1
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Pinkerton M, Adler GL, Ledger M, Ni CY, Yang Y, Tan RH. Heterogeneous nuclear ribonucleoprotein D - an understudied subfamily affected in sporadic TDP-43 proteinopathies. Brain Commun 2024; 6:fcae352. [PMID: 39670112 PMCID: PMC11635367 DOI: 10.1093/braincomms/fcae352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/13/2024] [Accepted: 10/17/2024] [Indexed: 12/14/2024] Open
Abstract
Despite the recognition that heterogeneous nuclear ribonucleoproteins (hnRNPs) modulate TDP-43 and can limit aberrant splicing events to compensate for TDP-43 loss, their role in TDP-43 proteinopathies remains poorly understood and studies in patient tissue are lacking. This study assesses seven heterogeneous nuclear ribonucleoproteins from the A/B, C, D and H subfamilies in two cortical regions implicated in early TDP-43 dysfunction versus late TDP-43 dysfunction in sporadic amyotrophic lateral sclerosis and/or frontotemporal lobar degeneration. Our results reveal significant nuclear loss of hnRNPD, hnRNPC and hnRNPA1 in the frontal cortex of frontotemporal lobar degeneration compared to amyotrophic lateral sclerosis but not in the motor cortical neurons or Betz cells of amyotrophic lateral sclerosis cases. Cytoplasmic co-occurrence was observed between hnRNPA1 and hnRNPC but not with phosphorylated TDP-43 (pTDP-43). Interestingly, nuclear hnRNPD loss associated with increasing cytoplasmic pTDP-43, highlighting an understudied subfamily in sporadic TDP-43 proteinopathies. In summary, this study identifies the nuclear loss of hnRNPD, C and A1 in a predilection brain region of TDP-43 in frontotemporal lobar degeneration compared to amyotrophic lateral sclerosis cases without significant pTDP-43 in this region. This highlights the need for further investigation into the involvement of these heterogeneous nuclear ribonucleoproteins in disease pathogenesis and potential to serve as modulatory targets and/or proximal markers of TDP-43 dysfunction in sporadic TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Monica Pinkerton
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, 2050, Australia
| | - Gabrielle L Adler
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, 2050, Australia
| | - Mallory Ledger
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
| | - Chen Yue Ni
- Brain and Mind Centre, University of Sydney, Sydney, NSW, 2050, Australia
| | - Yue Yang
- Brain and Mind Centre, University of Sydney, Sydney, NSW, 2050, Australia
| | - Rachel H Tan
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, Sydney, NSW, 2050, Australia
- Brain and Mind Centre, University of Sydney, Sydney, NSW, 2050, Australia
| |
Collapse
|
3
|
Torres P, Rico-Rios S, Ceron-Codorniu M, Santacreu-Vilaseca M, Seoane-Miraz D, Jad Y, Ayala V, Mariño G, Beltran M, Miralles MP, Andrés-Benito P, Fernandez-Irigoyen J, Santamaria E, López-Otín C, Soler RM, Povedano M, Ferrer I, Pamplona R, Wood MJA, Varela MA, Portero-Otin M. TDP-43 regulates LC3ylation in neural tissue through ATG4B cryptic splicing inhibition. Acta Neuropathol 2024; 148:45. [PMID: 39305312 PMCID: PMC11416411 DOI: 10.1007/s00401-024-02780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an adult-onset motor neuron disease with a mean survival time of three years. The 97% of the cases have TDP-43 nuclear depletion and cytoplasmic aggregation in motor neurons. TDP-43 prevents non-conserved cryptic exon splicing in certain genes, maintaining transcript stability, including ATG4B, which is crucial for autophagosome maturation and Microtubule-associated proteins 1A/1B light chain 3B (LC3B) homeostasis. In ALS mice (G93A), Atg4b depletion worsens survival rates and autophagy function. For the first time, we observed an elevation of LC3ylation in the CNS of both ALS patients and atg4b-/- mouse spinal cords. Furthermore, LC3ylation modulates the distribution of ATG3 across membrane compartments. Antisense oligonucleotides (ASOs) targeting cryptic exon restore ATG4B mRNA in TARDBP knockdown cells. We further developed multi-target ASOs targeting TDP-43 binding sequences for a broader effect. Importantly, our ASO based in peptide-PMO conjugates show brain distribution post-IV administration, offering a non-invasive ASO-based treatment avenue for neurodegenerative diseases.
Collapse
Affiliation(s)
- Pascual Torres
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Santiago Rico-Rios
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Miriam Ceron-Codorniu
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Marta Santacreu-Vilaseca
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - David Seoane-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Victòria Ayala
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Guillermo Mariño
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), 33006, Oviedo, Spain
- Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), 33011, Oviedo, Spain
| | - Maria Beltran
- Neuronal Signaling Unit, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain
| | - Maria P Miralles
- Neuronal Signaling Unit, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain
| | - Pol Andrés-Benito
- Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907, L'Hospitalet de Llobregat, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joaquin Fernandez-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008, Pamplona, Spain
| | - Enrique Santamaria
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), diSNA, 31008, Pamplona, Spain
| | - Carlos López-Otín
- Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
- Instituto Universitario de Oncología (IUOPA), 33006, Oviedo, Spain
- Departamento de Bioquímica y Biología Molecular, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Rosa M Soler
- Neuronal Signaling Unit, Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), University of Lleida (UdL), 25198, Lleida, Spain
| | - Monica Povedano
- Neurologic Diseases and Neurogenetics Group, Bellvitge Institute for Biomedical Research (IDIBELL), 08907, L'Hospitalet de Llobregat, Spain
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Isidro Ferrer
- CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research, IDIBELL, 08907, L'Hospitalet de Llobregat, Spain
- Department of Pathology and Experimental Therapeutics, University of Barcelona, 08007, Barcelona, Spain
| | - Reinald Pamplona
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain
| | - Matthew J A Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Miguel A Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford, OX3 7TY, UK.
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| | - Manuel Portero-Otin
- Metabolic Pathophysiology Research Group, Department of Experimental Medicine, University of Lleida (UdL), Lleida Biomedical Research Institute (IRBLleida), 25198, Lleida, Spain.
| |
Collapse
|
4
|
Kitaoka Y, Sase K. Molecular aspects of optic nerve autophagy in glaucoma. Mol Aspects Med 2023; 94:101217. [PMID: 37839231 DOI: 10.1016/j.mam.2023.101217] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/17/2023]
Abstract
The optic nerve consists of the glia, vessels, and axons including myelin and axoplasm. Since axonal degeneration precedes retinal ganglion cell death in glaucoma, the preceding axonal degeneration model may be helpful for understanding the molecular mechanisms of optic nerve degeneration. Optic nerve samples from these models can provide information on several aspects of autophagy. Autophagosomes, the most typical organelles expressing autophagy, are found much more frequently inside axons than around the glia. Thus, immunoblot findings from the optic nerve can reflect the autophagy state in axons. Autophagic flux impairment may occur in degenerating optic nerve axons, as in other central nervous system neurodegenerative diseases. Several molecular candidates are involved in autophagy enhancement, leading to axonal protection. This concept is an attractive approach to the prevention of further retinal ganglion cell death. In this review, we describe the factors affecting autophagy, including nicotinamide riboside, p38, ULK, AMPK, ROCK, and SIRT1, in the optic nerve and propose potential methods of axonal protection via enhancement of autophagy.
Collapse
Affiliation(s)
- Yasushi Kitaoka
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan; Department of Molecular Neuroscience, St. Marianna University Graduate School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
| | - Kana Sase
- Department of Ophthalmology, St. Marianna University School of Medicine, 2-16-1 Sugao, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan
| |
Collapse
|
5
|
Kiernan MC, Halliday GM, Rowe DB, Tan RH. The importance of patient-centred drug development for amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2023; 49:e12944. [PMID: 38148722 DOI: 10.1111/nan.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/03/2023] [Accepted: 10/14/2023] [Indexed: 12/28/2023]
Affiliation(s)
- Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Dominic B Rowe
- Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rachel H Tan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|