1
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
2
|
Torre M, Zanella CA, Feany MB. The Biological Intersection Between Chemotherapy-Related Cognitive Impairment and Alzheimer Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00026-4. [PMID: 39863251 DOI: 10.1016/j.ajpath.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
Alzheimer disease (AD) is the most common type of dementia and one of the leading causes of death in elderly patients. The number of patients with AD in the United States is projected to double by 2060. Thus, understanding modifiable risk factors for AD is an urgent public health priority. In parallel with the number of patients with AD, the number of cancer survivors is estimated to increase significantly, and up to 80% of cancer patients treated with chemotherapy will develop cognitive deficits, termed chemotherapy-related cognitive impairment. This review discusses biologically plausible pathways underlying both disorders, with the goal of understanding why a proportion of chemotherapy patients may be at higher risk of developing AD. Highlighted are the E4 allele of the apolipoprotein E gene, neuroinflammation, oxidative stress, DNA damage, mitochondrial dysfunction, neuronal and synaptic loss, cellular senescence, brain-derived neurotrophic factor signaling, white matter damage, blood-brain barrier/vascular dysfunction, tau pathology, and transposable element reactivation.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas; Center for Alzheimer's and Neurodegenerative Diseases, Baylor College of Medicine, Houston, Texas.
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
4
|
Gomez-Deza J, Slavutsky AL, Nebiyou M, Le Pichon CE. Local production of reactive oxygen species drives vincristine-induced axon degeneration. Cell Death Dis 2023; 14:807. [PMID: 38065950 PMCID: PMC10709426 DOI: 10.1038/s41419-023-06227-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/27/2023] [Accepted: 10/18/2023] [Indexed: 12/18/2023]
Abstract
Neurological side effects arising from chemotherapy, such as severe pain and cognitive impairment, are a major concern for cancer patients. These major side effects can lead to reduction or termination of chemotherapy medication in patients, negatively impacting their prognoses. With cancer survival rates improving dramatically, addressing side effects of cancer treatment has become pressing. Here, we use iPSC-derived human neurons to investigate the molecular mechanisms that lead to neurotoxicity induced by vincristine, a common chemotherapeutic used to treat solid tumors. Our results uncover a novel mechanism by which vincristine causes a local increase in mitochondrial proteins that produce reactive oxygen species (ROS) in the axon. Vincristine triggers a cascade of axon pathology, causing mitochondrial dysfunction that leads to elevated axonal ROS levels and SARM1-dependent axon degeneration. Importantly, we show that the neurotoxic effect of increased axonal ROS can be mitigated by the small molecule mitochondrial division inhibitor 1 (mdivi-1) and antioxidants glutathione and mitoquinone, identifying a novel therapeutic avenue to treat the neurological effects of chemotherapy.
Collapse
Affiliation(s)
- Jorge Gomez-Deza
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia L Slavutsky
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Nebiyou
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Claire E Le Pichon
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Torre M, Bukhari H, Nithianandam V, Zanella CA, Mata DA, Feany MB. A Drosophila model relevant to chemotherapy-related cognitive impairment. Sci Rep 2023; 13:19290. [PMID: 37935827 PMCID: PMC10630312 DOI: 10.1038/s41598-023-46616-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model relevant to CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurologic deficits were observed with all tested chemotherapies, with doxorubicin and in particular cisplatin also resulting in memory deficits. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model relevant to CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI (and chemotherapy-induced neurotoxicity more generally) and pharmacologic screens to identify disease-modifying therapies.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Torre M, Bukhari H, Nithianandam V, Zanella CA, Mata DA, Feany MB. A Drosophila model of chemotherapy-related cognitive impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.01.543297. [PMID: 37333281 PMCID: PMC10274738 DOI: 10.1101/2023.06.01.543297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chemotherapy-related cognitive impairment (CRCI) is a common adverse effect of treatment and is characterized by deficits involving multiple cognitive domains including memory. Despite the significant morbidity of CRCI and the expected increase in cancer survivors over the coming decades, the pathophysiology of CRCI remains incompletely understood, highlighting the need for new model systems to study CRCI. Given the powerful array of genetic approaches and facile high throughput screening ability in Drosophila, our goal was to validate a Drosophila model of CRCI. We administered the chemotherapeutic agents cisplatin, cyclophosphamide, and doxorubicin to adult Drosophila. Neurocognitive deficits were observed with all tested chemotherapies, especially cisplatin. We then performed histologic and immunohistochemical analysis of cisplatin-treated Drosophila tissue, demonstrating neuropathologic evidence of increased neurodegeneration, DNA damage, and oxidative stress. Thus, our Drosophila model of CRCI recapitulates clinical, radiologic, and histologic alterations reported in chemotherapy patients. Our new Drosophila model can be used for mechanistic dissection of pathways contributing to CRCI and pharmacologic screens to identify novel therapies to ameliorate CRCI.
Collapse
Affiliation(s)
- Matthew Torre
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Hassan Bukhari
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | - Mel B Feany
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Murillo LC, Sutachan JJ, Albarracín SL. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol Rep 2023; 10:544-553. [PMID: 37396847 PMCID: PMC10313882 DOI: 10.1016/j.toxrep.2023.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer is the second leading cause of death worldwide despite efforts in early diagnosis of the disease and advances in treatment. The use of drugs that exert toxic effects on tumor cells or chemotherapy is one of the most widely used treatments against cancer. However, its low toxic selectivity affects both healthy cells and cancer cells. It has been reported that chemotherapeutic drugs may generate neurotoxicity that induces deleterious effects of chemotherapy in the central nervous system. In this sense, patients report decreased cognitive abilities, such as memory, learning, and some executive functions after chemotherapy. This chemotherapy-induced cognitive impairment (CICI) develops during treatment and persists even after chemotherapy. Here we present a review of the literature on the main neurobiological mechanisms involved in CICI using a Boolean formula following the steps of the PRISMA guidelines that were used to perform statements searches in various databases. The main mechanisms described in the literature to explain CRCI include direct and indirect mechanisms that induce neurotoxicity by chemotherapeutic agents. Therefore, this review provides a general understanding of the neurobiological mechanisms of CICI and the possible therapeutic targets to prevent it..
Collapse
Affiliation(s)
| | | | - Sonia Luz Albarracín
- Correspondence to: Carrera 7 No. 43–82, Edificio Jesús Emilio Ramírez, Lab 304A, Bogotá C.P.110211, Colombia.
| |
Collapse
|
8
|
Cognitive adverse effects of chemotherapy and immunotherapy: are interventions within reach? Nat Rev Neurol 2022; 18:173-185. [PMID: 35140379 DOI: 10.1038/s41582-021-00617-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
One in three people will be diagnosed with cancer during their lifetime. The community of cancer patients is growing, and several common cancers are becoming increasingly chronic; thus, cancer survivorship is an important part of health care. A large body of research indicates that cancer and cancer therapies are associated with cognitive impairment. This research has mainly concentrated on chemotherapy-associated cognitive impairment but, with the arrival of immunotherapies, the focus is expected to widen and the number of studies investigating the potential cognitive effects of these new therapies is rising. Meanwhile, patients with cognitive impairment and their healthcare providers are eagerly awaiting effective approaches to intervene against the cognitive effects of cancer treatment. In this Review, we take stock of the progress that has been made and discuss the steps that need to be taken to accelerate research into the biology underlying cognitive decline following chemotherapy and immunotherapy and to develop restorative and preventive interventions. We also provide recommendations to clinicians on how to best help patients who are currently experiencing cognitive impairment.
Collapse
|