1
|
Bereczki D, Dénes Á, Boneschi FM, Akhvlediani T, Cavallieri F, Fanciulli A, Filipović SR, Guekht A, Helbok R, Hochmeister S, von Oertzen TJ, Özturk S, Priori A, Rakusa M, Willekens B, Moro E, Sellner J. Need for awareness and surveillance of long-term post-COVID neurodegenerative disorders. A position paper from the neuroCOVID-19 task force of the European Academy of Neurology. J Neurol 2025; 272:380. [PMID: 40327103 PMCID: PMC12055923 DOI: 10.1007/s00415-025-13110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Neuropathological and clinical studies suggest that infection with SARS-CoV-2 may increase the long-term risk of neurodegeneration. METHODS We provide a narrative overview of pathological and clinical observations justifying the implementation of a surveillance program to monitor changes in the incidence of neurodegenerative disorders in the years after COVID-19. RESULTS Autopsy studies revealed diverse changes in the brain, including loss of vascular integrity, microthromboses, gliosis, demyelination, and neuronal- and glial injury and cell death, in both unvaccinated and vaccinated individuals irrespective of the severity of COVID-19. Recent data suggest that microglia play an important role in sustained COVID-19-related inflammation, which contributes to the etiology initiating a neurodegenerative cascade, to the worsening of pre-existing neurodegenerative disease or to the acceleration of neurodegenerative processes. Histopathological data have been supported by neuroimaging, and epidemiological studies also suggested a higher risk for neurodegenerative diseases after COVID-19. CONCLUSIONS Due to the high prevalence of COVID-19 during the pandemic, healthcare systems should be aware of, and be prepared for a potential increase in the incidence of neurodegenerative diseases in the upcoming years. Strategies may include follow-up of well-described cohorts, analyses of outcomes in COVID-19-registries, nationwide surveillance programs using record-linkage of ICD-10 diagnoses, and comparing the incidence of neurodegenerative disorders in the post-pandemic periods to values of the pre-pandemic years. Awareness and active surveillance are particularly needed, because diverse clinical manifestations due to earlier SARS-CoV-2 infections may no longer be quoted as post-COVID-19 symptoms, and hence, increasing incidence of neurodegenerative pathologies at the community level may remain unnoticed.
Collapse
Affiliation(s)
- Dániel Bereczki
- Department of Neurology, Semmelweis University, Budapest, Hungary.
- HUN-REN SU Neuroepidemiology Research Group, Budapest, Hungary.
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, HUN-REN Institute of Experimental Medicine, Budapest, 1083, Hungary
| | - Filippo M Boneschi
- Clinical Neurology, Department of Health Science CRC "Aldo Ravelli" for Experimental Brain Therapeutics, University of Milan, Milan, Italy
- Hospital San Paolo, ASST Santi Paolo E Carlo, Milan, Italy
| | - Tamar Akhvlediani
- Department of Neurology, Neurosurgery and Addiction Medicine, Georgian-American University, Tbilisi, Georgia
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS Di Reggio Emilia, Reggio Emilia, Italy
| | | | - Saša R Filipović
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Alla Guekht
- Research and Clinical Center for Neuropsychiatry, Moscow, Russian Federation
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Raimund Helbok
- Department of Neurology, Kepler University Hospital, Johannes Kepler University Linz, Linz, Austria
- Clinical Research Institute of Neuroscience, Johannes Kepler University Linz, Kepler University Hospital, Linz, Austria
| | | | - Tim J von Oertzen
- Medical Directorate, University Hospital Würzburg, Würzburg, Germany
| | - Serefnur Özturk
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - Alberto Priori
- Aldo Ravelli' Centre for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan, Italy
- Clinical Neurology Unit, Department of Health Sciences, 'Azienda Socio-Sanitaria Territoriale Santi Paolo E Carlo', University of Milan, Milan, Italy
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Barbara Willekens
- Department of Neurology, Antwerp University Hospital, Edegem, Belgium
- Translational Neurosciences Research Group, University of Antwerp, Wilrijk, Belgium
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble Institute of Neurosciences, INSERM U1216, Grenoble Alpes University, Grenoble, France
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria
| |
Collapse
|
2
|
Pavlou A, Mulenge F, Gern OL, Busker LM, Greimel E, Waltl I, Kalinke U. Orchestration of antiviral responses within the infected central nervous system. Cell Mol Immunol 2024; 21:943-958. [PMID: 38997413 PMCID: PMC11364666 DOI: 10.1038/s41423-024-01181-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 07/14/2024] Open
Abstract
Many newly emerging and re-emerging viruses have neuroinvasive potential, underscoring viral encephalitis as a global research priority. Upon entry of the virus into the CNS, severe neurological life-threatening conditions may manifest that are associated with high morbidity and mortality. The currently available therapeutic arsenal against viral encephalitis is rather limited, emphasizing the need to better understand the conditions of local antiviral immunity within the infected CNS. In this review, we discuss new insights into the pathophysiology of viral encephalitis, with a focus on myeloid cells and CD8+ T cells, which critically contribute to protection against viral CNS infection. By illuminating the prerequisites of myeloid and T cell activation, discussing new discoveries regarding their transcriptional signatures, and dissecting the mechanisms of their recruitment to sites of viral replication within the CNS, we aim to further delineate the complexity of antiviral responses within the infected CNS. Moreover, we summarize the current knowledge in the field of virus infection and neurodegeneration and discuss the potential links of some neurotropic viruses with certain pathological hallmarks observed in neurodegeneration.
Collapse
Affiliation(s)
- Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Felix Mulenge
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Olivia Luise Gern
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Lena Mareike Busker
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, 30559, Hannover, Germany
| | - Elisabeth Greimel
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, 30625, Hannover, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
3
|
van der Knaap N, Ariës MJH, van der Horst ICC, Jansen JFA. On the merits and potential of advanced neuroimaging techniques in COVID-19: A scoping review. Neuroimage Clin 2024; 42:103589. [PMID: 38461701 PMCID: PMC10938171 DOI: 10.1016/j.nicl.2024.103589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Many Coronavirus Disease 2019 (COVID-19) patients are suffering from long-term neuropsychological sequelae. These patients may benefit from a better understanding of the underlying neuropathophysiological mechanisms and identification of potential biomarkers and treatment targets. Structural clinical neuroimaging techniques have limited ability to visualize subtle cerebral abnormalities and to investigate brain function. This scoping review assesses the merits and potential of advanced neuroimaging techniques in COVID-19 using literature including advanced neuroimaging or postmortem analyses in adult COVID-19 patients published from the start of the pandemic until December 2023. Findings were summarized according to distinct categories of reported cerebral abnormalities revealed by different imaging techniques. Although no unified COVID-19-specific pattern could be subtracted, a broad range of cerebral abnormalities were revealed by advanced neuroimaging (likely attributable to hypoxic, vascular, and inflammatory pathology), even in absence of structural clinical imaging findings. These abnormalities are validated by postmortem examinations. This scoping review emphasizes the added value of advanced neuroimaging compared to structural clinical imaging and highlights implications for brain functioning and long-term consequences in COVID-19.
Collapse
Affiliation(s)
- Noa van der Knaap
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Marcel J H Ariës
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Iwan C C van der Horst
- Department of Intensive Care Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Jacobus F A Jansen
- Department of Radiology & Nuclear Medicine, Maastricht University Medical Center, Maastricht, the Netherlands; Research Institute of Mental Health & Neuroscience, Maastricht University, Maastricht, the Netherlands; Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Nasir A, Samad A, Ullah S, Ali A, Wei DQ, Qian B. Omicron variant (B.1.1.529) challenge the integrity of blood brain barrier: Evidence from protein structural analysis. Comput Biol Med 2024; 169:107906. [PMID: 38154156 DOI: 10.1016/j.compbiomed.2023.107906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Studies on nonhuman primates, wild-type and transgenic mice have shown the presence of SARS-CoV-2 RNA components in the brains. Despite the Blood-Brain Barrier (BBB) provides protection there are less evidences on how the SARS-CoV-2 crosses the BBB. Given that there is an increase of Omicron reinfection rates, transmissibility rate and involvement to cause neurological dysfunctions, we hypothesized to investigate how the Omicron variant (B.1.1.529) binds structurally to key BBB-maintaining proteins and thus can possibly challenge the integrity and transportation to the brain. By using molecular dynamics simulation approaches we examined the interaction of Omicron variant (B.1.1.529) with different structural and transporter proteins located at the BBB. Our results show that in Zona Ocludin 1-RBD complex, we observe a distinct pattern. Omicron demonstrates a docking score of -88.9 ± 6.8 kcal/mol and six interactions, while the wild type (WT) presents a higher score of -94.0 ± 2.3 kcal/mol, forming eight interactions. Comparing affinities, the WT-RBD displays a stronger preference for Claudin-5, boasting a docking score of -110.2 ± 3.0 and nine interactions, versus Omicron-RBD's slightly reduced engagement, with a docking score of -105.6 ± 0.2 and seven interactions. Interestingly, the Omicron variant exhibits heightened stability in interactions with Glucose Transporter and ABC transporters, registering docking scores of -110.6 ± 1.9 and -112.0 ± 3.6 kcal/mol, respectively. This surpasses the WT's respective scores of -95.2 ± 2.2 and -104.0 ± 6.2 kcal/mol, reflecting a unique interaction profile. Rigorous molecular dynamics simulations validate our findings. Our study emphasizes the Omicron variant's increased affinity towards transporter proteins, illuminating potential implications for BBB integrity and brain transportation. While these insights offer a valuable framework, comprehensive experimental validation is indispensable for a comprehensive understanding.
Collapse
Affiliation(s)
- Abdul Nasir
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Sami Ullah
- Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan
| | - Arif Ali
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, China
| | - Dong-Qing Wei
- Department of Bioinformatics and Biological Statistics, Shanghai Jiao Tong University, Shanghai, China; Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nayang, Henan, China.
| | - Bai Qian
- Medical Research Center, Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
5
|
Meinhardt J, Streit S, Dittmayer C, Manitius RV, Radbruch H, Heppner FL. The neurobiology of SARS-CoV-2 infection. Nat Rev Neurosci 2024; 25:30-42. [PMID: 38049610 DOI: 10.1038/s41583-023-00769-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 12/06/2023]
Abstract
Worldwide, over 694 million people have been infected with SARS-CoV-2, with an estimated 55-60% of those infected developing COVID-19. Since the beginning of the pandemic in December 2019, different variants of concern have appeared and continue to occur. With the emergence of different variants, an increasing rate of vaccination and previous infections, the acute neurological symptomatology of COVID-19 changed. Moreover, 10-45% of individuals with a history of SARS-CoV-2 infection experience symptoms even 3 months after disease onset, a condition that has been defined as 'post-COVID-19' by the World Health Organization and that occurs independently of the virus variant. The pathomechanisms of COVID-19-related neurological complaints have become clearer during the past 3 years. To date, there is no overt - that is, truly convincing - evidence for SARS-CoV-2 particles in the brain. In this Review, we put special emphasis on discussing the methodological difficulties of viral detection in CNS tissue and discuss immune-based (systemic and central) effects contributing to COVID-19-related CNS affection. We sequentially review the reported changes to CNS cells in COVID-19, starting with the blood-brain barrier and blood-cerebrospinal fluid barrier - as systemic factors from the periphery appear to primarily influence barriers and conduits - before we describe changes in brain parenchymal cells, including microglia, astrocytes, neurons and oligodendrocytes as well as cerebral lymphocytes. These findings are critical to understanding CNS affection in acute COVID-19 and post-COVID-19 in order to translate these findings into treatment options, which are still very limited.
Collapse
Affiliation(s)
- Jenny Meinhardt
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Simon Streit
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Regina V Manitius
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Cluster of Excellence, NeuroCure, Berlin, Germany.
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany.
| |
Collapse
|
6
|
Magaki S, Zhang T, Han K, Hilda M, Yong WH, Achim C, Fishbein G, Fishbein MC, Garner O, Salamon N, Williams CK, Valdes-Sueiras MA, Hsu JJ, Kelesidis T, Mathisen GE, Lavretsky H, Singer EJ, Vinters HV. HIV and COVID-19: two pandemics with significant (but different) central nervous system complications. FREE NEUROPATHOLOGY 2024; 5:5. [PMID: 38469363 PMCID: PMC10925920 DOI: 10.17879/freeneuropathology-2024-5343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/02/2024] [Indexed: 03/13/2024]
Abstract
Human immunodeficiency virus (HIV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cause significant neurologic disease. Central nervous system (CNS) involvement of HIV has been extensively studied, with well-documented invasion of HIV into the brain in the initial stage of infection, while the acute effects of SARS-CoV-2 in the brain are unclear. Neuropathologic features of active HIV infection in the brain are well characterized whereas neuropathologic findings in acute COVID-19 are largely non-specific. On the other hand, neuropathologic substrates of chronic dysfunction in both infections, as HIV-associated neurocognitive disorders (HAND) and post-COVID conditions (PCC)/long COVID are unknown. Thus far, neuropathologic studies on patients with HAND in the era of combined antiretroviral therapy have been inconclusive, and autopsy studies on patients diagnosed with PCC have yet to be published. Further longitudinal, multidisciplinary studies on patients with HAND and PCC and neuropathologic studies in comparison to controls are warranted to help elucidate the mechanisms of CNS dysfunction in both conditions.
Collapse
Affiliation(s)
- Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Karam Han
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Mirbaha Hilda
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - William H. Yong
- Department of Pathology and Laboratory Medicine, University of California-Irvine School of Medicine, Irvine, CA, USA
| | - Cristian Achim
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Gregory Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael C. Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Omai Garner
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Christopher K. Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
| | - Miguel A. Valdes-Sueiras
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeffrey J. Hsu
- Division of Cardiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Theodoros Kelesidis
- Department of Medicine, Division of Infectious Diseases, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Glenn E. Mathisen
- Department of Infectious Diseases, Olive View-University of California Los Angeles Medical Center, Sylmar, CA, USA
| | - Helen Lavretsky
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Elyse J. Singer
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Harry V. Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
7
|
Michael BD, Dunai C, Needham EJ, Tharmaratnam K, Williams R, Huang Y, Boardman SA, Clark JJ, Sharma P, Subramaniam K, Wood GK, Collie C, Digby R, Ren A, Norton E, Leibowitz M, Ebrahimi S, Fower A, Fox H, Tato E, Ellul MA, Sunderland G, Held M, Hetherington C, Egbe FN, Palmos A, Stirrups K, Grundmann A, Chiollaz AC, Sanchez JC, Stewart JP, Griffiths M, Solomon T, Breen G, Coles AJ, Kingston N, Bradley JR, Chinnery PF, Cavanagh J, Irani SR, Vincent A, Baillie JK, Openshaw PJ, Semple MG, Taams LS, Menon DK. Para-infectious brain injury in COVID-19 persists at follow-up despite attenuated cytokine and autoantibody responses. Nat Commun 2023; 14:8487. [PMID: 38135686 PMCID: PMC10746705 DOI: 10.1038/s41467-023-42320-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/06/2023] [Indexed: 12/24/2023] Open
Abstract
To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.
Collapse
Affiliation(s)
- Benedict D Michael
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK.
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK.
- The Walton Centre NHS Foundation Trust, Liverpool, L9 7BB, UK.
| | - Cordelia Dunai
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK
| | - Edward J Needham
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Kukatharmini Tharmaratnam
- Health Data Science, Institute of Population Health, University of Liverpool, Liverpool, L69 3GF, UK
| | - Robyn Williams
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Yun Huang
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Sarah A Boardman
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jordan J Clark
- University of Liverpool, Liverpool, L69 7BE, UK
- Department of Microbiology, Icahn School of Medicine, Mount Sinai, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine, Mount Sinai, NY, 10029, USA
| | - Parul Sharma
- Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Krishanthi Subramaniam
- Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Greta K Wood
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Ceryce Collie
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Richard Digby
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander Ren
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Emma Norton
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Maya Leibowitz
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Soraya Ebrahimi
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Andrew Fower
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Hannah Fox
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Esteban Tato
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, SE5 8AF, UK
| | - Mark A Ellul
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- The Walton Centre NHS Foundation Trust, Liverpool, L9 7BB, UK
| | - Geraint Sunderland
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Marie Held
- Centre for Cell Imaging, Liverpool Shared Research Facilities, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire Hetherington
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Franklyn N Egbe
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Alish Palmos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, SE5 8AF, UK
| | - Kathy Stirrups
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
- Department of Haematology, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Alexander Grundmann
- Clinical Neurosciences, Clinical and Experimental Science, Faculty of Medicine, University of Southampton, Southampton, SO17 1BF, UK
- Department of Neurology, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Anne-Cecile Chiollaz
- Département de médecine interne des spécialités (DEMED), University of Geneva, Geneva, CH-1211, Switzerland
| | - Jean-Charles Sanchez
- Département de médecine interne des spécialités (DEMED), University of Geneva, Geneva, CH-1211, Switzerland
| | - James P Stewart
- Infection Biology & Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Michael Griffiths
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
| | - Tom Solomon
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK
- The Walton Centre NHS Foundation Trust, Liverpool, L9 7BB, UK
- The Pandemic Institute, Liverpool, L7 3FA, UK
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
- NIHR Maudsley Biomedical Research Centre, King's College London, London, SE5 8AF, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Nathalie Kingston
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
- University of Cambridge, Cambridge, CB2 0QQ, UK
| | - John R Bradley
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- NIHR BioResource, Cambridge University Hospitals NHS Foundation, Cambridge, CB2 0QQ, UK
| | - Jonathan Cavanagh
- Centre for Immunology, School of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
- Departments of Neurology and Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - J Kenneth Baillie
- Roslin Institute, University of Edinburgh, Edinburgh, EH25 9RG, UK
- Intensive Care Unit, Royal Infirmary of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Peter J Openshaw
- National Heart and Lung Institute, Imperial College London, London, SW7 2BX, UK
- Imperial College Healthcare NHS Trust, London, W2 1NY, UK
| | - Malcolm G Semple
- Clinical Infection, Microbiology, and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L69 7BE, UK
- NIHR Health Protection Research Unit (HPRU) in Emerging and Zoonotic Infections at University of Liverpool, Liverpool, L69 7BE, UK
- Respiratory Unit, Alder Hey Children's Hospital NHS Foundation Trust, Liverpool, L14 5AB, UK
| | - Leonie S Taams
- Centre for Inflammation Biology and Cancer Immunology, King's College London, London, SE1 9RT, UK
| | - David K Menon
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
8
|
Dey R, Bishayi B. Microglial Inflammatory Responses to SARS-CoV-2 Infection: A Comprehensive Review. Cell Mol Neurobiol 2023; 44:2. [PMID: 38099973 PMCID: PMC11407175 DOI: 10.1007/s10571-023-01444-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/08/2023] [Indexed: 12/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is primarily a respiratory disease causing a worldwide pandemic in the year of 2019. SARS-CoV-2 is an enveloped, positive-stranded RNA virus that could invade the host through spike protein and exhibits multi-organ effects. The Brain was considered to be a potential target for SARS-CoV-2 infection. Although neuropsychiatric symptoms and cognitive impairments were observed in COVID-19 patients even after recovery the mechanism of action is not well documented. In this review, the contribution of microglia in response to SARS-CoV-2 infection was discussed aiming to design a therapeutic regimen for the management of neuroinflammation and psycho-behavioral alterations. Priming of microglia facilitates the hyper-activation state when it interacts with SARS-CoV-2 known as the 'second hit'. Moreover, the microgliosis produces reactive free radicals and pro-inflammatory cytokines like IL-1β, IFN-γ, and IL-6 which ultimately contribute to a 'cytokine storm', thereby increasing the occurrence of cognitive and neurological dysfunction. It was reported that elevated CCL11 may be responsible for psychiatric disorders and ROS/RNS-induced oxidative stress could promote major depressive disorder (MDD) and phenotypic switching. Additionally, during SARS-CoV-2 infection microglia-CD8+ T cell interaction may have a significant role in neuronal cell death. This cytokine-mediated cellular cross-talking plays a crucial role in pro-inflammatory and anti-inflammatory balance within the COVID-19 patient's brain. Therefore, all these aspects will be taken into consideration for developing novel therapeutic strategies to combat SARS-CoV-2-induced neuroinflammation.
Collapse
Affiliation(s)
- Rajen Dey
- Department of Medical Laboratory Technology, School of Allied Health Sciences, Swami Vivekananda University, Telinipara, Barasat-Barrackpore Rd, Bara Kanthalia, West Bengal, 700121, India.
| | - Biswadev Bishayi
- Immunology Laboratory, Department of Physiology, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta, West Bengal, 700009, India
| |
Collapse
|
9
|
Hashimoto K. Detrimental effects of COVID-19 in the brain and therapeutic options for long COVID: The role of Epstein-Barr virus and the gut-brain axis. Mol Psychiatry 2023; 28:4968-4976. [PMID: 37402856 PMCID: PMC11041741 DOI: 10.1038/s41380-023-02161-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/13/2023] [Accepted: 06/22/2023] [Indexed: 07/06/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in a serious public health burden worldwide. In addition to respiratory, heart, and gastrointestinal symptoms, patients infected with SARS-CoV-2 experience a number of persistent neurological and psychiatric symptoms, known as long COVID or "brain fog". Studies of autopsy samples from patients who died from COVID-19 detected SARS-CoV-2 in the brain. Furthermore, increasing evidence shows that Epstein-Barr virus (EBV) reactivation after SARS-CoV-2 infection might play a role in long COVID symptoms. Moreover, alterations in the microbiome after SARS-CoV-2 infection might contribute to acute and long COVID symptoms. In this article, the author reviews the detrimental effects of COVID-19 on the brain, and the biological mechanisms (e.g., EBV reactivation, and changes in the gut, nasal, oral, or lung microbiomes) underlying long COVID. In addition, the author discusses potential therapeutic approaches based on the gut-brain axis, including plant-based diet, probiotics and prebiotics, fecal microbiota transplantation, and vagus nerve stimulation, and sigma-1 receptor agonist fluvoxamine.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| |
Collapse
|
10
|
Liang Y, Liu L, Liang B. COVID-19 susceptibility and severity for dyslipidemia: A mendelian randomization investigation. Heliyon 2023; 9:e20247. [PMID: 37809746 PMCID: PMC10560011 DOI: 10.1016/j.heliyon.2023.e20247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background The severe acute respiratory syndrome coronavirus in 2019 (COVID-19) is still spreading and causing deaths worldwide, which further increased the burden of chronic diseases. Dyslipidemia is a common metabolic syndrome, which is a major risk factor for cardiovascular disease. However, studies on whether there is a direct causal relationship between COVID-19 and the exacerbation of hyperlipidemia are still scarce. Methods Two-sample Mendelian randomization was conducted using publicly available summary statistics from independent cohorts of European ancestry. For COVID-19 and hyperlipidemia, we used data from the ieu open GWAS project database. Inverse variance-weighted, mendelian randomization Egger, weighted median, simple mode, and weighted mode mendelian randomization analyses were performed, together with a range of sensitivity analyses. Results There is no direct causal relationship between COVID-19 and dyslipidemia, regardless of COVID-19 severity or either dyslipidemic outcome. In combination with previous studies, the reason for the clinical outcome that COVID-19 increased the burden of dyslipidemia may be due to the exacerbation of pre-existing disease caused by COVID-19. Conclusions COVID-19 has no direct causal relationship with dyslipidemia.
Collapse
Affiliation(s)
- Yi Liang
- Geriatric Medicine Department, The Second Hospital of Traditional Chinese Medicine in Sichuan Province, Chengdu, China
| | - Liang Liu
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Bo Liang
- Department of Nephrology, The Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|