1
|
Vizcaino MA, Giannini C, Lalich D, Nael A, Jenkins RB, Tran Q, Orr BA, Abdullaev Z, Aldape K, Vaubel RA. Ganglioglioma with anaplastic/high-grade transformation: Histopathologic, molecular, and epigenetic characterization of 3 cases. J Neuropathol Exp Neurol 2024; 83:416-424. [PMID: 38699943 DOI: 10.1093/jnen/nlae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024] Open
Abstract
Ganglioglioma (GG) with anaplasia (anaplastic ganglioglioma) is a rare and controversial diagnosis. When present, anaplasia involves the glial component of the tumor, either at presentation or at recurrence. To date, most published cases lack molecular characterization. We describe the histologic and molecular features of 3 patients presenting with BRAF p. V600E-mutant GG (CNS WHO grade 1) with high-grade glial transformation at recurrence. The tumors occurred in pediatric patients (age 9-16 years) with time to recurrence from 20 months to 7 years. At presentation, each tumor was low-grade, with a BRAFV600E-positive ganglion cell component and a glial component resembling pleomorphic xanthoastrocytoma (PXA) or fibrillary astrocytoma. At recurrence, tumors resembled anaplastic PXA or high-grade astrocytomas without neuronal differentiation. CDKN2A homozygous deletion (HD) was absent in all primary tumors. At recurrence, 2 cases acquired CDKN2A HD; the third case showed loss of p16 and MTAP immunoexpression, but no CDKN2A/B HD or mutation was identified. By DNA methylation profiling, all primary and recurrent tumors either grouped or definitely matched to different methylation classes. Our findings indicate that malignant progression of the glial component can occur in GG and suggest that CDKN2A/B inactivation plays a significant role in this process.
Collapse
Affiliation(s)
- M Adelita Vizcaino
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Daniel Lalich
- Department of Pathology, Robert J. Dole VA Medical Center and Wesley Healthcare Center, Wichita, Kansas, USA
| | - Ali Nael
- Department of Pathology, Children's Hospital of Orange County and University of California Irvine, Orange County, California, USA
| | - Robert B Jenkins
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
| | - Quynh Tran
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Brent A Orr
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute/Center for Cancer Research, Bethesda, Maryland, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute/Center for Cancer Research, Bethesda, Maryland, USA
| | - Rachael A Vaubel
- Department of Laboratory Medicine and Pathology, Mayo Clinic Rochester, Minnesota, USA
| |
Collapse
|
2
|
Ishizawa K, Adachi JI, Tamaru JI, Nishikawa R, Mishima K, Sasaki A. Neuropil-like islands are a possible pathogenetic link between glioblastoma and gangliocytoma/ganglioglioma in a case of synchronous bilateral brain tumors. Neuropathology 2024; 44:126-134. [PMID: 37641451 DOI: 10.1111/neup.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
Neuropil-like islands (NIs) are a histologic hallmark of glioneuronal tumors with neuropil-like islands (GTNIs), but GTNIs are presently not considered a homogeneous entity. The essence of GTNI is likely its glial component, and NIs are now considered aberrant neuronal differentiation or metaplasia. The case we report herein is a 41-year-old woman who was synchronously affected by two brain tumors: one was a glioblastoma (glioblastoma multiforme, GBM), of isocitrate dehydrogenase (IDH)-wild type, with NIs in the left parietal lobe, and the other was histologically a composite gangliocytoma (GC)/anaplastic ganglioglioma (GG) with NIs in the right medial temporal lobe. While both tumors were genetically wild type for IDH, histone H3, and v-raf murine sarcoma viral oncogene homolog B1 (BRAF), the former tumor, but not the latter, was mutated for telomerase reverse transcriptase promoter gene (TERT). A recent systematic study using DNA methylation profiling and next-generation sequencing showed that anaplastic GG separate into other WHO tumor types, including IDH-wild-type GBM. It suggested a diagnostic scheme where an anaplastic GG is likely an IDH-wild-type GBM if it is a BRAF wild type, IDH wild type, and TERT promoter mutant tumor. The likely scenario in this patient is that the GBM results from the progression of GC/anaplastic GG due to the superimposed TERT promoter mutation and the propagation of newly generated GBM cells in the contralateral hemisphere. A systematic analysis using DNA methylation profiling and next-generation sequencing was not available in this study, but the common presence of NIs histologically noted in the two tumors could support this scenario. Although a sufficient volume of molecular and genetic testing is sine qua non for the accurate understanding of brain tumors, the importance of histologic observation cannot be overemphasized.
Collapse
Affiliation(s)
- Keisuke Ishizawa
- Department of Pathology, Saitama Medical University, Moroyama, Japan
| | - Jun-Ichi Adachi
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Jun-Ichi Tamaru
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Kazuhiko Mishima
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University, Moroyama, Japan
| |
Collapse
|
3
|
Shintaku M, Ohta M, Chihara H, Yokoo H, Noda Y, Tsuta K. Adult cerebral high-grade glioneuronal tumor with perivascular or pseudopapillary growth co-existing with low-grade tumor: a case report. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2023; 16:294-302. [PMID: 37970335 PMCID: PMC10641370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/29/2023] [Indexed: 11/17/2023]
Abstract
An unusual, small cell-predominant, high-grade glioneuronal tumor in the occipital lobe of a 49-year-old man that co-existed with a low-grade tumor is reported. The tumor consisted of two distinct components: the major component was a dense proliferation of primitive small cells showing bidirectional neuronal and glial differentiation; and the minor component consisted of a proliferation of well-differentiated astrocytes intermingled with mature neuronal cells. In the former component, perivascular pseudorosette-like or pseudopapillary growth reminiscent of ependymoma or papillary glioneuronal tumor (PGNT), respectively, was prominent, and hypertrophic astrocytic cells were located just outside the central blood vessels. Small cells were immunoreactive for Olig2, synaptophysin, and, less frequently, for glial fibrillary acidic protein. The low-grade component included Rosenthal fibers, hemosiderin deposition, and perivascular lymphocytic infiltration, thus closely resembling ganglioglioma. Cytogenetic studies did not demonstrate any mutations or rearrangements of the genes IDH1, IDH2, H3F3A, BRAF, FGFR1, or TERT promoter. The tumor recurred and spread along the ventricular surface three years after total removal. The small cell-predominant, high-grade component was considered to have evolved from the ganglioglioma-like, low-grade component. The histopathologic resemblance of the high-grade component to PGNT was a special feature.
Collapse
Affiliation(s)
- Masayuki Shintaku
- Department of Pathology, Kansai Medical UniversityHirakata, Japan
- Department of Pathology, Hikone Municipal HospitalHikone, Japan
| | - Makoto Ohta
- Department of Pathology, Hikone Municipal HospitalHikone, Japan
| | - Hideo Chihara
- Department of Neurosurgery, Hikone Municipal HospitalHikone, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of MedicineMaebashi, Japan
| | - Yuri Noda
- Department of Pathology, Kansai Medical UniversityHirakata, Japan
| | - Koji Tsuta
- Department of Pathology, Kansai Medical UniversityHirakata, Japan
| |
Collapse
|
4
|
Hoffmann L, Coras R, Kobow K, López-Rivera JA, Lal D, Leu C, Najm I, Nürnberg P, Herms J, Harter PN, Bien CG, Kalbhenn T, Müller M, Pieper T, Hartlieb T, Kudernatsch M, Hamer H, Brandner S, Rössler K, Blümcke I, Jabari S. Ganglioglioma with adverse clinical outcome and atypical histopathological features were defined by alterations in PTPN11/KRAS/NF1 and other RAS-/MAP-Kinase pathway genes. Acta Neuropathol 2023; 145:815-827. [PMID: 36973520 PMCID: PMC10175344 DOI: 10.1007/s00401-023-02561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Exome-wide sequencing studies recently described PTPN11 as a novel brain somatic epilepsy gene. In contrast, germline mutations of PTPN11 are known to cause Noonan syndrome, a multisystem disorder characterized by abnormal facial features, developmental delay, and sporadically, also brain tumors. Herein, we performed a deep phenotype-genotype analysis of a comprehensive series of ganglioglioma (GG) with brain somatic alterations of the PTPN11/KRAS/NF1 genes compared to GG with common MAP-Kinase signaling pathway alterations, i.e., BRAFV600E. Seventy-two GG were submitted to whole exome sequencing and genotyping and 84 low grade epilepsy associated tumors (LEAT) to DNA-methylation analysis. In 28 tumours, both analyses were available from the same sample. Clinical data were retrieved from hospital files including disease onset, age at surgery, brain localization, and seizure outcome. A comprehensive histopathology staining panel was available in all cases. We identified eight GG with PTPN11 alterations, copy number variant (CNV) gains of chromosome 12, and the commonality of additional CNV gains in NF1, KRAS, FGFR4 and RHEB, as well as BRAFV600E alterations. Histopathology revealed an atypical glio-neuronal phenotype with subarachnoidal tumor spread and large, pleomorphic, and multinuclear cellular features. Only three out of eight patients with GG and PTPN11/KRAS/NF1 alterations were free of disabling-seizures 2 years after surgery (38% had Engel I). This was remarkably different from our series of GG with only BRAFV600E mutations (85% had Engel I). Unsupervised cluster analysis of DNA methylation arrays separated these tumours from well-established LEAT categories. Our data point to a subgroup of GG with cellular atypia in glial and neuronal cell components, adverse postsurgical outcome, and genetically characterized by complex alterations in PTPN11 and other RAS-/MAP-Kinase and/or mTOR signaling pathways. These findings need prospective validation in clinical practice as they argue for an adaptation of the WHO grading system in developmental, glio-neuronal tumors associated with early onset focal epilepsy.
Collapse
Affiliation(s)
- Lucas Hoffmann
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Roland Coras
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Katja Kobow
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Javier A. López-Rivera
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
| | - Dennis Lal
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142 USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Costin Leu
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and M.I.T, Cambridge, MA 02142 USA
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Imad Najm
- Charles Shor Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, USA
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Medical Faculty of the University of Cologne, University Hospital of Cologne, 50931 Cologne, Germany
| | - Jochen Herms
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Patrick N. Harter
- Center for Neuropathology and Prion Research, LMU Munich, Munich, Germany
| | - Christian G. Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Thilo Kalbhenn
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
- Department of Neurosurgery (Evangelisches Klinikum Bethel), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Markus Müller
- Department of Epileptology (Krankenhaus Mara), Medical School, Bielefeld University, Bielefeld, 33617 Germany
| | - Tom Pieper
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Till Hartlieb
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Manfred Kudernatsch
- Center for Pediatric Neurology, Neurorehabilitation, and Epileptology, Schoen-Clinic, Vogtareuth, 83569 Rosenheim, Germany
| | - Hajo Hamer
- Epilepsy Center, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Sebastian Brandner
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Karl Rössler
- Department of Neurosurgery, EpiCARE Partner, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, Germany
- Department of Neurosurgery, EpiCARE Partner, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Ingmar Blümcke
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| | - Samir Jabari
- Department of Neuropathology, Partner of the European Reference Network (ERN) EpiCARE, Universitätsklinikum Erlangen, FAU Erlangen-Nürnberg, Erlangen, 91054 Germany
| |
Collapse
|
5
|
Molecular Heterogeneity in BRAF-Mutant Gliomas: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15041268. [PMID: 36831610 PMCID: PMC9954401 DOI: 10.3390/cancers15041268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Over the last few decades, deciphering the alteration of molecular pathways in brain tumors has led to impressive changes in diagnostic refinement. Among the molecular abnormalities triggering and/or driving gliomas, alterations in the MAPK pathway reign supreme in the pediatric population, as it is encountered in almost all low-grade pediatric gliomas. Activating abnormalities in the MAPK pathway are also present in both pediatric and adult high-grade gliomas. Across those alterations, BRAF p.V600E mutations seem to define homogeneous groups of tumors in terms of prognosis. The recent development of small molecules inhibiting this pathway retains the attention of neurooncologists on BRAF-altered tumors, as conventional therapies showed no significant effect, nor prolonged efficiency on the high-grade or low-grade unresectable forms. Nevertheless, tumoral heterogeneity and especially molecular alteration(s) associated with MAPK-pathway abnormalities are not fully understood with respect to how they might lead to the specific dismal prognosis of those gliomas and/or affect their response to targeted therapies. This review is an attempt to provide comprehensive information regarding molecular alterations related to the aggressiveness modulation in BRAF-mutated gliomas and the current knowledge on how to use those targeted therapies in such situations.
Collapse
|
6
|
Reinhardt A, Pfister K, Schrimpf D, Stichel D, Sahm F, Reuss DE, Capper D, Wefers AK, Ebrahimi A, Sill M, Felsberg J, Reifenberger G, Becker A, Prinz M, Staszewski O, Hartmann C, Schittenhelm J, Gramatzki D, Weller M, Olar A, Rushing EJ, Bergmann M, Farrell MA, Blümcke I, Coras R, Beckervordersandforth J, Kim SH, Rogerio F, Dimova PS, Niehusmann P, Unterberg A, Platten M, Pfister SM, Wick W, Herold-Mende C, von Deimling A. Anaplastic ganglioglioma - a diagnosis comprising several distinct tumour types. Neuropathol Appl Neurobiol 2022; 48:e12847. [PMID: 35977725 DOI: 10.1111/nan.12847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/20/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Anaplastic ganglioglioma is a rare tumour and diagnosis has been based on histological criteria. The 5th edition of the World Health Organization Classification of Tumours of the Central Nervous System (CNS WHO) does not list anaplastic ganglioglioma as a distinct diagnosis due to lack of molecular data in previous publications AIM: We retrospectively compiled a cohort of 54 histologically diagnosed anaplastic gangliogliomas to explore whether the molecular profiles of these tumours represent a separate type or resolve into other entities METHODS: Samples were subjected to histological review, DNA methylation profiling and next generation sequencing. Morphologic and molecular data were summarised to an integrated diagnosis RESULTS: The majority of histologically diagnosed anaplastic gangliogliomas resolved into CNS WHO diagnoses of glial tumours, most commonly pleomorphic xanthoastrocytoma (16/54), glioblastoma, IDH wildtype and diffuse paediatric-type high-grade glioma, H3 wildtype and IDH wildtype (11 and 2/54) followed by low-grade glial or glioneuronal tumours including pilocytic astrocytoma, dysembryoplastic neuroepithelial tumour and diffuse leptomeningeal glioneuronal tumour (5/54), IDH mutant astrocytoma (4/54) and others (6/54). A subset of tumours (10/54) was not assignable to a CNS WHO diagnosis and common molecular profiles pointing to a separate entity were not evident CONCLUSION: In summary, we show that tumours histologically diagnosed as anaplastic ganglioglioma comprise a wide spectrum of CNS WHO tumour types with different prognostic and therapeutic implications. We therefore suggest assigning this designation with caution and recommend comprehensive molecular workup.
Collapse
Affiliation(s)
- Annekathrin Reinhardt
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Current address: Centre for Human Genetics Tübingen, Tübingen, Germany
| | - Kristin Pfister
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Pathology, Kantonsspital Winterthur, Winterthur, Switzerland
| | - Daniel Schrimpf
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Damian Stichel
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David E Reuss
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Capper
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Neuropathology, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Annika K Wefers
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Azadeh Ebrahimi
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Martin Sill
- German Cancer Consortium (DKTK), Core Center Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Joerg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, University Hospital Düsseldorf, Düsseldorf, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Albert Becker
- Department of Neuropathology, University of Bonn, Bonn, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Christian Hartmann
- Department of Neuropathology, Hannover Medical School, Hannover, Germany
| | - Jens Schittenhelm
- Institute of Pathology and Neuropathology, University Tübingen, Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital and University Zurich, Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, University Hospital and University Zurich, Zurich, Switzerland
| | | | | | - Markus Bergmann
- Institute of Neuropathology, Center for Pathology, Klinikum Bremen Mitte, Bremen, Germany
| | | | - Ingmar Blümcke
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Roland Coras
- Department of Neuropathology, University Hospital Erlangen, Erlangen, Germany
| | - Jan Beckervordersandforth
- Department of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Se Hoon Kim
- Department of Pathology, Yonsei University, College of Medicine, Seoul, South Korea
| | - Fabio Rogerio
- Department of Pathology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Petia S Dimova
- Epilepsy Surgery Center, Department of Neurosurgery, St. Ivan Rilski University Hospital, Sofia, Bulgaria
| | - Pitt Niehusmann
- Section of Neuropathology, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Andreas Unterberg
- Clinic for Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Clinical Cooperation Unit Neuroimmunology and Brain Tumour Immunology, German Cancer Research Center (DKFZ), Heidelberg
| | - Stefan M Pfister
- German Cancer Consortium (DKTK), Core Center Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany.,Division of Paediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Paediatric Oncology and Hematology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), Core Center Heidelberg, Germany.,Neurology Clinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Christel Herold-Mende
- Division of Experimental Neurosurgery, Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Core Center Heidelberg, Germany
| |
Collapse
|