1
|
Chuang YT, Yen CY, Liu W, Chien TM, Chang FR, Tsai YH, Tang JY, Chang HW. The protection of bisphenol A-modulated miRNAs and targets by natural products. ENVIRONMENT INTERNATIONAL 2025; 196:109299. [PMID: 39884249 DOI: 10.1016/j.envint.2025.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Bisphenol A (BPA) is a ubiquitous environmental pollutant with endocrine-disrupting functions. Identifying protective drugs and exploring the mechanisms against BPA are crucial in healthcare. Natural products exhibiting antioxidant properties are considered to be able to protect against BPA toxicity. Although BPA-modulated targets and miRNAs have been individually reported, their connections to natural products were rarely organized. With the help of a protein-protein interaction database (STRING), the relationship between individual BPA-modulated targets was interconnected to provide a systemic view. In this review, BPA-downregulated and -upregulated targets are classified, and their interactive network was innovatively analyzed using the bioinformatic database (STRING). BPA-modulated miRNAs were also retrieved and ingeniously connected to BPA-modulated targets. Moreover, a novel connection between BPA-countering natural products was integrated into BPA-modulated miRNAs and targets. All these targets-associated natural products and/or miRNAs were incorporated into the STRING network, providing systemic relationships. Overall, the BPA-modulated target-miRNA-protecting natural product axis was innovatively constructed, providing a straightforward direction for exploring the integrated BPA-countering effects and mechanisms of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan.
| | - Wangta Liu
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung 907101, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan.
| |
Collapse
|
2
|
Begh MZA, Khan J, Al Amin M, Sweilam SH, Dharmamoorthy G, Gupta JK, Sangeetha J, Lokeshvar R, Nafady MH, Ahmad I, Alshehri MA, Emran TB. Monoterpenoid synergy: a new frontier in biological applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:103-124. [PMID: 39105799 DOI: 10.1007/s00210-024-03342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Monoterpenoids, compounds found in various organisms, have diverse applications in various industries. Their effectiveness is influenced by the oil's chemical composition, which in turn is influenced by plant genotype, environmental conditions, cultivation practices, and plant development stage. They are used in various industries due to their distinctive odor and taste, serving as ingredients, additives, insecticides, and repellents. These compounds have synergistic properties, resulting in superior combined effects over discrete ones, potentially beneficial for various health purposes. Many experimental studies have investigated their interactions with other ingredients and their antibacterial, insecticidal, antifungal, anticancer, anti-inflammatory, and antioxidant properties. This review discusses potential synergistic interactions between monoterpenoids and other compounds, their sources, and biological functions. It also emphasizes the urgent need for more research on their bioavailability and toxicity, underlining the importance and relevance of this comprehensive study in the current scientific landscape.
Collapse
Affiliation(s)
- Md Zamshed Alam Begh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| | - Jishan Khan
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, 4318, Bangladesh
| | - Md Al Amin
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - G Dharmamoorthy
- Department of Pharmaceutical Analysis, MB School of Pharmaceutical Sciences, Mohan Babu University (Erstwhile Sree Vidyaniketan College of Pharmacy), Tirupati, India
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - J Sangeetha
- Department of Pharmacognosy, Malla Reddy Institute of Pharmaceutical Sciences, Maisammaguda, Dhulapally, 500100, India
| | - R Lokeshvar
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, India
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
3
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
4
|
Han B, Chen J, Chen S, Shen X, Hou L, Fang J, Lian M. PPARG and the PTEN-PI3K/AKT Signaling Axis May Cofunction in Promoting Chemosensitivity in Hypopharyngeal Squamous Cell Carcinoma. PPAR Res 2024; 2024:2271214. [PMID: 38505269 PMCID: PMC10948231 DOI: 10.1155/2024/2271214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/21/2024] Open
Abstract
It has been demonstrated that PPARG may interact with the PTEN-PI3K/AKT pathway, contributing to its involvement in the chemotherapy treatment of hypopharyngeal squamous cell carcinoma (HSCC). However, the underlying mechanism remains largely unknown. In this study, gene expression profiles of 17 HSCC patients, comprising 8 chemotherapy-sensitive patients (CSP) and 9 chemotherapy-nonsensitive patients (CNSP), were collected and analyzed to investigate expression patterns, correlations, influencing factors of the PPARG-PTEN-PI3K/AKT pathway, and its role in regulating chemosensitivity. The results revealed significantly increased expression (p < 0.04) of AKT1, AKT2, AKT3, PIK3CA, PPARG, and PTEN in the CSP group compared to the CNSP group. Specifically, AKT2 exhibited significant overexpression in tumor tissue (p = 0.01), while AKT2, AKT3, PPARG, and PTEN displayed significant increases in normal tissue (p ≤ 0.04). Positive correlations (R ∈ [0.43, 0.71], p < 0.014) were observed between PIK3CA, AKT1, AKT2, AKT3, and PTEN, with AKT2, AKT3, and PTEN also showing significant correlations with PPARG (R ∈ [0.35, 0.47], p < 0.04). Age, gender, and disease stage had no influence on PPARG, PIK3CA, and PTEN expression, but they may affect AKT expressions. Pathway analysis revealed that PPARG may interact with the PTEN-PI3K/AKT signaling pathway, playing a crucial role in regulating chemosensitivity in the normal tissue microenvironment. Our results suggest that AKT1 and PIK3CA may be associated with chemosensitivity in HSCC tumor cells, while PPARG and PTEN might exhibit a correlation with a specific segment of the PI3K/AKT pathway, potentially influencing chemosensitivity in the normal tissue microenvironment of HSCC patients.
Collapse
Affiliation(s)
- Boxuan Han
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jiaming Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Shaoshi Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xixi Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
5
|
Yu H, Ning N, He F, Xu J, Zhao H, Duan S, Zhao Y. Targeted Delivery of Geraniol via Hyaluronic Acid-Conjugation Enhances Its Anti-Tumor Activity Against Prostate Cancer. Int J Nanomedicine 2024; 19:155-169. [PMID: 38204602 PMCID: PMC10778230 DOI: 10.2147/ijn.s444815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Background Targeted delivery systems have been developed to improve cancer treatment by reducing side effects and enhancing drug efficacy. Geraniol, a natural product, has demonstrated promising anti-cancer effects in various cancer types, including prostate cancer, which is the most commonly diagnosed cancer in men. Hyaluronic acid (HA), a natural carrier targeting CD44-positive prostate cancer cells, can be utilized in a targeted delivery system. Purpose This study investigated the efficacy of a conjugate of HA and geraniol linked via a disulfide bond linker (HA-SS-Geraniol) in prostate cancer. Materials and Methods The cytotoxicity of HA-SS-Geraniol was evaluated on human PC-3 prostate cancer cells. Flow cytometry was used to assess its effects on mitochondrial membrane potential, apoptosis, and cell cycle arrest. Additionally, proteomic analysis was conducted to explore the underlying mechanism of action induced by HA-SS-Geraniol treatment. A subcutaneous xenograft tumor model was established in nude mice to evaluate the toxicity and efficacy of HA-SS-Geraniol in vivo. Results The results demonstrated that HA-SS-Geraniol exhibited potent cytotoxicity against PC-3 prostate cancer cells by inducing mitochondrial membrane potential loss and apoptosis in vitro. The proteomic analysis further supported the hypothesis that HA-SS-Geraniol induces cell death through mitochondria-mediated apoptosis, as evidenced by differential protein expression. The in vivo mouse model confirmed the safety of HA-SS-Geraniol and its ability to inhibit tumor growth. Conclusion HA-SS-Geraniol holds promise as a biologically safe and potentially effective therapeutic agent for prostate cancer treatment. Its targeted delivery system utilizing HA as a carrier shows potential for improving the efficacy of geraniol in cancer therapy.
Collapse
Affiliation(s)
- Han Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| | - Na Ning
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
| | - Fujin He
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Jiao Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People’s Republic of China
| | - Han Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
- The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yunqi Zhao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| |
Collapse
|