1
|
Glass AM, Navas-Martin S. Interferon-induced protein ISG15 in the central nervous system, quo vadis? FEBS Lett 2025. [PMID: 40353372 DOI: 10.1002/1873-3468.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
The ubiquitin-like interferon (IFN)-stimulated gene 15 (ISG15) is a unique molecular effector that functions both intra- and extracellularly. Central to its pleiotropic nature is the ability to coordinate cellular responses following its conjugation to target proteins via ISGylation or in its free form. The activity of ISG15 is highly context-dependent: in the case of viral infections, ISG15 can serve as a pro- or antiviral factor. While ISG15 has been studied extensively, several gaps persist in our understanding of its role in dysregulated immune homeostasis. In particular, the role of ISG15 in the central nervous system (CNS), which has traditionally been considered an immune-privileged site, remains ill-defined. Interestingly, elevated ISG15 expression is observed in the CNS following instances of brain injury, autoimmunity, neurodegeneration, and viral infection. In this review, we seek to provide a comprehensive analysis of these studies as they pertain to ISG15 and its potential roles in the CNS. Furthermore, we discuss questions and challenges in the field while highlighting ISG15 as a potential diagnostic biomarker or therapeutic target. Impact statement While ISG15 has been studied extensively, several gaps remain in our understanding of its role in dysregulated immune homeostasis and its impact within the central nervous system (CNS). In this review, we provide a comprehensive analysis of the emerging roles of ISG15 in brain injury, autoimmunity, neurodegeneration, and viral infection within the CNS.
Collapse
Affiliation(s)
- Adam M Glass
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Sonia Navas-Martin
- Department of Microbiology and Immunology, Centers for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
2
|
Lang R, Li H, Luo X, Liu C, Zhang Y, Guo S, Xu J, Bao C, Dong W, Yu Y. Expression and mechanisms of interferon-stimulated genes in viral infection of the central nervous system (CNS) and neurological diseases. Front Immunol 2022; 13:1008072. [PMID: 36325336 PMCID: PMC9618809 DOI: 10.3389/fimmu.2022.1008072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/28/2022] [Indexed: 09/16/2023] Open
Abstract
Interferons (IFNs) bind to cell surface receptors and activate the expression of interferon-stimulated genes (ISGs) through intracellular signaling cascades. ISGs and their expression products have various biological functions, such as antiviral and immunomodulatory effects, and are essential effector molecules for IFN function. ISGs limit the invasion and replication of the virus in a cell-specific and region-specific manner in the central nervous system (CNS). In addition to participating in natural immunity against viral infections, studies have shown that ISGs are essential in the pathogenesis of CNS disorders such as neuroinflammation and neurodegenerative diseases. The aim of this review is to present a macroscopic overview of the characteristics of ISGs that restrict viral neural invasion and the expression of the ISGs underlying viral infection of CNS cells. Furthermore, we elucidate the characteristics of ISGs expression in neurological inflammation, neuropsychiatric disorders such as depression as well as neurodegenerative disorders, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Finally, we summarize several ISGs (ISG15, IFIT2, IFITM3) that have been studied more in recent years for their antiviral infection in the CNS and their research progress in neurological diseases.
Collapse
Affiliation(s)
- Rui Lang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huiting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Xiaoqin Luo
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Cencen Liu
- Department of Pathology, People’s Hospital of Zhongjiang County, DeYang, China
| | - Yiwen Zhang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - ShunYu Guo
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jingyi Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Changshun Bao
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurological diseases and brain function laboratory, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
4
|
Juncker M, Kim C, Reed R, Haas A, Schwartzenburg J, Desai S. ISG15 attenuates post-translational modifications of mitofusins and congression of damaged mitochondria in Ataxia Telangiectasia cells. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166102. [PMID: 33617986 DOI: 10.1016/j.bbadis.2021.166102] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Mitophagy is defective in several neurodegenerative diseases, including Ataxia Telangiectasia (A-T). However, the molecular mechanism underlying defective mitophagy in A-T is unknown. Literature indicates that damaged mitochondria are transported to the perinuclear region prior to their removal via mitophagy. Our previous work has indicated that conjugation of SUMO2 (Small Ubiquitin-like Modifier 2) to mitofusins (Mfns) may be necessary for congression of mitochondria into SUMO2-/ubiquitin-/LC3-positive compact structures resembling mito-aggresomes at the perinuclear region in CCCP-treated HEK293 cells. Here, we demonstrate that Mfns are SUMOylated, and mitochondria are transported to the perinuclear region; however, mitochondria fail to congress into mito-aggresome-like structures in CCCP-treated A-T cells. Defect in mitochondrial congression is causally related to constitutively elevated ISG15 (Interferon-Stimulated Gene 15), an antagonist of the ubiquitin pathway, in A-T cells. Suppression of the ISG15 pathway restores mitochondrial congression, reduce oxidative stress, and level of unhealthy mitochondria, which is suggestive of restoration of mitophagy in A-T cells. ISG15 is also constitutively elevated and mitophagy is defective in Amytrophic Lateral Sclerosis (ALS). The constitutively elevated ISG15 pathway therefore appears to be a common unifying biochemical mechanism underlying defective mitophagy in neurodegenerative disorders thus, implying the broader significance of our findings, and suggest the potential role of ISG15 inhibitors in their treatment.
Collapse
Affiliation(s)
- Meredith Juncker
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Ryan Reed
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Arthur Haas
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Joshua Schwartzenburg
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Shyamal Desai
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA.
| |
Collapse
|
5
|
Hain HS, Pandey R, Bakay M, Strenkowski BP, Harrington D, Romer M, Motley WW, Li J, Lancaster E, Roth L, Grinspan JB, Scherer SS, Hakonarson H. Inducible knockout of Clec16a in mice results in sensory neurodegeneration. Sci Rep 2021; 11:9319. [PMID: 33927318 PMCID: PMC8084945 DOI: 10.1038/s41598-021-88895-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
CLEC16A has been shown to play a role in autophagy/mitophagy processes. Additionally, genetic variants in CLEC16A have been implicated in multiple autoimmune diseases. We generated an inducible whole-body knockout, Clec16aΔUBC mice, to investigate the loss of function of CLEC16A. The mice exhibited a neuronal phenotype including tremors and impaired gait that rapidly progressed to dystonic postures. Nerve conduction studies and pathological analysis revealed loss of sensory axons that are associated with this phenotype. Activated microglia and astrocytes were found in regions of the CNS. Several mitochondrial-related proteins were up- or down-regulated. Upregulation of interferon stimulated gene 15 (IGS15) were observed in neuronal tissues. CLEC16A expression inversely related to IGS15 expression. ISG15 may be the link between CLEC16A and downstream autoimmune, inflammatory processes. Our results demonstrate that a whole-body, inducible knockout of Clec16a in mice results in an inflammatory neurodegenerative phenotype resembling spinocerebellar ataxia.
Collapse
Affiliation(s)
- Heather S Hain
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| | - Rahul Pandey
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Marina Bakay
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Bryan P Strenkowski
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Danielle Harrington
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Micah Romer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - William W Motley
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jian Li
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Eunjoo Lancaster
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Lindsay Roth
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Judith B Grinspan
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
7
|
Nakka VP, Mohammed AQ. A Critical Role for ISGylation, Ubiquitination and, SUMOylation in Brain Damage: Implications for Neuroprotection. Neurochem Res 2020; 45:1975-1985. [DOI: 10.1007/s11064-020-03066-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
8
|
Schwartzenburg J, Juncker M, Reed R, Desai S. Increased ISGylation in Cases of TBI-Exposed ALS Veterans. J Neuropathol Exp Neurol 2019; 78:209-218. [PMID: 30657969 PMCID: PMC6380302 DOI: 10.1093/jnen/nly129] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Veterans who have served in the military are at a nearly 60% greater risk of being diagnosed with amyotrophic lateral sclerosis (ALS). Literature reports suggest that a history of traumatic brain injury (TBI) may be a risk factor for ALS in veterans. However, no diagnostic biomarkers are available for identifying ALS risk/development in TBI-exposed veterans. Here, using a Wes assay, we show that ISGylation, a conjugated form of interferon-stimulated gene 15 protein, is significantly elevated in the lumbar spinal cords (SC-Ls) of TBI-ALS compared with ALS veterans without a previous history of TBI (nonTBI-ALS). Although not as striking as in TBI-ALS veterans, ISGylation is also increased in nonTBI-ALS compared with normal veterans. Notably, no changes in ISGylation were seen in occipital lobe samples obtained from the same patients, suggesting that elevated ISGylation is distinct to ALS disease-specific SC-Ls. Moreover, we detected increased ISGylation in cerebral spinal fluid samples of TBI-ALS veterans. Other results using cultured lymphocyte cell lines show a similar trend of increased ISGylation in ALS patients from the general population. Together, these data suggest that ISGylation could serve as a diagnostic biomarker for TBI-ALS veterans, nonTBI-ALS veterans, and nonveterans affected by ALS.
Collapse
Affiliation(s)
- Joshua Schwartzenburg
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, Louisiana
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, Louisiana
| | - Ryan Reed
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, Louisiana
| | - Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, Louisiana
| |
Collapse
|
9
|
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med (Maywood) 2018; 243:554-562. [PMID: 29316798 DOI: 10.1177/1535370217752351] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is a cellular process by which dysfunctional mitochondria are degraded via autophagy. Increasing empirical evidence proposes that this mitochondrial quality-control mechanism is defective in neurons of patients with various neurodegenerative diseases such as Ataxia Telangiectasia, Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Accumulation of defective mitochondria and the production of reactive oxygen species due to defective mitophagy have been identified as causes underlying neurodegenerative disease pathogenesis. However, the reason mitophagy is defective in most neurodegenerative diseases is unclear. Like mitophagy, defects in the ubiquitin/26S proteasome pathway have been linked to neurodegeneration, resulting in the characteristic protein aggregates often seen in neurons of affected patients. Although initiation of mitophagy requires a functional ubiquitin pathway, whether defects in the ubiquitin pathway are causally responsible for defective mitophagy is not known. In this mini-review, we introduce mitophagy and ubiquitin pathways and provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway. We will then briefly review empirical evidence supporting mitophagy defects in neurodegenerative diseases. The review will conclude with a discussion of the constitutively elevated expression of ubiquitin-like protein Interferon-Stimulated Gene 15 (ISG15), an antagonist of the ubiquitin pathway, as a potential cause of defective mitophagy in neurodegenerative diseases. Impact statement Neurodegenerative diseases place an enormous burden on patients and caregivers globally. Over six million people in the United States alone suffer from neurodegenerative diseases, all of which are chronic, incurable, and with causes unknown. Identifying a common molecular mechanism underpinning neurodegenerative disease pathology is urgently needed to aid in the design of effective therapies to ease suffering, reduce economic cost, and improve the quality of life for these patients. Although the development of neurodegeneration may vary between neurodegenerative diseases, they have common cellular hallmarks, including defects in the ubiquitin-proteasome system and mitophagy. In this review, we will provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway and discuss the potential of targeting mitophagy and ubiquitin pathways for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|