1
|
de Souza Ferreira LP, da Silva RA, Borges PP, Xavier LF, Scharf P, Sandri S, Oliani SM, Farsky SHP, Gil CD. Annexin A1 in neurological disorders: Neuroprotection and glial modulation. Pharmacol Ther 2025; 267:108809. [PMID: 39900227 DOI: 10.1016/j.pharmthera.2025.108809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/20/2024] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Neurological disorders, such as neurodegenerative and neuroinflammatory diseases, have contributed significantly to global disability, even considering the rising life years expectations. Therefore, prevention, early diagnosis, and therapeutic alternatives have been essential to avoid the future collapse of health public systems. Annexin A1 (ANXA1), a Ca2 + -dependent protein, is a promising therapeutic candidate for neurological disorders. ANXA1, found in neurons and glia, displays roles in physiological and pathological processes. Despite ANXA1 undoubtedly maintains the blood-brain barrier (BBB) integrity, this review will focus on ANXA1 roles in neurons and glial cells. In neurons, the cytoplasmic expression of ANXA1 is associated with apoptosis, while its nuclear translocation is linked to ischemic neuronal death. Interactions with S100A11, the Tat-NTS peptide, and other molecules, modulate this translocation, suggesting potential therapeutic interventions. ANXA1 expressed on microglia modulates inflammation and efferocytosis. Post-translational modifications, such as SUMOylation, guide the role of ANXA1 in microglia polarization and neuroprotection. In addition, ANXA1 in astrocytes responds to inflammatory stimuli by influencing cytokine release. A comprehensive understanding of the intricate mechanisms of ANXA1 in neurons and glial cells reveals promising therapeutic strategies to alleviate neuronal damage in neurological diseases.
Collapse
Affiliation(s)
- Luiz Philipe de Souza Ferreira
- Structural and Functional Biology Graduate Program, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| | - Rafael André da Silva
- Biosciences Graduate Program, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brazil
| | - Pâmela Pacassa Borges
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luana Filippi Xavier
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pablo Scharf
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sonia M Oliani
- Structural and Functional Biology Graduate Program, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Biosciences Graduate Program, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brazil
| | - Sandra H P Farsky
- Department of Clinical and Toxicological Analyses, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cristiane D Gil
- Structural and Functional Biology Graduate Program, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Biosciences Graduate Program, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, Universidade Estadual Paulista (UNESP), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
2
|
Tang C, Lan R, Ma DR, Zhao M, Zhang Y, Li HY, Liu S, Li BY, Yang JL, Yang HJ, Zhang ZQ. Annexin A1: The dawn of ischemic stroke (Review). Mol Med Rep 2025; 31:62. [PMID: 39749707 PMCID: PMC11726294 DOI: 10.3892/mmr.2024.13427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
Ischemic stroke is a prevalent clinical condition that poses a significant global challenge. Developing innovative strategies to address this issue is crucial. Annexin A1 (ANXA1), a key member of the annexin superfamily, performs various functions, such as inhibiting inflammatory factor release, promoting phagocytosis, and blocking leukocyte migration. Evidence indicates that ANXA1 plays a pivotal role in the pathogenesis of ischemic stroke. The present article reviews involvement of ANXA1 in anti‑atherosclerosis, inflammatory processes, blood‑brain barrier protection, platelet aggregation and anti‑apoptotic mechanisms. The potential applications of ANXA1 in treating ischemic stroke are also explored.
Collapse
Affiliation(s)
- Chen Tang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Rui Lan
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Dong-Rui Ma
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Min Zhao
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
- Collaborative Innovation Center of Prevention and Treatment of Major Diseases by Chinese and Western Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Yong Zhang
- Department of Traditional Chinese Medicine, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Hong-Yu Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Shuang Liu
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Bo-Yang Li
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Jie-Li Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Hui-Jie Yang
- Department of Encephalopathy, The First Affiliated Hospital of Henan University of Chinese Medicine, The First Clinical Medical College of The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| | - Zhen-Qiang Zhang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
3
|
Bae M, Ngo H, Kang YJ, Lee SJ, Park W, Jo Y, Choi YM, Kim JJ, Yi HG, Kim HS, Jang J, Cho DW, Cho H. Laminin-Augmented Decellularized Extracellular Matrix Ameliorating Neural Differentiation and Neuroinflammation in Human Mini-Brains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308815. [PMID: 38161254 DOI: 10.1002/smll.202308815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Non-neural extracellular matrix (ECM) has limited application in humanized physiological neural modeling due to insufficient brain-specificity and safety concerns. Although brain-derived ECM contains enriched neural components, certain essential components are partially lost during the decellularization process, necessitating augmentation. Here, it is demonstrated that the laminin-augmented porcine brain-decellularized ECM (P-BdECM) is xenogeneic factor-depleted as well as favorable for the regulation of human neurons, astrocytes, and microglia. P-BdECM composition is comparable to human BdECM regarding brain-specificity through the matrisome and gene ontology-biological process analysis. As augmenting strategy, laminin 111 supplement promotes neural function by synergic effect with laminin 521 in P-BdECM. Annexin A1(ANXA1) and Peroxiredoxin(PRDX) in P-BdECM stabilized microglial and astrocytic behavior under normal while promoting active neuroinflammation in response to neuropathological factors. Further, supplementation of the brain-specific molecule to non-neural matrix also ameliorated glial cell inflammation as in P-BdECM. In conclusion, P-BdECM-augmentation strategy can be used to recapitulate humanized pathophysiological cerebral environments for neurological study.
Collapse
Affiliation(s)
- Mihyeon Bae
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Huyen Ngo
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - You Jung Kang
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| | - Su-Jin Lee
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, 61469, South Korea
| | - Wonbin Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Yeonggwon Jo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Yoo-Mi Choi
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Joeng Ju Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Hyung-Seok Kim
- Department of Forensic medicine, Chonnam National University Medical School & Research Institute of Medical Sciences, Gwangju, 61469, South Korea
| | - Jinah Jang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk, 37673, South Korea
| | - Hansang Cho
- Department of Biophysics, Institute of Quantum Biophysics, Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi, 16419, South Korea
| |
Collapse
|
4
|
Wang A, Zhang H, Li X, Zhao Y. Annexin A1 in the nervous and ocular systems. Neural Regen Res 2024; 19:591-597. [PMID: 37721289 PMCID: PMC10581565 DOI: 10.4103/1673-5374.380882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/06/2023] [Accepted: 06/02/2023] [Indexed: 09/19/2023] Open
Abstract
The therapeutic potential of Annexin A1, an important member of the Annexin superfamily, has become evident in results of experiments with multiple human systems and animal models. The anti-inflammatory and pro-resolving effects of Annexin A1 are characteristic of pathologies involving the nervous system. In this review, we initially describe the expression sites of Annexin A1, then outline the mechanisms by which Annexin A1 maintains the neurological homeostasis through either formyl peptide receptor 2 or other molecular approaches; and, finally, we discuss the neuroregenerative potential qualities of Annexin A1. The eye and the nervous system are anatomically and functionally connected, but the association between visual system pathogenesis, especially in the retina, and Annexin A1 alterations has not been well summarized. Therefore, we explain the beneficial effects of Annexin A1 for ocular diseases, especially for retinal diseases and glaucoma on the basis of published findings, and we explore present and future delivery strategies for Annexin A1 to the retina.
Collapse
Affiliation(s)
- Aijia Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Xing Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Wickstead ES, Solito E, McArthur S. Promiscuous Receptors and Neuroinflammation: The Formyl Peptide Class. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122009. [PMID: 36556373 PMCID: PMC9786789 DOI: 10.3390/life12122009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022]
Abstract
Formyl peptide receptors, abbreviated as FPRs in humans, are G-protein coupled receptors (GPCRs) mainly found in mammalian leukocytes. However, they are also expressed in cell types crucial for homeostatic brain regulation, including microglia and blood-brain barrier endothelial cells. Thus, the roles of these immune-associated receptors are extensive, from governing cellular adhesion and directed migration through chemotaxis, to granule release and superoxide formation, to phagocytosis and efferocytosis. In this review, we will describe the similarities and differences between the two principal pro-inflammatory and anti-inflammatory FPRs, FPR1 and FPR2, and the evidence for their importance in the development of neuroinflammatory disease, alongside their potential as therapeutic targets.
Collapse
Affiliation(s)
- Edward S. Wickstead
- Department of Neurology, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (E.S.W.); (S.M.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, 80131 Naples, Italy
| | - Simon McArthur
- Institute of Dentistry, Faculty of Medicine & Dentistry, Queen Mary University of London, Blizard Institute, 4, Newark Street, London E1 2AT, UK
- Correspondence: (E.S.W.); (S.M.)
| |
Collapse
|
6
|
Shishkina GT, Gulyaeva NV, Lanshakov DA, Kalinina TS, Onufriev MV, Moiseeva YV, Sukhareva EV, Babenko VN, Dygalo NN. Identifying the Involvement of Pro-Inflammatory Signal in Hippocampal Gene Expression Changes after Experimental Ischemia: Transcriptome-Wide Analysis. Biomedicines 2021; 9:1840. [PMID: 34944656 PMCID: PMC8698395 DOI: 10.3390/biomedicines9121840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/26/2022] Open
Abstract
Acute cerebral ischemia induces distant inflammation in the hippocampus; however, molecular mechanisms of this phenomenon remain obscure. Here, hippocampal gene expression profiles were compared in two experimental paradigms in rats: middle cerebral artery occlusion (MCAO) and intracerebral administration of lipopolysaccharide (LPS). The main finding is that 10 genes (Clec5a, CD14, Fgr, Hck, Anxa1, Lgals3, Irf1, Lbp, Ptx3, Serping1) may represent key molecular links underlying acute activation of immune cells in the hippocampus in response to experimental ischemia. Functional annotation clustering revealed that these genes built the same clusters related to innate immunity/immunity/innate immune response in all MCAO differentially expressed genes and responded to the direct pro-inflammatory stimulus group. The gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses also indicate that LPS-responding genes were the most abundant among the genes related to "positive regulation of tumor necrosis factor biosynthetic process", "cell adhesion", "TNF signaling pathway", and "phagosome" as compared with non-responding ones. In contrast, positive and negative "regulation of cell proliferation" and "HIF-1 signaling pathway" mostly enriched with genes that did not respond to LPS. These results contribute to understanding genomic mechanisms of the impact of immune/inflammatory activation on expression of hippocampal genes after focal brain ischemia.
Collapse
Affiliation(s)
- Galina T. Shishkina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Natalia V. Gulyaeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Dmitriy A. Lanshakov
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Tatyana S. Kalinina
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Mikhail V. Onufriev
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, 115419 Moscow, Russia
| | - Yulia V. Moiseeva
- Laboratory of Functional Biochemistry of the Nervous System, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia; (N.V.G.); (M.V.O.); (Y.V.M.)
| | - Ekaterina V. Sukhareva
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Vladimir N. Babenko
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| | - Nikolay N. Dygalo
- Laboratory of Functional Neurogenomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (D.A.L.); (T.S.K.); (E.V.S.); (V.N.B.); (N.N.D.)
| |
Collapse
|
7
|
Xu X, Gao W, Li L, Hao J, Yang B, Wang T, Li L, Bai X, Li F, Ren H, Zhang M, Zhang L, Wang J, Wang D, Zhang J, Jiao L. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflammation 2021; 18:119. [PMID: 34022892 PMCID: PMC8140477 DOI: 10.1186/s12974-021-02174-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral ischemia–reperfusion (I/R) injury is a major cause of early complications and unfavorable outcomes after endovascular thrombectomy (EVT) therapy in patients with acute ischemic stroke (AIS). Recent studies indicate that modulating microglia/macrophage polarization and subsequent inflammatory response may be a potential adjunct therapy to recanalization. Annexin A1 (ANXA1) exerts potent anti-inflammatory and pro-resolving properties in models of cerebral I/R injury. However, whether ANXA1 modulates post-I/R-induced microglia/macrophage polarization has not yet been fully elucidated. Methods We retrospectively collected blood samples from AIS patients who underwent successful recanalization by EVT and analyzed ANXA1 levels longitudinally before and after EVT and correlation between ANXA1 levels and 3-month clinical outcomes. We also established a C57BL/6J mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) and an in vitro model of oxygen–glucose deprivation and reoxygenation (OGD/R) in BV2 microglia and HT22 neurons to explore the role of Ac2-26, a pharmacophore N-terminal peptide of ANXA1, in regulating the I/R-induced microglia/macrophage activation and polarization. Results The baseline levels of ANXA1 pre-EVT were significantly lower in 23 AIS patients, as compared with those of healthy controls. They were significantly increased to the levels found in controls 2–3 days post-EVT. The increased post-EVT levels of ANXA1 were positively correlated with 3-month clinical outcomes. In the mouse model, we then found that Ac2-26 administered at the start of reperfusion shifted microglia/macrophage polarization toward anti-inflammatory M2-phenotype in ischemic penumbra, thus alleviating blood–brain barrier leakage and neuronal apoptosis and improving outcomes at 3 days post-tMCAO/R. The protection was abrogated when mice received Ac2-26 together with WRW4, which is a specific antagonist of formyl peptide receptor type 2/lipoxin A4 receptor (FPR2/ALX). Furthermore, the interaction between Ac2-26 and FPR2/ALX receptor activated the 5’ adenosine monophosphate-activated protein kinase (AMPK) and inhibited the downstream mammalian target of rapamycin (mTOR). These in vivo findings were validated through in vitro experiments. Conclusions Ac2-26 modulates microglial/macrophage polarization and alleviates subsequent cerebral inflammation by regulating the FPR2/ALX-dependent AMPK-mTOR pathway. It may be investigated as an adjunct strategy for clinical prevention and treatment of cerebral I/R injury after recanalization. Plasma ANXA1 may be a potential biomarker for outcomes of AIS patients receiving EVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02174-3.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China.
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, 300350, China.
| | - Lei Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Fanjian Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Honglei Ren
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Dong Wang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jianning Zhang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China. .,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
8
|
|
9
|
Dukay B, Walter FR, Vigh JP, Barabási B, Hajdu P, Balassa T, Migh E, Kincses A, Hoyk Z, Szögi T, Borbély E, Csoboz B, Horváth P, Fülöp L, Penke B, Vígh L, Deli MA, Sántha M, Tóth ME. Neuroinflammatory processes are augmented in mice overexpressing human heat-shock protein B1 following ethanol-induced brain injury. J Neuroinflammation 2021; 18:22. [PMID: 33423680 PMCID: PMC7798334 DOI: 10.1186/s12974-020-02070-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022] Open
Abstract
Background Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury. Methods In this study, we used a transgenic mouse strain overexpressing the human HSPB1 protein. In the in vivo experiments, 7-day-old transgenic and wild-type mice were treated with ethanol. Apoptotic cells were detected using TUNEL assay. The mRNA and protein levels of cytokines and glial cell markers were examined using RT-PCR and immunohistochemistry in the brain. We also established primary neuronal, astrocyte, and microglial cultures which were subjected to cytokine and ethanol treatments. TNFα and hHSPB1 levels were measured from the supernates by ELISA, and intracellular hHSPB1 expression was analyzed using fluorescent immunohistochemistry. Results Following ethanol treatment, the brains of hHSPB1-overexpressing mice showed a significantly higher mRNA level of pro-inflammatory cytokines (Tnf, Il1b), microglia (Cd68, Arg1), and astrocyte (Gfap) markers compared to wild-type brains. Microglial activation, and 1 week later, reactive astrogliosis was higher in certain brain areas of ethanol-treated transgenic mice compared to those of wild-types. Despite the remarkably high expression of pro-apoptotic Tnf, hHSPB1-overexpressing mice did not exhibit higher level of apoptosis. Our data suggest that intracellular hHSPB1, showing the highest level in primary astrocytes, was responsible for the inflammation-regulating effects. Microglia cells were the main source of TNFα in our model. Microglia isolated from hHSPB1-overexpressing mice showed a significantly higher release of TNFα compared to wild-type cells under inflammatory conditions. Conclusions Our work provides novel in vivo evidence that hHSPB1 overexpression has a regulating effect on acute neuroinflammation by intensifying the expression of pro-inflammatory cytokines and enhancing glial cell activation, but not increasing neuronal apoptosis. These results suggest that hHSPB1 may play a complex role in the modulation of the ethanol-induced neuroinflammatory response. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02070-2.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary. .,Doctoral School in Biology, University of Szeged, Szeged, Hungary.
| | - Fruzsina R Walter
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Judit P Vigh
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Beáta Barabási
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Doctoral School in Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Petra Hajdu
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Tamás Balassa
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Doctoral School of Informatics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ede Migh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - András Kincses
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Zsófia Hoyk
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Titanilla Szögi
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Emőke Borbély
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute of Medical Biology, University of Tromsø, Tromsø, Norway
| | - Péter Horváth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Lívia Fülöp
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Botond Penke
- Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Mária A Deli
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Miklós Sántha
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Temesvári krt. 62, Szeged, H-6726, Hungary.
| |
Collapse
|
10
|
Tice C, McDevitt J, Langford D. Astrocytes, HIV and the Glymphatic System: A Disease of Disrupted Waste Management? Front Cell Infect Microbiol 2020; 10:523379. [PMID: 33134185 PMCID: PMC7550659 DOI: 10.3389/fcimb.2020.523379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
The discovery of the glial-lymphatic or glymphatic fluid clearance pathway in the rodent brain led researchers to search for a parallel system in humans and to question the implications of this pathway in neurodegenerative diseases. Magnetic resonance imaging studies revealed that several features of the glymphatic system may be present in humans. In both rodents and humans, this pathway promotes the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF) through the arterial perivascular spaces into the brain parenchyma. This process is facilitated in part by aquaporin-4 (AQP4) water channels located primarily on astrocytic end feet that abut cerebral endothelial cells of the blood brain barrier. Decreased expression or mislocalization of AQP4 from astrocytic end feet results in decreased interstitial flow, thereby, promoting accumulation of extracellular waste products like hyperphosphorylated Tau (pTau). Accumulation of pTau is a neuropathological hallmark in Alzheimer's disease (AD) and is accompanied by mislocalization of APQ4 from astrocyte end feet to the cell body. HIV infection shares many neuropathological characteristics with AD. Similar to AD, HIV infection of the CNS contributes to abnormal aging with altered AQP4 localization, accumulation of pTau and chronic neuroinflammation. Up to 30% of people with HIV (PWH) suffer from HIV-associated neurocognitive disorders (HAND), and changes in AQP4 may be clinically important as a contributor to cognitive disturbances. In this review, we provide an overview and discussion of the potential contributions of NeuroHIV to glymphatic system functions by focusing on astrocytes and AQP4. Although HAND encompasses a wide range of neurocognitive impairments and levels of neuroinflammation vary among and within PWH, the potential contribution of disruption in AQP4 may be clinically important in some cases. In this review we discuss implications for possible AQP4 disruption on NeuroHIV disease trajectory and how HIV may influence AQP4 function.
Collapse
Affiliation(s)
- Caitlin Tice
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Jane McDevitt
- Department of Kinesiology, College of Public Health at Temple University, Philadelphia, PA, United States
| | - Dianne Langford
- Department of Neuroscience, Lewis Katz School of Medicine, Philadelphia, PA, United States
| |
Collapse
|