1
|
Tao R, Mao Y, Li Y, Sun M, Cao X, Chen N, Xu S, Wang D, Zhao Y. Connexin26 Modulates Radiation-Induced Skin Damage by Regulating Chemokine CCL27 through MAPK Signaling. Radiat Res 2023; 200:281-288. [PMID: 37450610 DOI: 10.1667/rade-20-00085.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Connexin26 (Cx26) plays an important role in ionizing radiation-induced damage, and CC chemokine ligand 27 (CCL27) regulates the skin immune response. However, the relationship between Cx26 and CCL27 in radiation-induced skin damage is unclear. After X-ray irradiation, clonogenic survival and micronucleus formation were assessed in immortalized human keratinocytes (HaCaT). Proteins in the mitogen activated protein kinase (MAPK) signaling pathway and CCL27-related proteins were detected by immunoblotting. HaCaTCx26-/- cells were constructed to verify the effects of Cx26 on CCL27 secretion. A mouse model was established to examine the expression of CCL27 and skin inflammation in vivo. The degree of skin injury induced by 6 MV of X rays was closely related to CCL27. The phosphorylation of ERK, p38 and NF-κB was significantly increased in irradiated cells. The secretion of CCL27 was significantly decreased in HaCaT wild-type cells relative to HaCaTCx26-/- cells. Whereas cell survival fractions decreased, and the micronuclei formation rate increased as a function of increasing X-ray dose in HaCaT cells, the opposite trend occurred in HaCaTCx26-/- cells. Our findings show that Cx26 likely plays a role in the activation of the MAPK and NF-κB/COX-2 signaling pathways and regulates the secretion of CCL27 in keratinocytes after X-ray radiation-induced skin damage.
Collapse
Affiliation(s)
- Rui Tao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yiwen Mao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Yuan Li
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Minqiong Sun
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Xiaoping Cao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ni Chen
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Shengmin Xu
- Institutes of Physical Sciences and Information Technology, Anhui University, Hefei 230601, Anhui, People's Republic of China
| | - Dong Wang
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| | - Ye Zhao
- Teaching and Research Section of Nuclear Medicine, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei 230032, Anhui, People's Republic of China
| |
Collapse
|
2
|
The Expression of Connexin 26 Regulates the Radiosensitivity of Hepatocellular Carcinoma Cells through a Mitogen-Activated Protein Kinases Signal Pathway. Int J Mol Sci 2022; 23:ijms232314644. [PMID: 36498978 PMCID: PMC9740976 DOI: 10.3390/ijms232314644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Connexin 26 (Cx26) is a protein that constitutes a gap junction and is widely expressed in the liver. Abnormal expression of Cx26 is one of the important mechanisms of liver cancer, and is closely related to the transmission of radiation damage signals between cells. In the present study, we investigated the radiosensitivity of hepatocellular carcinoma (HCC) cells HepG2, with low expression of Cx26, and SK-hep-1, with high expression of Cx26 after X-ray irradiation. The cell survival, micronucleus formation and protein expressions of the mitogen-activated protein kinases (MAPK) signaling pathway were detected. The expression level of Cx26 could affect the radiosensitivity of liver cancer cells by affecting the phosphorylation of p38 and ERK proteins and regulating the expression of downstream NF-κB. Cell lines with knock-out and overexpression of Cx26 were also built to confirm the findings. Our results suggested that Cx26 might play an important role in the radiosensitivity of liver cancer and could be a potential target for clinical radiotherapy of liver cancer.
Collapse
|
3
|
Autsavapromporn N, Kobayashi A, Liu C, Jaikang C, Tengku Ahmad TA, Oikawa M, Konishi T. Hypoxia and Proton microbeam: Role of Gap Junction Intercellular Communication in Inducing Bystander Responses on Human Lung Cancer Cells and Normal Cells. Radiat Res 2022; 197:122-130. [PMID: 34634126 DOI: 10.1667/rade-21-00112.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/03/2022]
Abstract
Radiation-induced bystander effect (RIBE) has been identified as an important contributing factor to tumor resistance and normal tissue damage. However, the RIBE in cancer and normal cells under hypoxia remain unclear. In this study, confluent A549 cancer and WI-38 normal cells were subjected to condition of hypoxia or normoxia, before exposure to high-LET protons microbeam. After 6 h incubation, cells were harvested and assayed for colony formation, micronucleus formation, chromosome aberration and western blotting. Our results show that there were differences of RIBE in bystander A549 and WI-38 cells under hypoxia and normoxia. The differences were also observed in the roles of HIF-1α expression in bystander A549 and WI-38 cells under both conditions. Furthermore, inhibition of gap junction intercellular communication (GJIC) showed a decrease in toxicity of hypoxia-treated bystander A549 cells, but increased in bystander WI-38 cells. These findings clearly support that GJIC protection of bystander normal cells from toxicity while enhancing in bystander cancer cells. Together, the data show a promising strategy for high-LET radiation in designing an entire new line of drugs, either increase or restore GJIC in bystander cancer cells which in turn leads to enhancement of radiation accuracy for treatment of hypoxic tumors.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Alisa Kobayashi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Cuihua Liu
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Churdsak Jaikang
- Toxicology Section, Department of Forensic Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Masakazu Oikawa
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| | - Teruaki Konishi
- Single Cell Radiation Biology Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
4
|
Zhang DM, Szymanski J, Bergom C, Cuculich PS, Robinson CG, Schwarz JK, Rentschler SL. Leveraging Radiobiology for Arrhythmia Management: A New Treatment Paradigm? Clin Oncol (R Coll Radiol) 2021; 33:723-734. [PMID: 34535357 DOI: 10.1016/j.clon.2021.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/04/2021] [Accepted: 09/01/2021] [Indexed: 01/01/2023]
Abstract
Radiation therapy is a well-established approach for safely and non-invasively treating solid tumours and benign diseases with high precision and accuracy. Cardiac radiation therapy has recently emerged as a non-invasive treatment option for the management of refractory ventricular tachycardia. Here we summarise existing clinical and preclinical literature surrounding cardiac radiobiology and discuss how these studies may inform basic and translational research, as well as clinical treatment paradigms in the management of arrhythmias.
Collapse
Affiliation(s)
- D M Zhang
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J Szymanski
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C Bergom
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - P S Cuculich
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - C G Robinson
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - J K Schwarz
- Department of Radiation Oncology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA
| | - S L Rentschler
- Department of Medicine, Cardiovascular Division, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Biomedical Engineering, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA; Department of Developmental Biology, Washington University in St. Louis, School of Medicine, Saint Louis, Missouri, USA.
| |
Collapse
|
5
|
Connexins-Therapeutic Targets in Cancers. Int J Mol Sci 2020; 21:ijms21239119. [PMID: 33266154 PMCID: PMC7730856 DOI: 10.3390/ijms21239119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Connexins (Cx) are members of a protein family that forms intercellular channels localised in gap junction (GJ) plaques and single transmembrane channels called hemichannels. They participate in intercellular communication or communication between the intracellular and extracellular environments. Connexins affect cell homeostasis, growth and differentiation by enabling the exchange of metabolites or by interfering with various signalling pathways. Alterations in the functionality and the expression of connexins have been linked to the occurrence of many diseases. Connexins have been already linked to cancers, cardiac and brain disorders, chronic lung and kidney conditions and wound healing processes. Connexins have been shown either to suppress cancer tumour growth or to increase tumorigenicity by promoting cancer cell growth, migration and invasiveness. A better understanding of the complexity of cancer biology related to connexins and intercellular communication could result in the design of novel therapeutic strategies. The modulation of connexin expression may be an effective therapeutic approach in some types of cancers. Therefore, one important challenge is the search for mechanisms and new drugs, selectively modulating the expression of various connexin isoforms. We performed a systematic literature search up to February 2020 in the electronic databases PubMed and EMBASE. Our search terms were as follows: connexins, hemichannels, cancer and cancer treatment. This review aims to provide information about the role of connexins and gap junctions in cancer, as well as to discuss possible therapeutic options that are currently being studied.
Collapse
|
6
|
Xia Q, Zhang D, Wang J, Zhang X, Song W, Chen R, Li H, Xie W, Zou K. Androgen Indirectly Regulates Gap Junction Component Connexin 43 Through Wilms Tumor-1 in Sertoli Cells. Stem Cells Dev 2020; 29:169-176. [DOI: 10.1089/scd.2019.0166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qin Xia
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Danchen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jingjing Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiaoyu Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Weixiang Song
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Rong Chen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hua Li
- Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wenhai Xie
- School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Farhood B, Goradel NH, Mortezaee K, Khanlarkhani N, Salehi E, Nashtaei MS, Shabeeb D, Musa AE, Fallah H, Najafi M. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation. J Cell Commun Signal 2019; 13:3-16. [PMID: 29911259 PMCID: PMC6381372 DOI: 10.1007/s12079-018-0473-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022] Open
Abstract
Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.
Collapse
Affiliation(s)
- Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Neda Khanlarkhani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Salehi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shabani Nashtaei
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Infertility Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed Eleojo Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Hengameh Fallah
- Department of Chemistry, Faculty of Science, Islamic Azad University, Arak, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
8
|
Lai Y, Tao L, Zhao Y, Zhang X, Sun X, Wang Q, Xu C. Cx32 inhibits TNFα-induced extrinsic apoptosis with and without EGFR suppression. Oncol Rep 2017; 38:2885-2892. [PMID: 28901517 DOI: 10.3892/or.2017.5950] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Tumor necrosis factor α (TNFα) and TNF-related apoptosis-inducing ligand (TRAIL) can trigger the extrinsic apoptosis pathway. Our previous study indicated that connexin32 (Cx32) inhibited streptonigrin-induced intrinsic apoptosis via the epidermal growth factor receptor (EGFR) pathway. However, whether Cx32 can exert effects on the extrinsic apoptosis pathway through EGFR signaling remains unclear. In the present study, we investigated the role of Cx32 in extrinsic apoptosis induced by treatment with TNFα + cycloheximide (CHX) or afatinib in human cervical cancer (CaCx) cells. In stable inducible Cx32-transfected HeLa cells (HeLa-Cx32), Cx32 expression was induced by treatment with doxycycline (Dox). Furthermore, C-33A cells, which natively express high levels of Cx32, were used as a cell model for knockdown of Cx32 with siRNA. To determine the non-junctional function of Cx32 in apoptosis, 18α-glycyrrhetinic acid (18α-GA), a gap junction intracellular communication (GJIC) inhibitor, was used. Our results showed that Cx32 could inhibit apoptosis induced by TNFα + afatinib with or without the GJIC inhibitor. In clinical cervical tissue samples, we found that the expression of survivin was markedly higher in CaCx than in normal cervix tissue, which was in accordance with the expression of Cx32 in our previous study. In HeLa-Cx32 cells, we also found that Cx32 upregulated the expression of Cox-2. In addition, Cx32 upregulated EGFR expression in low-density culture (lacking GJ formation). Cx32 could also promote the expression of EGFR, phospho-STAT3 and phospho-ERK in HeLa-Cx32 cells following TNFα treatment. After knocking down Cx32 in C-33A cells, the expression levels of survivin and TNFα were downregulated. The present study verifies that Cx32 exerts an inhibitory effect on extrinsic apoptosis in CaCx cells, and suggests that Cx32 may regulate the progression and micro-environment of CaCx cells.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifan Zhao
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xingjuan Sun
- Traditional Chinese Medicine Hospital of Guangdong, Guangzhou, Guangdong 510120, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Chengfang Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
9
|
Lai Y, Fan L, Zhao Y, Ge H, Feng X, Wang Q, Zhang X, Peng Y, Wang X, Tao L. Cx32 suppresses extrinsic apoptosis in human cervical cancer cells via the NF‑κB signalling pathway. Int J Oncol 2017; 51:1159-1168. [PMID: 28902345 DOI: 10.3892/ijo.2017.4106] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/28/2017] [Indexed: 01/22/2023] Open
Abstract
Tumour necrosis factor α (TNFα) and TNF‑related apoptosis inducing ligand (TRAIL) usually trigger either survival or apoptosis signals in various cell types, and nuclear factor κB (NF‑κB) is a key factor that regulates their biological effects. Connexin 32 (Cx32) is a gap junction (GJ) protein that plays vital roles in tumourigenesis and tumour progression. Our previous study explored abnormal Cx32 expression in para‑nuclear areas, exacerbated prognostic parameters and suppressed streptonigrin/cisplatin-induced apoptosis in human cervical cancer (CaCx) cells. In this study, we investigated the role of Cx32 in the extrinsic apoptosis pathway of CaCx cells. In transgenic HeLa cells and C-33A cells, Cx32 expression was manipulated using doxycycline or Cx32 siRNA. GJ inhibitors or low density culturing was used to change the status of gap junction intracellular communication (GJIC). We found that apoptosis induced by TNFα and TRAIL was suppressed by Cx32 expression despite the presence or absense of GJIC. We also found that Cx32 upregulated the expression of nuclear NF‑κB and its downstream targets c-IAP1, MMP‑2, and MMP‑9 in HeLa‑Cx32 and C-33A cells. Following our previous study design, our clinical data showed that NF‑κB and MMP‑2 levels increased in human CaCx specimens with high Cx32 expression compared to levels in para‑carcinoma of cervical specimens. SC75741 and JSH-23, NF‑кB signalling pathway inhibitors, inhibited the anti-apoptotic effects of Cx32. In conclusion, Cx32 suppressed TNFα /TRAIL-induced extrinsic apoptosis by upregulating the NF‑κB signalling pathway. This study demonstrates a novel mechanism for Cx32's anti-apoptotic effect and provides a reasonable explanation for the pro-tumour effect of Cx32 in human CaCx cells.
Collapse
Affiliation(s)
- Yongchang Lai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Lixia Fan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yifan Zhao
- Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Hui Ge
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Xue Feng
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiaomin Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yuexia Peng
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Xiyan Wang
- Tumor Research Institute, Xinjiang Medical University Affiliated Tumor Hospital, Urumqi, Xinjiang 830000, P.R. China
| | - Liang Tao
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
10
|
de Toledo SM, Buonanno M, Harris AL, Azzam EI. Genomic instability induced in distant progeny of bystander cells depends on the connexins expressed in the irradiated cells. Int J Radiat Biol 2017; 93:1182-1194. [DOI: 10.1080/09553002.2017.1334980] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sonia M. de Toledo
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Manuela Buonanno
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Andrew L. Harris
- Pharmacology and Physiology and Neuroscience, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| | - Edouard I. Azzam
- Department of Radiology, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
- Pharmacology and Physiology and Neuroscience, RUTGERS New Jersey Medical School Cancer Center, Newark, NJ, USA
| |
Collapse
|
11
|
Decrock E, Hoorelbeke D, Ramadan R, Delvaeye T, De Bock M, Wang N, Krysko DV, Baatout S, Bultynck G, Aerts A, Vinken M, Leybaert L. Calcium, oxidative stress and connexin channels, a harmonious orchestra directing the response to radiotherapy treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1099-1120. [DOI: 10.1016/j.bbamcr.2017.02.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/02/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
|
12
|
Buonanno M, De Toledo SM, Howell RW, Azzam EI. Low-dose energetic protons induce adaptive and bystander effects that protect human cells against DNA damage caused by a subsequent exposure to energetic iron ions. JOURNAL OF RADIATION RESEARCH 2015; 56:502-8. [PMID: 25805407 PMCID: PMC4426929 DOI: 10.1093/jrr/rrv005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/23/2015] [Indexed: 05/23/2023]
Abstract
During interplanetary missions, astronauts are exposed to mixed types of ionizing radiation. The low 'flux' of the high atomic number and high energy (HZE) radiations relative to the higher 'flux' of low linear energy transfer (LET) protons makes it highly probable that for any given cell in the body, proton events will precede any HZE event. Whereas progress has been made in our understanding of the biological effects of low-LET protons and high-LET HZE particles, the interplay between the biochemical processes modulated by these radiations is unclear. Here we show that exposure of normal human fibroblasts to a low mean absorbed dose of 20 cGy of 0.05 or 1-GeV protons (LET ∼ 1.25 or 0.2 keV/μm, respectively) protects the irradiated cells (P < 0.0001) against chromosomal damage induced by a subsequent exposure to a mean absorbed dose of 50 cGy from 1 GeV/u iron ions (LET ∼ 151 keV/μm). Surprisingly, unirradiated (i.e. bystander) cells with which the proton-irradiated cells were co-cultured were also significantly protected from the DNA-damaging effects of the challenge dose. The mitigating effect persisted for at least 24 h. These results highlight the interactions of biological effects due to direct cellular traversal by radiation with those due to bystander effects in cell populations exposed to mixed radiation fields. They show that protective adaptive responses can spread from cells targeted by low-LET space radiation to bystander cells in their vicinity. The findings are relevant to understanding the health hazards of space travel.
Collapse
Affiliation(s)
- Manuela Buonanno
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA Present address: Center for Radiological Research, Columbia University Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Sonia M De Toledo
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Roger W Howell
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| | - Edouard I Azzam
- Department of Radiology, New Jersey Medical School Cancer Center, Rutgers University, 205 South Orange Avenue, Newark, NJ 07103, USA
| |
Collapse
|
13
|
Chevalier F, Hamdi DH, Saintigny Y, Lefaix JL. Proteomic overview and perspectives of the radiation-induced bystander effects. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:280-93. [PMID: 25795126 DOI: 10.1016/j.mrrev.2014.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 09/22/2014] [Accepted: 11/18/2014] [Indexed: 11/28/2022]
Abstract
Radiation proteomics is a recent, promising and powerful tool to identify protein markers of direct and indirect consequences of ionizing radiation. The main challenges of modern radiobiology is to predict radio-sensitivity of patients and radio-resistance of tumor to be treated, but considerable evidences are now available regarding the significance of a bystander effect at low and high doses. This "radiation-induced bystander effect" (RIBE) is defined as the biological responses of non-irradiated cells that received signals from neighboring irradiated cells. Such intercellular signal is no more considered as a minor side-effect of radiotherapy in surrounding healthy tissue and its occurrence should be considered in adapting radiotherapy protocols, to limit the risk for radiation-induced secondary cancer. There is no consensus on a precise designation of RIBE, which involves a number of distinct signal-mediated effects within or outside the irradiated volume. Indeed, several cellular mechanisms were proposed, including the secretion of soluble factors by irradiated cells in the extracellular matrix, or the direct communication between irradiated and neighboring non-irradiated cells via gap junctions. This phenomenon is observed in a context of major local inflammation, linked with a global imbalance of oxidative metabolism which makes its analysis challenging using in vitro model systems. In this review article, the authors first define the radiation-induced bystander effect as a function of radiation type, in vitro analysis protocols, and cell type. In a second time, the authors present the current status of protein biomarkers and proteomic-based findings and discuss the capacities, limits and perspectives of such global approaches to explore these complex intercellular mechanisms.
Collapse
Affiliation(s)
- François Chevalier
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France.
| | - Dounia Houria Hamdi
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| | - Yannick Saintigny
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| | - Jean-Louis Lefaix
- LARIA - iRCM - DSV - CEA, GANIL, Campus Jules Horowitz, Bd Henri Becquerel, BP 55027, Caen 14076, France
| |
Collapse
|
14
|
Tong X, Han X, Yu B, Yu M, Jiang G, Ji J, Dong S. Role of gap junction intercellular communication in testicular leydig cell apoptosis induced by oxaliplatin via the mitochondrial pathway. Oncol Rep 2014; 33:207-14. [PMID: 25355463 DOI: 10.3892/or.2014.3571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/17/2014] [Indexed: 11/05/2022] Open
Abstract
Platinum agents are widely used in the chemotherapy of testicular cancer. However, adverse reactions and resistance to such agents have limited their application in antineoplastic treatment. The aim of the present study was to determine the role of gap junction intercellular communication (GJIC) composed of Cx43 on oxaliplatin‑induced survival/apoptosis in mouse leydig normal and cancer cells using MTT, Annexin V/PI double staining assays and western blot analysis. The results showed that GJIC exerted opposite effects on the mouse leydig cancer (I-10) and normal (TM3) cell apoptosis induced by oxaliplatin. In leydig cancer cells, survival of cells exposed to oxaliplatin was substantially reduced when gap junctions formed as compared to no gap junctions. Pharmacological inhibition of gap junctions by oleamide and 18-α-glycyrrhetinic acid resulted in enhanced survival/decreased apoptosis while enhancement of gap junctions by retinoic acid led to decreased survival/increased apoptosis. These effects occurred only in high‑density cultures (gap junction formed), while the pharmacological modulations had no effects when there was no opportunity for gap junction formation. Notably, GJIC played an opposite (protective) role in normal leydig cells survival/apoptosis following exposure to oxaliplatin. Furthermore, this converse oxaliplatin‑inducing apoptosis exerted through the functional gap junction was correlated with the mitochondrial pathway‑related protein Bcl-2/Bax and caspase‑3/9. These results suggested that in testicular leydig normal/cancer cells, GJIC plays an opposite role in oxaliplatin‑induced apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xuhui Tong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Xi Han
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Binbin Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Meiling Yu
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Jie Ji
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| | - Shuying Dong
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China
| |
Collapse
|
15
|
Zhao Y, de Toledo SM, Hu G, Hei TK, Azzam EI. Connexins and cyclooxygenase-2 crosstalk in the expression of radiation-induced bystander effects. Br J Cancer 2014; 111:125-31. [PMID: 24867691 PMCID: PMC4090739 DOI: 10.1038/bjc.2014.276] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/24/2014] [Accepted: 04/25/2014] [Indexed: 11/15/2022] Open
Abstract
Background: Signalling events mediated by connexins and cyclooxygenase-2 (COX-2) have important roles in bystander effects induced by ionising radiation. However, whether these proteins mediate bystander effects independently or cooperatively has not been investigated. Methods: Bystander normal human fibroblasts were cocultured with irradiated adenocarcinoma HeLa cells in which specific connexins (Cx) are expressed in the absence of endogenous Cx, before and after COX-2 knockdown, to investigate DNA damage in bystander cells and their progeny. Results: Inducible expression of gap junctions composed of connexin26 (Cx26) in irradiated HeLa cells enhanced the induction of micronuclei in bystander cells (P<0.01) and reduced the coculture time necessary for manifestation of the effect. In contrast, expression of connexin32 (Cx32) conferred protective effects. COX-2 knockdown in irradiated HeLa Cx26 cells attenuated the bystander response due to connexin expression. However, COX-2 knockdown resulted in enhanced micronucleus formation in the progeny of the bystander cells (P<0.001). COX-2 knockdown delayed junctional communication in HeLa Cx26 cells, and reduced, in the plasma membrane, the physical interaction of Cx26 with MAPKKK, a controller of the MAPK pathway that regulates COX-2 and connexin. Conclusions: Junctional communication and COX-2 cooperatively mediate the propagation of radiation-induced non-targeted effects. Characterising the mediating events affected by both mechanisms may lead to new approaches that mitigate secondary debilitating effects of cancer radiotherapy.
Collapse
Affiliation(s)
- Y Zhao
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| | - S M de Toledo
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| | - G Hu
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| | - T K Hei
- Center for Radiological Research, Department of Radiation Oncology, Columbia University Medical Center, New York, NY 10032, USA
| | - E I Azzam
- Department of Radiology, Rutgers University, New Jersey Medical School, Cancer Center, Newark, NJ 07103, USA
| |
Collapse
|
16
|
Li M, Gonon G, Buonanno M, Autsavapromporn N, de Toledo SM, Pain D, Azzam EI. Health risks of space exploration: targeted and nontargeted oxidative injury by high-charge and high-energy particles. Antioxid Redox Signal 2014; 20:1501-23. [PMID: 24111926 PMCID: PMC3936510 DOI: 10.1089/ars.2013.5649] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SIGNIFICANCE During deep space travel, astronauts are often exposed to high atomic number (Z) and high-energy (E) (high charge and high energy [HZE]) particles. On interaction with cells, these particles cause severe oxidative injury and result in unique biological responses. When cell populations are exposed to low fluences of HZE particles, a significant fraction of the cells are not traversed by a primary radiation track, and yet, oxidative stress induced in the targeted cells may spread to nearby bystander cells. The long-term effects are more complex because the oxidative effects persist in progeny of the targeted and affected bystander cells, which promote genomic instability and may increase the risk of age-related cancer and degenerative diseases. RECENT ADVANCES Greater understanding of the spatial and temporal features of reactive oxygen species bursts along the tracks of HZE particles, and the availability of facilities that can simulate exposure to space radiations have supported the characterization of oxidative stress from targeted and nontargeted effects. CRITICAL ISSUES The significance of secondary radiations generated from the interaction of the primary HZE particles with biological material and the mitigating effects of antioxidants on various cellular injuries are central to understanding nontargeted effects and alleviating tissue injury. FUTURE DIRECTIONS Elucidation of the mechanisms underlying the cellular responses to HZE particles, particularly under reduced gravity and situations of exposure to additional radiations, such as protons, should be useful in reducing the uncertainty associated with current models for predicting long-term health risks of space radiation. These studies are also relevant to hadron therapy of cancer.
Collapse
Affiliation(s)
- Min Li
- 1 Department of Radiology, Cancer Center, Rutgers University-New Jersey Medical School , Newark, New Jersey
| | | | | | | | | | | | | |
Collapse
|
17
|
Choi VWY, Yu KN. Embryos of the zebrafish Danio rerio in studies of non-targeted effects of ionizing radiation. Cancer Lett 2013; 356:91-104. [PMID: 24176822 DOI: 10.1016/j.canlet.2013.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/16/2013] [Accepted: 10/22/2013] [Indexed: 01/17/2023]
Abstract
The use of embryos of the zebrafish Danio rerio as an in vivo tumor model for studying non-targeted effects of ionizing radiation was reviewed. The zebrafish embryo is an animal model, which enables convenient studies on non-targeted effects of both high-linear-energy-transfer (LET) and low-LET radiation by making use of both broad-beam and microbeam radiation. Zebrafish is also a convenient embryo model for studying radiobiological effects of ionizing radiation on tumors. The embryonic origin of tumors has been gaining ground in the past decades, and efforts to fight cancer from the perspective of developmental biology are underway. Evidence for the involvement of radiation-induced genomic instability (RIGI) and the radiation-induced bystander effect (RIBE) in zebrafish embryos were subsequently given. The results of RIGI were obtained for the irradiation of all two-cell stage cells, as well as 1.5 hpf zebrafish embryos by microbeam protons and broad-beam alpha particles, respectively. In contrast, the RIBE was observed through the radioadaptive response (RAR), which was developed against a subsequent challenging dose that was applied at 10 hpf when <0.2% and <0.3% of the cells of 5 hpf zebrafish embryos were exposed to a priming dose, which was provided by microbeam protons and broad-beam alpha particles, respectively. Finally, a perspective on the field, the need for future studies and the significance of such studies were discussed.
Collapse
Affiliation(s)
- V W Y Choi
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - K N Yu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong.
| |
Collapse
|
18
|
Autsavapromporn N, Suzuki M, Plante I, Liu C, Uchihori Y, Hei TK, Azzam EI, Murakami T. Participation of gap junction communication in potentially lethal damage repair and DNA damage in human fibroblasts exposed to low- or high-LET radiation. Mutat Res 2013; 756:78-85. [PMID: 23867854 PMCID: PMC4001089 DOI: 10.1016/j.mrgentox.2013.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/05/2013] [Indexed: 10/26/2022]
Abstract
Existing research has not fully explained how different types of ionizing radiation (IR) modulate the responses of cell populations or tissues. In our previous work, we showed that gap junction intercellular communication (GJIC) mediates the propagation of stressful effects among irradiated cells exposed to high linear energy transfer (LET) radiations, in which almost every cells is traversed by an IR track. In the present study, we conducted an in-depth study of the role of GJIC in modulating the repair of potentially lethal damage (PLDR) and micronuclei formation in cells exposed to low- or high-LET IR. Confluent human fibroblasts were exposed in the presence or absence of a gap junction inhibitor to 200kV X rays (LET∼1.7keV/μm), carbon ions (LET∼76keV/μm), silicon ions (LET∼113keV/μm) or iron ions (LET∼400keV/μm) that resulted in isosurvival levels. The fibroblasts were incubated for various times at 37°C. As expected, high-LET IR were more effective than were low-LET X rays at killing cells and damaging DNA shortly after irradiation. However, when cells were held in a confluent state for several hours, PLDR associated with a reduction in DNA damage, occurred only in cells exposed to X rays. Interestingly, inhibition of GJIC eliminated the enhancement of toxic effects, which resulted in an increase of cell survival and reduction in the level of micronucleus formation in cells exposed to high, but not in those exposed to low-LET IR. The experiment shows that gap-junction communication plays an important role in the propagation of stressful effects among irradiated cells exposed to high-LET IR while GJIC has only a minimal effect on PLDR and DNA damage following low-LET irradiation. Together, our results show that PLDR and induction of DNA damage clearly depend on gap-junction communication and radiation quality.
Collapse
Affiliation(s)
- Narongchai Autsavapromporn
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Masao Suzuki
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Ianik Plante
- University Space Research Association, NASA Johnson Space Center, Houston, TX 77058, USA
| | - Cuihua Liu
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Yukio Uchihori
- Radiation Measurement Research Section, Research, Development and Support Center, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | - Tom K. Hei
- Center of Radiological Research, Department of Radiation Oncology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY 10032, USA
| | - Edouard I. Azzam
- Department of Radiology, New Jersey Medical School Cancer Center-University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | - Takeshi Murakami
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Tong X, Dong S, Yu M, Wang Q, Tao L. Role of heteromeric gap junctions in the cytotoxicity of cisplatin. Toxicology 2013; 310:53-60. [PMID: 23747833 DOI: 10.1016/j.tox.2013.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 05/17/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023]
Abstract
In several systems, the presence of gap junctions made of a single connexin has been shown to enhance the cytotoxicity of cisplatin. However, most gap junction channels in vivo appear to be heteromeric (composed of more than one connexin isoform). Here we explore in HeLa cells the cytotoxicity to cisplatin that is enhanced by heteromeric gap junctions composed of Cx26 and Cx32, which have been shown to be more selective among biological permeants than the corresponding homomeric channels. We found that survival and subsequent proliferation of cells exposed to cisplatin were substantially reduced when gap junctions were present than when there were no gap junctions. Functional inhibition of gap junctions by oleamide enhanced survival/proliferation, and enhancement of gap junctions by retinoic acid decreased survival/proliferation. These effects occurred only in high density cultures, and the treatments were without effect when there was no opportunity for gap junction formation. The presence of functional gap junctions enhanced apoptosis as reflected in markers of both early-stage and late-stage apoptosis. Furthermore, analysis of caspases 3, 8 and 9 showed that functional gap junctions specifically induced apoptosis by the mitochondrial pathway. These results demonstrate that heteromeric Cx26/Cx32 gap junctions increase the cytotoxicity of cisplatin by induction of apoptosis via the mitochondrial pathway.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pharmacy, Bengbu Medical College, Bengbu 233000, PR China
| | | | | | | | | |
Collapse
|