality in a general population.
Collapse
Affiliation(s)
- Szu-Chi Chen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Kang-Chih Fan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - I-Weng Yen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Chung-Yi Yang
- Department of Medical Imaging, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Chia-Hung Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Hsin-Chu, Taiwan
| | - Chih-Yao Hsu
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei City Hospital, Taipei, Taiwan
| | - Ya-Pin Lyu
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsien-Chia Juan
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Heng-Huei Lin
- Department of Obstetrics & Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Mao-Shin Lin
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shyang-Rong Shih
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Center of Anti-Aging and Health Consultation, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Yuan Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Heng Kuo
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
14
|
Abstract
Liquid biopsy has become a significant tool in personalized medicine, enabling real-time monitoring of cancer evolution and patient follow-up. This minimally invasive procedure analyzes circulating tumor cells (CTCs) and circulating tumor-derived materials, such as ctDNA, miRNAs, and EVs. CTC analysis significantly impacts prognosis, detection of minimal residual disease (MRD), treatment selection, and monitoring of cancer patients. Liquid biopsy is an attractive option for mouth cancer detection and treatment progress monitoring in many countries. It is not invasive and requires no surgical expertise, making it an attractive option for mouth cancer detection. Liquid biopsy is a diagnostic repeatable test that can profile cancer genomes in real-time with minimal invasiveness and tailor oncological decision-making. It analyzes different blood-circulating biomarkers, with ctDNA being the preferred one. While tissue biopsy remains the gold standard for molecular evaluation of solid tumors, liquid biopsy is a complementary tool in various clinical settings, including treatment selection, monitoring response, cancer clonal evolution, prognostic evaluation, early disease detection, and minimal residual disease (MRD).
Collapse
Affiliation(s)
- Shrikant B Mali
- Mahatma Gandhi Vidyamandir's Karmaveer Bhausaheb Hiray Dental College & Hospital, Nashik, India.
| |
Collapse
|
15
|
Liquid Biopsy for Oral Cancer Diagnosis: Recent Advances and Challenges. J Pers Med 2023; 13:jpm13020303. [PMID: 36836537 PMCID: PMC9960348 DOI: 10.3390/jpm13020303] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
"Liquid biopsy" is an efficient diagnostic tool used to analyse biomaterials in human body fluids, such as blood, saliva, breast milk, and urine. Various biomaterials derived from a tumour and its microenvironment are released into such body fluids and contain important information for cancer diagnosis. Biomaterial detection can provide "real-time" information about individual tumours, is non-invasive, and is more repeatable than conventional histological analysis. Therefore, over the past two decades, liquid biopsy has been considered an attractive diagnostic tool for malignant tumours. Although biomarkers for oral cancer have not yet been adopted in clinical practice, many molecular candidates have been investigated for liquid biopsies in oral cancer diagnosis, such as the proteome, metabolome, microRNAome, extracellular vesicles, cell-free DNAs, and circulating tumour cells. This review will present recent advances and challenges in liquid biopsy for oral cancer diagnosis.
Collapse
|
16
|
Loomans-Kropp HA. Multicancer early detection tests: where are we? JNCI Cancer Spectr 2022; 7:6858475. [PMID: 36453871 PMCID: PMC9825312 DOI: 10.1093/jncics/pkac084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Affiliation(s)
- Holli A Loomans-Kropp
- Correspondence to: Holli A. Loomans-Kropp, PhD, MPH, Division of Cancer Prevention and Control, Department of Internal Medicine, College of Medicine, The Ohio State University, 1590 N. High St., Suite 571 Columbus, OH 43201, USA (e-mail: )
| |
Collapse
|