1
|
Makhdoomi S, Ariafar S, Mirzaei F, Mohammadi M. Silibinin-loaded Nanostructured Lipid Carriers (NLCs) Ameliorated Lead-induced Acute Nephrotoxicity in Male Rats. Cell Biochem Biophys 2024; 82:3619-3628. [PMID: 39107467 DOI: 10.1007/s12013-024-01451-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
As a toxic heavy metal, lead (Pb) is well known for impairment of renal function due to oxidative injuries. In contrast, the antioxidant activity of silibinin has been approved. Given the role of silibinin antioxidant activity, the present study investigated the effectiveness of silibinin-loaded nanostructured lipid carriers (Sili-NLCs) against Pb-induced acute nephrotoxicity in rats. The emulsification-solvent evaporation method was applied to prepare Sili-NLCs. Sixty male Wistar rats were divided into ten separate groups. Pb (20 mg/kg/day, i.p.) was applied to induce nephrotoxicity and in the treatment groups animals received the same concentration of silibinin and Sili-NLCs (25, 50, and 100 mg/kg/day, p.o.) for five days. After sacrificing rats, kidney tissue samples were collected to assess the oxidative stress parameters, including lipid peroxidation (LPO), nitric oxide (NO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activity. Also, histopathological examination using Hematoxylin-Eosin (H&E) was studied. Not only did Pb injection significantly increase the renal levels of LPO and NO, but also decreased the levels of antioxidant enzyme activity. On the other hand, Sili-NLCs were more effective than silibinin in decreasing renal oxidative damage by increasing the antioxidant defense system. Moreover, the histopathological examination correlated well with biochemical findings. Our data suggested that Sili-NLCs are potentially superior to pure silibinin for attenuating Pb-induced acute nephrotoxicity.
Collapse
Affiliation(s)
- Sajjad Makhdoomi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Ariafar
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Mirzaei
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mojdeh Mohammadi
- Department of Pharmacology & Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
2
|
Mohammadi S, Ashtary-Larky D, Asbaghi O, Farrokhi V, Jadidi Y, Mofidi F, Mohammadian M, Afrisham R. Effects of silymarin supplementation on liver and kidney functions: A systematic review and dose-response meta-analysis. Phytother Res 2024; 38:2572-2593. [PMID: 38475999 DOI: 10.1002/ptr.8173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/12/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024]
Abstract
It is suggested that supplementation with silymarin (SIL) has beneficial impacts on kidney and liver functions. This systematic review and dose-response meta-analysis assessed the impact of SIL administration on certain hepatic, renal, and oxidative stress markers. A systematic search was conducted in various databases to identify relevant trials published until January 2023. Randomized controlled trials (RCTs) that evaluated the effects of SIL on kidney and liver markers were included. A random-effects model was used for the analysis and 41 RCTs were included. The pooled results indicated that SIL supplementation led to a significant reduction in serum levels of alkaline phosphatase, alanine transaminase, creatinine, and aspartate aminotransferase, along with a substantial elevation in serum glutathione in the SIL-treated group compared to their untreated counterparts. In addition, there was a nonsignificant decrease in serum levels of gamma-glutamyl transferase, malondialdehyde (MDA), total bilirubin, albumin (Alb), total antioxidant capacity, and blood urea nitrogen. Sub-group analyses revealed a considerable decline in MDA and Alb serum values among SIL-treated participants with liver disease in trials with a longer duration (≥12 weeks). These findings suggest that SIL may ameliorate certain liver markers with potential hepatoprotective effects, specifically with long-term and high-dose supplementation. However, its nephroprotective effects and impact on oxidative stress markers were not observed. Additional high-quality RCTs with longer durations are required to determine the clinical efficacy of SIL supplementation on renal and oxidative stress markers.
Collapse
Affiliation(s)
- Shooka Mohammadi
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Damoon Ashtary-Larky
- Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Omid Asbaghi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Jadidi
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mofidi
- Department of Clinical Nutrition and Dietetics, National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Mohammadian
- Department of Exercise Physiology, Islamic Azad University of Ahvaz, Ahvaz, Iran
| | - Reza Afrisham
- Department of Clinical Laboratory Sciences, Faculty of Allied Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Khawaja G, El-Orfali Y. Silibinin's Effects against Methotrexate-Induced Hepatotoxicity in Adjuvant-Induced Arthritis Rat Model. Pharmaceuticals (Basel) 2024; 17:431. [PMID: 38675395 PMCID: PMC11054686 DOI: 10.3390/ph17040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 04/28/2024] Open
Abstract
Methotrexate (MTX) is the first drug of choice to treat several diseases, including rheumatoid arthritis. However, its administration is accompanied by severe side effects, most commonly hepatotoxicity. Hence, alternative therapies with a lower toxicity and fewer side effects are needed. This study aimed to investigate the antioxidant and hepatoprotective effects of silibinin (SIL, natural agent) against MTX-induced hepatotoxicity in an adjuvant-induced arthritis (AIA) rat model. Arthritic rats were treated with SIL (100 mg/kg) and/or methotrexate (2 mg/kg). Non-arthritic rats, arthritic untreated rats, and arthritic rats who received the vehicle were followed in parallel. SIL alleviated the systemic consequences of arthritis by restoring lost weight, decreasing the erythrocyte sedimentation rate, and ameliorating joint damage, which was evident both micro- and macroscopically. Additionally, SIL prevented the histopathological alterations in the liver and significantly reduced the liver damage caused by MTX and AIA, as shown by a decrease in the markers of liver damage (ALT and AST). Furthermore, SIL relieved the oxidative stress induced by AIA and MTX in liver tissue by decreasing the lipid peroxidation (MDA) levels and enhancing the antioxidant defense system (GSH levels; catalase and superoxide dismutase (SOD) activities). In conclusion, our results suggest that SIL is a potent antioxidant and hepatoprotective agent in arthritic rats. It markedly attenuated the progression and severity of the arthritic disease and eased the oxidative stress in liver tissue by improving the pro-oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Ghada Khawaja
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
| | - Youmna El-Orfali
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut 11-5020, Lebanon;
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
4
|
Salimi-Sabour E, Tahri RA, Asgari A, Ghorbani M. The novel hepatoprotective effects of silibinin-loaded nanostructured lipid carriers against diazinon-induced liver injuries in male mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105643. [PMID: 38072518 DOI: 10.1016/j.pestbp.2023.105643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/20/2023] [Accepted: 10/09/2023] [Indexed: 12/18/2023]
Abstract
In the current study, silibinin-loaded nanostructured lipid carriers (Sili-NLCs) was synthesized, and the hepatoprotective effectiveness of Sili-NLCs against diazinon (DZN)-induced liver damage in male mice was evaluated. The emulsification-solvent evaporation technique was applied to prepare Sili-NLCs, and characterized by using particle size, zeta potential, entrapment efficacy (EE %), in vitro drug release behavior, and stability studies. In vivo, studies were done on male mice. Hepatotoxicity in male mice were induced by DZN (10 mg/kg/day, i.p.). Four groups treated with silibinin and Sili-NLCs with the same doses (100 and 200 mg/kg, p.o.). On 31th days, serum and liver tissue samples were collected. Alanine (ALT) and aspartate (AST) aminotransferase levels, oxidative stress biomarkers, inflammatory cytokines, and histopathological alterations were assessed. The Sili-NLCs particle size, zeta potential, polydispersity index (PDI), and EE % were obtained at 220.8 ± 0.86 nm, -18.7 ± 0.28 mV, 0.118 ± 0.03, and 71.83 ± 0.15%, respectively. The in vivo studies revealed that DZN significantly increased the serum levels of AST, ALT, hepatic levels of lipid peroxidation (LPO), and tumor necrosis factor-α (TNF-α), while decreased the antioxidant defense system in the mice's liver. However, Sili-NLCs was more effective than silibinin to return the aforementioned ratio toward the normal situation, and these results were well correlated with histopathological findings. Improvement of silibinin protective efficacy and oral bioavailability by using NLCs caused to Sili-NLCs can be superior to free silibinin in ameliorating DZN-induced hepatotoxicity in male mice.
Collapse
Affiliation(s)
- Ebrahim Salimi-Sabour
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ramazan-Ali Tahri
- Nanobiotechnology Research Centre, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Amirhossein Asgari
- Department of Pharmacognosy and Traditional Pharmacy, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Maryam Ghorbani
- Department of pharmacology and Toxicology, Faculty of Pharmacy, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Kadoglou NPE, Panayiotou C, Vardas M, Balaskas N, Kostomitsopoulos NG, Tsaroucha AK, Valsami G. A Comprehensive Review of the Cardiovascular Protective Properties of Silibinin/Silymarin: A New Kid on the Block. Pharmaceuticals (Basel) 2022; 15:538. [PMID: 35631363 PMCID: PMC9145573 DOI: 10.3390/ph15050538] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
Silibinin/silymarin has been used in herbal medicine for thousands of years and it is well-known for its hepato-protective properties. The present comprehensive literature review aimed to critically summarize the pharmacological properties of silymarin extract and its main ingredient silibinin in relation to classical cardiovascular risk factors (e.g., diabetes mellitus, etc.). We also assessed their potential protective and/or therapeutic application in cardiovascular diseases (CVDs), based on experimental and clinical studies. Pre-clinical studies including in vitro tests or animal models have predominantly implicated the following effects of silymarin and its constituents: (1) antioxidant, (2) hypolipidemic, (3) hypoglycemic, (4) anti-hypertensive and (5) cardioprotective. On the other hand, a direct amelioration of atherosclerosis and endothelial dysfunction after silymarin administration seems weak based on scarce data. In clinical trials, the most important findings are improved (1) glycemic and (2) lipid profiles in patients with type 2 diabetes mellitus and/or hyperlipidemia, while (3) the anti-hypertensive effects of silibinin/silymarin seem very modest. Finally, the changes in clinical endpoints are not robust enough to draw a firm conclusion. There are significant limitations in clinical trial design, including the great variety in doses and cohorts, the underlying conditions, the small sample sizes, the short duration and the absence of pharmacokinetic/pharmacodynamic tests prior to study commitment. More data from well-designed and high-quality pre-clinical and clinical studies are required to firmly establish the clinical efficacy of silibinin/silymarin and its possible therapeutic application in cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Michail Vardas
- Medical School, University of Cyprus, Nicosia 2109, Cyprus; (C.P.); (M.V.); (N.B.)
| | - Nikolaos Balaskas
- Medical School, University of Cyprus, Nicosia 2109, Cyprus; (C.P.); (M.V.); (N.B.)
| | - Nikolaos G. Kostomitsopoulos
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
| | - Alexandra K. Tsaroucha
- Laboratory of Experimental Surgery and Surgical Research, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
- Laboratory of Bioethics, Faculty of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia Valsami
- Laboratory of Biopharmaceutics-Pharmacokinetics, Department of Pharmacy, School of Health Sciences, National & Kapodistrian University of Athens, 15784 Athens, Greece;
| |
Collapse
|