1
|
Miura K, Nishimura K, Suzuki M, Nakamura H. Boron neutron capture therapy with pteroyl-closo-dodecaborate-conjugated 4-(p-iodophenyl)butyric acid (PBC-IP) for a head and neck squamous cell carcinoma (SAS) model mice. Appl Radiat Isot 2025; 221:111837. [PMID: 40233423 DOI: 10.1016/j.apradiso.2025.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/16/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Boron neutron capture therapy (BNCT) is an attractive therapeutic approach for treating refractory cancers. Currently, 4-borono-L-phenylalanine (BPA) is the only boron carrier approved for BNCT, specifically for unresectable, locally advanced, or recurrent head and neck cancers in Japan. However, efficacy of BPA relies on the L-type amino acid transporter (LAT1), which is highly expressed in many cancers, limiting its broader application. In this study, we investigated the potential of a novel boron carrier, pteroyl-closo-dodecaborate-conjugated 4-(p-iodophenyl)butyric acid (PBC-IP), designed to the folate receptors (FRs), as an alternative for BNCT in head and neck cancers. PBC-IP was injected into human head and neck squamous cell carcinoma SAS xenograft mice to assess its biodistribution and therapeutic efficacy compared to BPA. Our results showed that PBC-IP achieved selective tumor accumulation, although the boron concentration in tumors was lower than that of BPA (5 μg [10B]/g vs. 15 μg [10B]/g, respectively). PBC-IP underwent significant hepatic metabolism. BNCT treatment with PBC-IP suppressed tumor growth in mice, whereas BPA showed superior efficacy, nearly eliminating tumors. Importantly, no significant toxicity was observed in either group. These findings suggest that while PBC-IP exhibits some potential for BNCT targeting FR-expressing tumors, BPA remains the more effective option for head and neck cancer.
Collapse
Affiliation(s)
- Kazuki Miura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan; School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan
| | - Kai Nishimura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan; School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
2
|
Zhang Y, Coghi P, Ren Z, Hosmane NS, Zhu Y. Comparison of Radionuclide Drug Conjugates With Boron Neutron Capture Therapy: An Overview of Targeted Charged Particle Radiation Therapy. Med Res Rev 2025; 45:867-886. [PMID: 39690514 DOI: 10.1002/med.22093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
Targeted charged alpha- and beta-particle therapies are currently being used in clinical radiation treatments as newly developed methods for either killing or controlling tumor cell growth. The alpha particles can be generated either through a nuclear decay reaction or in situ by a nuclear fission reaction such as the boron neutron capture reaction. Different strategies have been employed to improve the selectivity and delivery of radiation dose to tumor cells based on the source of the clinically used alpha particles. As a result, the side effects of the treatment can be minimized. The increasing attention and research efforts on targeted alpha-particle therapy have been fueled by exciting results of both academic research and clinical trials. It is highly anticipated that alpha-particle therapy will improve the efficacy of treating malignant tumors. In this overview, we compare radionuclide drug conjugates (RDC) with boron neutron capture therapy (BNCT) to present recent developments in targeted alpha-particle therapy.
Collapse
Affiliation(s)
| | - Paolo Coghi
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Zimo Ren
- Laboratory for Drug Discovery from Natural Resources & Industrialization, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois, USA
| | | |
Collapse
|
3
|
Ahmad F. Boron Nanocomposites for Boron Neutron Capture Therapy and in Biomedicine: Evolvement and Challenges. Biomater Res 2025; 29:0145. [PMID: 40008112 PMCID: PMC11850861 DOI: 10.34133/bmr.0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/02/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer remains a major concern for human health worldwide. To fight the curse of cancer, boron neutron capture therapy is an incredibly advantageous modality in the treatment of cancer as compared to other radiotherapies. Due to tortuous vasculature in and around tumor regions, boron (10B) compounds preferentially house into tumor cells, creating a large dose gradient between the highly mingled cancer cells and normal cells. Epithermal or thermal neutron bombardment leads to tumor-cell-selective killing due to the generation of heavy particles yielded from in situ fission reaction. However, the major challenges for boron nanocomposites' development have been from the synthesis part as well as the requirement for selective cancer targeting and the delivery of therapeutic concentrations of boron (10B) with nominal healthy tissue accumulation and retention. To circumvent the above challenges, this review discusses boride nanocomposite design, safety, and biocompatibility for biomedical applications for general public use. This review sparks interest in using boron nanocomposites as boron neutron capture therapy agents and repurposing them in comorbidity treatments, with future scientific challenges and opportunities, with a hope to accelerate the stimulus of developing possible boron composite nanomedicine research and applications worldwide.
Collapse
Affiliation(s)
- Farooq Ahmad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
| |
Collapse
|
4
|
Konarita K, Kanamori K, Suzuki M, Tokura D, Tanaka S, Honda Y, Nishiyama N, Nomoto T. Poly(vinyl alcohol) potentiating an inert d-amino acid-based drug for boron neutron capture therapy. J Control Release 2025; 377:385-396. [PMID: 39532208 DOI: 10.1016/j.jconrel.2024.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Since the discovery of d-amino acids, they have been considered inactive and have not been used as potent drugs. Here, we report that simple mixing with poly(vinyl alcohol) (PVA) unleashed latent potentials of d-amino acids in boron neutron capture therapy (BNCT). PVA formed boronate esters with seemingly useless boronated d-amino acids and induced tumor-associated amino acid transporter-superselective internalization and prolonged intracellular retention, accomplishing complete cure of tumors. The superselective internalization was achieved by switching the internalization pathway from ineffective pass through the transporter to the transporter-mediated endocytosis. The acidic environment in the endo-/lysosome dissociated the boronate esters and elicited the stealthiness of the drugs, preventing their externalization and prolonging intracellular retention time. In a subcutaneous tumor model, this system accomplished surprisingly high tumor-selective accumulation that could not be achieved by conventional approaches and induced drastic BNCT effects. PVA may be a unique material to unlock potentials of seemingly inert molecules.
Collapse
Affiliation(s)
- Kakeru Konarita
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kaito Kanamori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Daiki Tokura
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Shota Tanaka
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
5
|
Hirase S, Araki Y, Hattori Y, Aoki A, Fujiwara D, Michigami M, Takatani-Nakase T, Fujii I, Futaki S, Kirihata M, Nakase I. Simple Cytosolic and Nuclear Introduction of Boron Compounds Using Cationic Lipids to Enhance Cancer Cell-Killing Activity in Boron Neutron Capture Therapy. Biol Pharm Bull 2025; 48:344-354. [PMID: 40189303 DOI: 10.1248/bpb.b24-00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Boron neutron capture therapy (BNCT), a type of nuclear capture-based radiotherapy, has received extensive attention because of its strong anticancer effects, especially in head and neck cancers. This therapy was approved for clinical use in 2020 in Japan. This study demonstrated a technique that effectively uses the electrostatic interactions of negatively charged borane cage (polyhedral borane anion) of disodium mercaptoundecahydro-closo-dodecaborate (BSH) and positively charged cationic lipids or arginine-rich cell-penetrating peptides as carriers to enhance the efficiency of cellular uptake. Mixing of fluorescein isothiocyanate (FITC)-labeled BSH (FITC-BSH) with the cationic lipids led to increased cytosolic release and nuclear accumulation of FITC-BSH, resulting in superior cancer cell-killing activity following thermal neutron irradiation. This simple technique and our experimental results provide essential insights for the further development of BNCT.
Collapse
Affiliation(s)
- Shiori Hirase
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Yurina Araki
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Yoshihide Hattori
- Research Center for BNCT, Osaka Metropolitan University, Sakai 599-8570, Japan
| | - Ayako Aoki
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Daisuke Fujiwara
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Masataka Michigami
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Tomoka Takatani-Nakase
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
- Institute for Bioscience, Mukogawa Women's University, Nishinomiya, Hyogo 663-8179, Japan
| | - Ikuo Fujii
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Metropolitan University, Sakai 599-8570, Japan
| | - Ikuhiko Nakase
- Graduate School of Science, Osaka Metropolitan University, Sakai 599-8531, Japan
| |
Collapse
|
6
|
Adhikary K, Kumari S, Chatterjee P, Dey R, Maiti R, Chakrabortty S, Ahuja D, Karak P. Unveiling bisphenol A toxicity: human health impacts and sustainable treatment strategies. Horm Mol Biol Clin Investig 2024; 45:171-185. [PMID: 39311088 DOI: 10.1515/hmbci-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 12/12/2024]
Abstract
INTRODUCTION The widespread presence of bisphenol-A (BPA) in consumer goods like water bottles and eyeglass frames raises serious concerns about the chemical's ability to accumulate in human tissues. Molecular filtration and activated carbon adsorption are two of the many BPA treatment technologies that have emerged in response to these issues; both are essential in the removal or degradation of BPA from water sources and industrial effluents. CONTENT To secure the long-term health and environmental advantages of BPA treatment approaches, sustainable development is essential. Both the efficient elimination or destruction of BPA and the reduction of the treatment operations' impact on the environment are important components of a sustainable approach. Different search engines like Pub-Med, MEDLINE, Google Scholar and Scopus are used for these systematic reviews and analyzed accordingly. This can be accomplished by making treatment facilities more energy efficient and using environmentally friendly materials. Greener ways to deal with BPA pollution are on the horizon, thanks to innovative techniques like bioremediation and improved oxidation processes. Reducing dependence on conventional, resource-intensive procedures can be achieved by investigating the use of bio-based materials and natural adsorbents in treatment processes. SUMMARY AND OUTLOOK This review article tackling the health and environmental concerns raised by BPA calls for an integrated strategy that incorporates sustainable development principles and technology progress. We can reduce the negative impacts of BPA contamination, improve environmental stewardship in the long run, and ensure human health by combining cutting-edge treatment technologies with sustainable behaviours.
Collapse
Affiliation(s)
- Krishnendu Adhikary
- Department of Interdisciplinary Science, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Shweta Kumari
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Prity Chatterjee
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Riya Dey
- Department of Biotechnology, Paramedical College Durgapur, West Bengal, India
| | - Rajkumar Maiti
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| | - Sankha Chakrabortty
- School of Chemical Technology, KIIT Deemed to be University, Bhubaneswar, India
| | - Deepika Ahuja
- School of Paramedics and Allied Health Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | - Prithviraj Karak
- Department of Physiology, 326624 Bankura Christian College , Bankura, West Bengal, India
| |
Collapse
|
7
|
Sato M, Hirose K. A simple prediction model for the risk of boron neutron capture therapy-induced nausea and vomiting in head and neck cancer. Radiother Oncol 2024; 199:110464. [PMID: 39069086 DOI: 10.1016/j.radonc.2024.110464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND PURPOSE Head and neck cancer patients undergoing boron neutron capture therapy (BNCT) often experience BNCT-induced nausea and vomiting (BINV). This study aimed to construct a BINV risk prediction model. MATERIALS AND METHODS In this retrospective study, 237 patients were randomly divided into a training and test cohort. In the training cohort, a univariate analysis was performed to identify factors associated with BINV. Multivariate analysis was used to identify factors and calculate coefficients for the model. The Hosmer-Lemeshow test was used to assess the goodness of fit, and receiver operating characteristic curves were plotted to evaluate the accuracy of the model. For both the training and test cohort, the predictive model was used to generate the scores and calculate the sensitivity and specificity. RESULTS The incidence of nausea and vomiting was 50% and 18%, respectively. Female sex, younger age, non-squamous cell carcinoma, no prior chemotherapy, and beam entry from the face/lateral region were associated with the occurrence of BINV. The prediction model showed a good fit (P = 0.96) and performance (area under the curve = 0.75). The sensitivity and specificity were 83% and45 % for the training cohort (n = 193) and 86% and 59% for the test cohort (n = 44), respectively. CONCLUSION We developed a simple model that predicts BINV. This will enable appropriate care to be implemented based on increased risk to prevent its occurrence.
Collapse
Affiliation(s)
- Mariko Sato
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima 963-8052, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Katsumi Hirose
- Department of Radiation Oncology, Southern Tohoku BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima 963-8052, Japan; Department of Radiation Oncology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan.
| |
Collapse
|
8
|
Barth RF, Gupta N, Kawabata S. Evaluation of sodium borocaptate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of cancer: an update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun (Lond) 2024; 44:893-909. [PMID: 38973634 PMCID: PMC11337926 DOI: 10.1002/cac2.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 07/09/2024] Open
Abstract
Boron neutron capture therapy (BNCT) is a cancer treatment modality based on the nuclear capture and fission reactions that occur when boron-10, a stable isotope, is irradiated with neutrons of the appropriate energy to produce boron-11 in an unstable form, which undergoes instantaneous nuclear fission to produce high-energy, tumoricidal alpha particles. The primary purpose of this review is to provide an update on the first drug used clinically, sodium borocaptate (BSH), by the Japanese neurosurgeon Hiroshi Hatanaka to treat patients with brain tumors and the second drug, boronophenylalanine (BPA), which first was used clinically by the Japanese dermatologist Yutaka Mishima to treat patients with cutaneous melanomas. Subsequently, BPA has become the primary drug used as a boron delivery agent to treat patients with several types of cancers, specifically brain tumors and recurrent tumors of the head and neck region. The focus of this review will be on the initial studies that were carried out to define the pharmacokinetics and pharmacodynamics of BSH and BPA and their biodistribution in tumor and normal tissues following administration to patients with high-grade gliomas and their subsequent clinical use to treat patients with high-grade gliomas. First, we will summarize the studies that were carried out in Japan with BSH and subsequently at our own institution, The Ohio State University, and those of several other groups. Second, we will describe studies carried out in Japan with BPA and then in the United States that have led to its use as the primary drug that is being used clinically for BNCT. Third, although there have been intense efforts to develop new and better boron delivery agents for BNCT, none of these have yet been evaluated clinically. The present report will provide a guide to the future clinical evaluation of new boron delivery agents prior to their clinical use for BNCT.
Collapse
Affiliation(s)
- Rolf F. Barth
- Department of PathologyThe Ohio State UniversityColumbusOhioUSA
| | - Nilendu Gupta
- Department of Radiation OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Shinji Kawabata
- Department of NeurosurgeryOsaka Medical and Pharmaceutical UniversityTakatsukiOsakaJapan
| |
Collapse
|
9
|
Tokura D, Konarita K, Suzuki M, Ogata K, Honda Y, Miura Y, Nishiyama N, Nomoto T. Active control of pharmacokinetics using light-responsive polymer-drug conjugates for boron neutron capture therapy. J Control Release 2024; 371:445-454. [PMID: 38844180 DOI: 10.1016/j.jconrel.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
In boron neutron capture therapy (BNCT), boron drugs should exhibit high intratumoral boron concentrations during neutron irradiation, while being cleared from the blood and normal organs. However, it is usually challenging to achieve such tumor accumulation and quick clearance simultaneously in a temporally controlled manner. Here, we developed a polymer-drug conjugate that can actively control the clearance of the drugs from the blood. This polymer-drug conjugate is based on a biocompatible polymer that passively accumulates in tumors. Its side chains were conjugated with the low-molecular-weight boron drugs, which are immediately excreted by the kidneys, via photolabile linkers. In a murine subcutaneous tumor model, the polymer-drug conjugate could accumulate in the tumor with the high boron concentration ratio of the tumor to the surrounding normal tissue (∼10) after intravenous injection while a considerable amount remained in the bloodstream as well. Photoirradiation to blood vessels through the skin surface cleaved the linker to release the boron drug in the blood, allowing for its rapid clearance from the bloodstream. Meanwhile, the boron concentration in the tumor which was not photoirradiated could be maintained high, permitting strong BNCT effects. In clinical BNCT, the dose of thermal neutrons to solid tumors is determined by the maximum radiation exposure to normal organs. Thus, our polymer-drug conjugate may enable us to increase the therapeutic radiation dose to tumors in such a practical situation.
Collapse
Affiliation(s)
- Daiki Tokura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Kakeru Konarita
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Keisuke Ogata
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yuto Honda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Yutaka Miura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takahiro Nomoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan; Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| |
Collapse
|
10
|
Patil R, Sun T, Chepurna O, Khoobchandani M, Rudensky S, Holler E, Ljubimova JY, Black KL. Targeted Boron Neutron Capture Therapy Using Polymalic Acid Derived Nano-Boron to Treat Glioblastoma. JOURNAL OF ONCOLOGY RESEARCH AND THERAPY 2024; 9:10226. [PMID: 40190388 PMCID: PMC11970361 DOI: 10.29011/2574-710x.10226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Despite extensive efforts, glioblastoma multiforme (GBM), the most malignant brain cancer, continues to pose significant challenges to effective treatment, with limited progress in patient survival over the last three decades. This study addresses shortcomings of conventional therapies, particularly radiotherapy (RT), which faces limitations due to radio-resistance and toxic radiation doses. Boron neutron capture therapy (BNCT) is a promising alternative, delivering targeted radiation to tumor cells with minimal damage to healthy tissue. However, the key challenge lies in achieving sufficient boron uptake selectively in tumor cells. We have developed a novel nanomedicine-based approach, utilizing polymalic acid (PMLA) as a delivery vehicle, carrying multiple boron-10 molecules per nanoconjugate to increase the intracellular concentration of boron-10 for effective boron neutron capture therapy. Our novel nanodrug (Nano-Boron) incorporates isotopically enriched 4-boronophenylalanine (BPA) as a source of boron-10 and Angiopep-2 (AP2) peptide for blood-brain barrier penetration and tumor targeting. The PMLA platform allows for the attachment of a large quantity of boron-10, enhancing the intracellular boron concentration and, consequently, the efficacy of BNCT. This innovative approach holds the potential to address the unmet clinical need in GBM treatment and improve patient survival and quality of life.
Collapse
Affiliation(s)
- R Patil
- Department of Basic Sciences and Neurosurgery, Division of Cancer Science, Loma Linda University, School of Medicine, Loma Linda, 11175 Campus St., Loma Linda, CA, 92350, USA
| | - T Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - O Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - M Khoobchandani
- Department of Basic Sciences and Neurosurgery, Division of Cancer Science, Loma Linda University, School of Medicine, Loma Linda, 11175 Campus St., Loma Linda, CA, 92350, USA
| | - S Rudensky
- Department of Basic Sciences and Neurosurgery, Division of Cancer Science, Loma Linda University, School of Medicine, Loma Linda, 11175 Campus St., Loma Linda, CA, 92350, USA
| | - E Holler
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - J Y Ljubimova
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - K L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| |
Collapse
|
11
|
Leśnikowski ZJ, Ekholm F, Hosmane NS, Kellert M, Matsuura E, Nakamura H, Olejniczak AB, Panza L, Rendina LM, Sauerwein WAG. Early Stage In Vitro Bioprofiling of Potential Low-Molecular-Weight Organoboron Compounds for Boron Neutron Capture Therapy (BNCT)-Proposal for a Guide. Cells 2024; 13:798. [PMID: 38786022 PMCID: PMC11119693 DOI: 10.3390/cells13100798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/24/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Given the renewed interest in boron neutron capture therapy (BNCT) and the intensified search for improved boron carriers, as well as the difficulties of coherently comparing the carriers described so far, it seems necessary to define a basic set of assays and standardized methods to be used in the early stages of boron carrier development in vitro. The selection of assays and corresponding methods is based on the practical experience of the authors and is certainly not exhaustive, but open to discussion. The proposed tests/characteristics: Solubility, lipophilicity, stability, cytotoxicity, and cellular uptake apply to both low molecular weight (up to 500 Da) and high molecular weight (5000 Da and more) boron carriers. However, the specific methods have been selected primarily for low molecular weight boron carriers; in the case of high molecular weight compounds, some of the methods may need to be adapted.
Collapse
Affiliation(s)
- Zbigniew J. Leśnikowski
- Laboratory of Medicinal Chemistry, Institute of Medical Biology PAS, Lodowa 106, 93-232 Lodz, Poland
| | - Filip Ekholm
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland;
| | - Narayan S. Hosmane
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115, USA;
| | - Martin Kellert
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, 45122 Essen, Germany; (M.K.); (L.P.)
| | - Eiji Matsuura
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-0005, Japan;
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan;
| | | | - Luigi Panza
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, 45122 Essen, Germany; (M.K.); (L.P.)
- Dipartimento di Scienze del Farmaco, Università degli Studi del Piemonte Orientale “A. Avogadro”, L.go Donegani, 2/3-28100 Novara, Italy
| | - Louis M. Rendina
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Wolfgang A. G. Sauerwein
- Deutsche Gesellschaft für Bor-Neutroneneinfangtherapie DGBNCT e.V., University Hospital Essen, 45122 Essen, Germany; (M.K.); (L.P.)
- Department of Radiation Oncology, University Hospital Essen, University Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
12
|
Sun X, Wu L, Du L, Xu W, Han M. Targeting the organelle for radiosensitization in cancer radiotherapy. Asian J Pharm Sci 2024; 19:100903. [PMID: 38590796 PMCID: PMC10999375 DOI: 10.1016/j.ajps.2024.100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/10/2024] Open
Abstract
Radiotherapy is a well-established cytotoxic therapy for local solid cancers, utilizing high-energy ionizing radiation to destroy cancer cells. However, this method has several limitations, including low radiation energy deposition, severe damage to surrounding normal cells, and high tumor resistance to radiation. Among various radiotherapy methods, boron neutron capture therapy (BNCT) has emerged as a principal approach to improve the therapeutic ratio of malignancies and reduce lethality to surrounding normal tissue, but it remains deficient in terms of insufficient boron accumulation as well as short retention time, which limits the curative effect. Recently, a series of radiosensitizers that can selectively accumulate in specific organelles of cancer cells have been developed to precisely target radiotherapy, thereby reducing side effects of normal tissue damage, overcoming radioresistance, and improving radiosensitivity. In this review, we mainly focus on the field of nanomedicine-based cancer radiotherapy and discuss the organelle-targeted radiosensitizers, specifically including nucleus, mitochondria, endoplasmic reticulum and lysosomes. Furthermore, the organelle-targeted boron carriers used in BNCT are particularly presented. Through demonstrating recent developments in organelle-targeted radiosensitization, we hope to provide insight into the design of organelle-targeted radiosensitizers for clinical cancer treatment.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Linjie Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Wenhong Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Afliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
Tsujino K, Kashiwagi H, Nishimura K, Fujikawa Y, Kayama R, Fukuo Y, Hiramatsu R, Nonoguchi N, Takata T, Tanaka H, Suzuki M, Hu N, Ono K, Wanibuchi M, Nakai K, Nakamura H, Kawabata S. Nonclinical pharmacodynamics of boron neutron capture therapy using direct intratumoral administration of a folate receptor targeting novel boron carrier. Neurooncol Adv 2024; 6:vdae062. [PMID: 38770220 PMCID: PMC11102930 DOI: 10.1093/noajnl/vdae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Background Boron neutron capture therapy (BNCT) is a precise particle radiation therapy known for its unique cellular targeting ability. The development of innovative boron carriers is crucial for the advancement of BNCT technologies. Our previous study demonstrated the potential of PBC-IP administered via convection-enhanced delivery (CED) in an F98 rat glioma model. This approach significantly extended rat survival in neutron irradiation experiments, with half achieving long-term survival, akin to a cure, in a rat brain tumor model. Our commitment to clinical applicability has spurred additional nonclinical pharmacodynamic research, including an investigation into the effects of cannula position and the time elapsed post-CED administration. Methods In comprehensive in vivo experiments conducted on an F98 rat brain tumor model, we meticulously examined the boron distribution and neutron irradiation experiments at various sites and multiple time intervals following CED administration. Results The PBC-IP showed substantial efficacy for BNCT, revealing minimal differences in tumor boron concentration between central and peripheral CED administration, although a gradual decline in intratumoral boron concentration post-administration was observed. Therapeutic efficacy remained robust, particularly when employing cannula insertion at the tumor margin, compared to central injections. Even delayed neutron irradiation showed notable effectiveness, albeit with a slightly reduced survival period. These findings underscore the robust clinical potential of CED-administered PBC-IP in the treatment of malignant gliomas, offering adaptability across an array of treatment protocols. Conclusions This study represents a significant leap forward in the quest to enhance BNCT for the management of malignant gliomas, opening promising avenues for clinical translation.
Collapse
Affiliation(s)
- Kohei Tsujino
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Hideki Kashiwagi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Kai Nishimura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Yoshiki Fujikawa
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Ryo Kayama
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yusuke Fukuo
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Ryo Hiramatsu
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Naosuke Nonoguchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Takushi Takata
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Hiroki Tanaka
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Minoru Suzuki
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Japan
| | - Naonori Hu
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Koji Ono
- Kansai BNCT Medical Center, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Masahiko Wanibuchi
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Kei Nakai
- Department of Radiation Oncology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroyuki Nakamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Kawabata
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| |
Collapse
|