1
|
Zhang Z, Wang X, Lin Y, Pan D. A multifaceted evaluation of microgliosis and differential cellular dysregulation of mammalian target of rapamycin signaling in neuronopathic Gaucher disease. Front Mol Neurosci 2022; 15:944883. [PMID: 36204141 PMCID: PMC9530712 DOI: 10.3389/fnmol.2022.944883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
Neuronopathic Gaucher disease (nGD) is an inherited neurodegenerative disease caused by mutations in GBA1 gene and is associated with premature death. Neuroinflammation plays a critical role in disease pathogenesis which is characterized by microgliosis, reactive astrocytosis, and neuron loss, although molecular mechanisms leading to neuroinflammation are not well-understood. In this report, we developed a convenient tool to quantify microglia proliferation and activation independently and uncovered abnormal proliferation of microglia (∼2-fold) in an adult genetic nGD model. The nGD-associated pattern of inflammatory mediators pertinent to microglia phenotypes was determined, showing a unique signature favoring pro-inflammatory chemokines and cytokines. Moreover, highly polarized (up or down) dysregulations of mTORC1 signaling with varying lysosome dysfunctions (numbers and volume) were observed among three major cell types of nGD brain. Specifically, hyperactive mTORC1 signaling was detected in all disease-associated microglia (Iba1high) with concurrent increase in lysosome function. Conversely, the reduction of neurons presenting high mTORC1 activity was implicated (including Purkinje-like cells) which was accompanied by inconsistent changes of lysosome function in nGD mice. Undetectable levels of mTORC1 activity and low Lamp1 puncta were noticed in astrocytes of both diseased and normal mice, suggesting a minor involvement of mTORC1 pathway and lysosome function in disease-associated astrocytes. These findings highlight the differences and complexity of molecular mechanisms that are involved within various cell types of the brain. The quantifiable parameters established and nGD-associated pattern of neuroinflammatory mediators identified would facilitate the efficacy evaluation on microgliosis and further discovery of novel therapeutic target(s) in treating neuronopathic Gaucher disease.
Collapse
Affiliation(s)
- Zhenting Zhang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Xiaohong Wang
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Yi Lin
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Dao Pan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati School of Medicine, Cincinnati, OH, United States
- *Correspondence: Dao Pan,
| |
Collapse
|
2
|
Zhang X, Wu Y, Sun X, Cui Q, Bai X, Dong G, Gao Z, Wang Y, Gao C, Sun S, Ji N, Liu Y. The PI3K/AKT/mTOR signaling pathway is aberrantly activated in primary central nervous system lymphoma and correlated with a poor prognosis. BMC Cancer 2022; 22:190. [PMID: 35184749 PMCID: PMC8859899 DOI: 10.1186/s12885-022-09275-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 02/09/2022] [Indexed: 11/20/2022] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is a specific subtype of non-Hodgkin lymphoma that is highly invasive and confined to the central nervous system (CNS). The vast majority of PCNSLs are diffuse large B-cell lymphomas (DLBCLs). PCNSL is a highly heterogeneous disease, and its pathogenesis has not yet been fully elucidated. Further studies are needed to guide individualized therapy and improve the prognosis. Methods In this study, we detected 1) the expression of p-AKT, p-mTOR, p-S6 and p-4E-BP1 by immunohistochemistry (IHC) and Western blotting, 2) the mRNA expression by real-time qPCR and 3) the deletion of PTEN gene by immunofluorescence in situ hybridization (FISH) in order to investigate the activation status of the PI3K/AKT/mTOR signaling pathway in PCNSL. Samples of reactive hyperplasia lymphnods were used as the control group. The correlations between the clinical characteristics and prognosis of PCNSL patients and the expression of p-AKT, p-mTOR, p-S6 and p-4E-BP1 and the deletion of PTEN were assessed. Results The IHC results showed that the positive expression rates of p-AKT, p-mTOR, p-S6 and p-4E-BP1 in PCNSL were significantly higher in the PCNSL group than in the control group (P < 0.05). The relative mRNA expression level of MTOR in PCNSL samples was significantly increased (P = 0.013). Correlation analysis revealed that the expression of p-mTOR was correlated with that of p-AKT, p-S6, p-4E-BP1. PTEN deletion was found in 18.9% of PCNSL samples and was correlated with the expression of p-AKT (P = 0.031). Correlation analysis revealed that the PCNSL relapse rate in the p-mTOR-positive group was 64.5%, significantly higher than that in the negative group (P = 0.001). Kaplan-Meier survival analysis showed inferior progression-free survival (PFS) in the p-mTOR- and p-S6-positive groups (P = 0.002 and 0.009, respectively), and PTEN deletion tended to be related to shorter overall survival (OS) (P = 0.072). Cox regression analysis revealed p-mTOR expression as an independent prognostic factor for a shorter PFS (hazard ratio (HR) =7.849, P = 0.046). Conclusions Our results suggest that the PI3K/AKT/mTOR signaling pathway is aberrantly activated in PCNSL and associated with a poor prognosis, which might indicate new therapeutic targets and prognostic factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09275-z.
Collapse
|
3
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
4
|
Ma Y, Qi Q, He Q, Gilyazova NS, Ibeanu G, Li PA. Neuroprotection by B355252 against Glutamate-Induced Cytotoxicity in Murine Hippocampal HT-22 Cells Is Associated with Activation of ERK3 Signaling Pathway. Biol Pharm Bull 2021; 44:1662-1669. [PMID: 34719643 DOI: 10.1248/bpb.b21-00158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glutamate differentially affects the levels extracellular signal-regulated kinase (ERK)1/2 and ERK3 and the protective effect of B355252, an aryl thiophene compound, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide, is associated with suppression of ERK1/2. The objectives of this study were to further investigate the impact of B355252 on ERK3 and its downstream signaling pathways affected by glutamate exposure in the mouse hippocampal HT-22 neuronal cells. Murine hippocampal HT22 cells were incubated with glutamate and treated with B355252. Cell viability was assessed, protein levels of pERK3, ERK3, mitogen-activated protein kinase-activated protein kinase-5 (MAPKAPK-5), steroid receptor coactivator 3 (SRC-3), p-S6 and S6 were measured using Western blotting, and immunoreactivity of p-S6 was determined by immunocytochemistry. The results reveal that glutamate markedly diminished the protein levels of p-ERK3 and its downstream targets MK-5 and SRC-3 and increased p-S6, an indicator for mechanistic target of rapamycin (mTOR) activation. Conversely, treatment with B355252 protected the cells from glutamate-induced damage and prevented the glutamate-caused declines of p-ERK3, MK-5 and SRC-3 and increase of p-S6. Our study demonstrates that one of the mechanisms that glutamate mediates its cytotoxicity is through suppression of ERK3 and that B355252 rescues the cells from glutamate toxicity by reverting ERK3 level.
Collapse
Affiliation(s)
- Yanni Ma
- Institute of Clinical Pharmacology, Department of Pharmacy, General Hospital of Ningxia Medical University.,Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University
| | - Qi Qi
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University.,The Julis Chambers Biomedical Biotechnology Research Institute (BBRI), North Carolina Central University
| | - Qingping He
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University
| | - Nailya S Gilyazova
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University
| | - Gordon Ibeanu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Health and Sciences, North Carolina Central University
| |
Collapse
|
5
|
Zhang X, Liu Y. Targeting the PI3K/AKT/mTOR Signaling Pathway in Primary Central Nervous System Lymphoma: Current Status and Future Prospects. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:165-173. [PMID: 32416683 DOI: 10.2174/1871527319666200517112252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 12/22/2022]
Abstract
Primary Central Nervous System Lymphoma (PCNSL) is a rare invasive extranodal non- Hodgkin lymphoma, a vast majority of which is Diffuse Large B-Cell Lymphoma (DLBCL). Although high-dose methotrexate-based immunochemotherapy achieves a high remission rate, the risk of relapse and related death remains a crucial obstruction to long-term survival. Novel agents for the treatment of lymphatic malignancies have significantly broadened the horizons of therapeutic options for PCNSL. The PI3K/AKT/mTOR signaling pathway is one of the most important pathways for Bcell malignancy growth and survival. Novel therapies that target key components of this pathway have shown antitumor effects in many B-cell malignancies, including DLBCL. This review will discuss the aberrant status of the PI3K/AKT/mTOR signaling pathways in PCNSL and the application prospects of inhibitors in hopes of providing alternative clinical therapeutic strategies and improving prognosis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| | - Yuanbo Liu
- Department of Hematology, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| |
Collapse
|
6
|
Balogh A, Reiniger L, Hetey S, Kiraly P, Toth E, Karaszi K, Juhasz K, Gelencser Z, Zvara A, Szilagyi A, Puskas LG, Matko J, Papp Z, Kovalszky I, Juhasz C, Than NG. Decreased Expression of ZNF554 in Gliomas is Associated with the Activation of Tumor Pathways and Shorter Patient Survival. Int J Mol Sci 2020; 21:E5762. [PMID: 32796700 PMCID: PMC7461028 DOI: 10.3390/ijms21165762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 01/01/2023] Open
Abstract
Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein subfamily, is predominantly expressed in the brain and placenta in humans. Recently, we unveiled that ZNF554 regulates trophoblast invasion during placentation and its decreased expression leads to the early pathogenesis of preeclampsia. Since ZNF proteins are immensely implicated in the development of several tumors including malignant tumors of the brain, here we explored the pathological role of ZNF554 in gliomas. We examined the expression of ZNF554 at mRNA and protein levels in normal brain and gliomas, and then we searched for genome-wide transcriptomic changes in U87 glioblastoma cells transiently overexpressing ZNF554. Immunohistochemistry of brain tissues in our cohort (n = 62) and analysis of large TCGA RNA-Seq data (n = 687) of control, oligodendroglioma, and astrocytoma tissues both revealed decreased expression of ZNF554 towards higher glioma grades. Furthermore, low ZNF554 expression was associated with shorter survival of grade III and IV astrocytoma patients. Overexpression of ZNF554 in U87 cells resulted in differential expression, mostly downregulation of 899 genes. The "PI3K-Akt signaling pathway", known to be activated during glioma development, was the most impacted among 116 dysregulated pathways. Most affected pathways were cancer-related and/or immune-related. Congruently, cell proliferation was decreased and cell cycle was arrested in ZNF554-transfected glioma cells. These data collectively suggest that ZNF554 is a potential tumor suppressor and its decreased expression may lead to the loss of oncogene suppression, activation of tumor pathways, and shorter survival of patients with malignant glioma.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Lilla Reiniger
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
| | - Szabolcs Hetey
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Peter Kiraly
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Eszter Toth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Katalin Karaszi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
| | - Kata Juhasz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Zsolt Gelencser
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Agnes Zvara
- Laboratory of Functional Genomics, Department of Genetics, Biological Research Centre, H-6726 Szeged, Hungary; (A.Z.); (L.G.P.)
| | - Andras Szilagyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
| | - Laszlo G. Puskas
- Laboratory of Functional Genomics, Department of Genetics, Biological Research Centre, H-6726 Szeged, Hungary; (A.Z.); (L.G.P.)
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, H-1117 Budapest, Hungary;
| | - Zoltan Papp
- Maternity Private Clinic, H-1126 Budapest, Hungary;
- Department of Obstetrics and Gynecology, Semmelweis University, H-1088 Budapest, Hungary
| | - Ilona Kovalszky
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
| | - Csaba Juhasz
- Department of Pediatrics, Neurology, Neurosurgery, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Barbara Ann Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, H-1117 Budapest, Hungary; (A.B.); (S.H.); (P.K.); (E.T.); (K.K.); (K.J.); (Z.G.); (A.S.)
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (L.R.); (I.K.)
- Maternity Private Clinic, H-1126 Budapest, Hungary;
| |
Collapse
|