1
|
Zhao Z, He X, Gan L, Xu D, Zhang T, Wang H, Cui Z, Zhang H, Liu B. Investigation of the effects and mechanism of Total Glycosides of paeony against Radiation-Induced brain injury through network Pharmacology, molecular docking and experimental Verification. Int Immunopharmacol 2025; 148:114178. [PMID: 39884083 DOI: 10.1016/j.intimp.2025.114178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Total glucosides of paeony (TGP), derived from the dried root of Paeonia, is a popular treatment for immune diseases. Radiation induced brain injury (RBI) is a common side effect of brain radiation therapy, but the efficacy of TGP in treating RBI remains uncertain. PURPOSE To evaluate the protective effects of TGP against RBI and elucidate its underlying mechanisms using pharmacological network analysis, molecular docking, and experimental validation. METHODS The potential targets of TGP and RBI were identified using network pharmacology. Overlapping targets were analyzed for KEGG pathway enrichment and gene ontology (GO) investigations. The therapeutic effectiveness of TGP and the precision of key target genes were assessed in the mouse model of RBI, alongside observations of behavioral changes and experimental techniques. RESULTS Network pharmacology identified 43 targets associated with RBI that intersect with TGP. Protein-Protein Interaction (PPI) analysis highlighted key targets, including EGFR, TNF, and IL-6. Experimental outcomes demonstrated that TGP can mitigate oxidative stress damage and inflammation while enhancing memoryand learning abilities in RBI mice. Additionally, TGP dramatically decreased the activation of astrocytes and microglia, as well as the expression of key targets like EGFR, TNF, and IL-6. CONCLUSION TGP effectively mitigates RBI by targeting key therapeutic targets such as EGFR, TNF, and IL-6.
Collapse
Affiliation(s)
- Zhongfang Zhao
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China
| | - Xiaohan He
- School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China
| | - Lu Gan
- Institute of Modern Physics, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100039,China; Bio-Medical Research Center, Lanzhou 730000, China
| | - Dan Xu
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; Institute of Modern Physics, Lanzhou 730000, China; Advanced Energy Science and Technology Guangdong Laboratory, Huizhou 516000, China
| | - Taofeng Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Hongyu Wang
- School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China
| | - Zhencun Cui
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; Second Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hong Zhang
- Institute of Modern Physics, Lanzhou 730000, China; Key Laboratory of Heavy Ion Radiation Medicine of Chinese Academy of Sciences, Lanzhou 73000, China; University of Chinese Academy of Sciences, Beijing 100039,China.
| | - Bin Liu
- School of Nuclear Science and Technology, Lanzhou University, Gansu Lanzhou 730000, China; School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China; Gansu Key Laboratory of Dental and Maxillofacial Reconstruction and Bio-intelligent Manufacturing, School of Stomatology, Lanzhou University, Gansu Lanzhou 730000, China.
| |
Collapse
|
2
|
Perez WD, Perez-Torres CJ. Neurocognitive and radiological changes after cranial radiation therapy in humans and rodents: a systematic review. Int J Radiat Biol 2023; 99:119-137. [PMID: 35511499 DOI: 10.1080/09553002.2022.2074167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Radiation-induced brain injury is a common long-term side effect for brain cancer survivors, leading to a reduced quality of life. Although there is growing research pertaining to this topic, the relationship between cognitive and radiologically detected lesions of radiation-induced brain injury in humans remains unclear. Furthermore, clinically translatable similarities between rodent models and human findings are also undefined. The objective of this review is to then identify the current evidence of radiation-induced brain injury in humans and to compare these findings to current rodent models of radiation-induced brain injury. METHODS This review includes an examination of the current literature on cognitive and radiological characteristics of radiation-induced brain injury in humans and rodents. A thorough search was conducted on PubMed, Web of Science, and Scopus to identify studies that performed cognitive assessments and magnetic resonance imaging techniques on either humans or rodents after cranial radiation therapy. A qualitative synthesis of the data is herein reported. RESULTS A total of 153 studies pertaining to cognitively or radiologically detected radiation injury of the brain are included in this systematic review; 106 studies provided data on humans while 47 studies provided data on rodents. Cognitive deficits in humans manifest across multiple domains after brain irradiation. Radiological evidence in humans highlight various neuroimaging-detectable changes post-irradiation. It is unclear, however, whether these findings reflect ground truth or research interests. Additionally, rodent models do not comprehensively reproduce characteristics of cognitive and radiological injury currently identified in humans. CONCLUSION This systematic review demonstrates that associations between and within cognitive and radiological radiation-induced brain injuries often rely on the type of assessment. Well-designed studies that evaluate the spectrum of potential injury are required for a precise understanding of not only the clinical significance of radiation-induced brain injury in humans, but also how to replicate injury development in pre-clinical models.
Collapse
Affiliation(s)
- Whitney D Perez
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Carlos J Perez-Torres
- School of Health Sciences, Purdue University, West Lafayette, IN, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, USA.,Academy of Integrated Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
3
|
Multiple Irradiation Affects Cellular and Extracellular Components of the Mouse Brain Tissue and Adhesion and Proliferation of Glioblastoma Cells in Experimental System In Vivo. Int J Mol Sci 2021; 22:ijms222413350. [PMID: 34948147 PMCID: PMC8703639 DOI: 10.3390/ijms222413350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Intensive adjuvant radiotherapy (RT) is a standard treatment for glioblastoma multiforme (GBM) patients; however, its effect on the normal brain tissue remains unclear. Here, we investigated the short-term effects of multiple irradiation on the cellular and extracellular glycosylated components of normal brain tissue and their functional significance. Triple irradiation (7 Gy*3 days) of C57Bl/6 mouse brain inhibited the viability, proliferation and biosynthetic activity of normal glial cells, resulting in a fast brain-zone-dependent deregulation of the expression of proteoglycans (PGs) (decorin, biglycan, versican, brevican and CD44). Complex time-point-specific (24–72 h) changes in decorin and brevican protein and chondroitin sulfate (CS) and heparan sulfate (HS) content suggested deterioration of the PGs glycosylation in irradiated brain tissue, while the transcriptional activity of HS-biosynthetic system remained unchanged. The primary glial cultures and organotypic slices from triple-irradiated brain tissue were more susceptible to GBM U87 cells’ adhesion and proliferation in co-culture systems in vitro and ex vivo. In summary, multiple irradiation affects glycosylated components of normal brain extracellular matrix (ECM) through inhibition of the functional activity of normal glial cells. The changed content and pattern of PGs and GAGs in irradiated brain tissues are accompanied by the increased adhesion and proliferation of GBM cells, suggesting a novel molecular mechanism of negative side-effects of anti-GBM radiotherapy.
Collapse
|