Moore K, Paterson C, Hicks J, Harrow S, McJury M. Stereotactic ablative body radiotherapy for non-small-cell lung cancer: setup reproducibility with novel arms-down immobilization.
Br J Radiol 2016;
89:20160227. [PMID:
27706946 DOI:
10.1259/bjr.20160227]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE
A clinical evaluation of the intrafraction and interfraction setup accuracy of a novel thermoplastic mould immobilization device and patient position in early-stage lung cancer being treated with stereotactic radiotherapy at the Beatson West of Scotland Cancer Centre, Glasgow, UK.
METHODS
35 patients were immobilized in a novel, arms-down position, with a four-point Klarity™ (Klarity Medical Products, Ohio, US) clear thermoplastic mould fixed to a SinMed (CIVCO Medical solutions, lowa, US) head and neck board. A knee support was also used for patient comfort and support. Pre- and post-treatment kilovoltage cone beam CT (CBCT) images were fused with the planning CT scan to determine intra- and interfraction motion. A total of 175 CBCT scans were analysed in the longitudinal, vertical and lateral directions.
RESULTS
The mean intrafraction errors were 0.05 ± 0.77 mm (lateral), 0.44 ± 1.2 mm (superior-inferior) and -1.44 ± 1.35 mm (anteroposterior), respectively. Mean composite three-dimensional displacement vector was 2.14 ± 1.2 mm. Interfraction errors were -0.66 ± 2.35 mm (lateral), -0.13 ± 3.11 mm (superior-inferior) and 0.00 ± 2.94 mm (anteroposterior), with three-dimensional vector 4.08 ± 2.73 mm.
CONCLUSION
Setup accuracy for lung image-guided stereotactic ablative radiotherapy using a unique immobilization device, where patients have arms by their sides, has been shown to be safe and favourably comparable to other published setup data where more complex and cumbersome devices were utilised. There was no arm toxicity reported and low arm doses. Advances in knowledge: We report on the accuracy of a novel patient immobilization device.
Collapse