1
|
Bäcklin E, Gonon A, Sköld M, Smedby Ö, Breznik E, Janerot-Sjoberg B. Pulmonary volumes and signs of chronic airflow limitation in quantitative computed tomography. Clin Physiol Funct Imaging 2024; 44:340-348. [PMID: 38576112 DOI: 10.1111/cpf.12880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Computed tomography (CT) offers pulmonary volumetric quantification but is not commonly used in healthy individuals due to radiation concerns. Chronic airflow limitation (CAL) is one of the diagnostic criteria for chronic obstructive pulmonary disease (COPD), where early diagnosis is important. Our aim was to present reference values for chest CT volumetric and radiodensity measurements and explore their potential in detecting early signs of CAL. METHODS From the population-based Swedish CArdioPulmonarybioImage Study (SCAPIS), 294 participants aged 50-64, were categorized into non-CAL (n = 258) and CAL (n = 36) groups based on spirometry. From inspiratory and expiratory CT images we compared lung volumes, mean lung density (MLD), percentage of low attenuation volume (LAV%) and LAV cluster volume between groups, and against reference values from static pulmonary function test (PFT). RESULTS The CAL group exhibited larger lung volumes, higher LAV%, increased LAV cluster volume and lower MLD compared to the non-CAL group. Lung volumes significantly deviated from PFT values. Expiratory measurements yielded more reliable results for identifying CAL compared to inspiratory. Using a cut-off value of 0.6 for expiratory LAV%, we achieved sensitivity, specificity and positive/negative predictive values of 72%, 85% and 40%/96%, respectively. CONCLUSION We present volumetric reference values from inspiratory and expiratory chest CT images for a middle-aged healthy cohort. These results are not directly comparable to those from PFTs. Measures of MLD and LAV can be valuable in the evaluation of suspected CAL. Further validation and refinement are necessary to demonstrate its potential as a decision support tool for early detection of COPD.
Collapse
Affiliation(s)
- Emelie Bäcklin
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
- Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Biomedical Engineering, Karolinska University Hospital, Stockholm, Sweden
| | - Adrian Gonon
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| | - Magnus Sköld
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Örjan Smedby
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
- Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Eva Breznik
- Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Birgitta Janerot-Sjoberg
- Department of Clinical Science, Intervention & Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Physiology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Treatment planning for non-small cell lung tumours: VMAT versus 3DCRT a quantitative dosimetric study. JOURNAL OF RADIOTHERAPY IN PRACTICE 2020. [DOI: 10.1017/s1460396919000864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractPurpose:The dosimetric impact of volumetric modulated arc therapy (VMAT) in lung cancer compared with 3D conformal radiotherapy (3DCRT) is well known. However, this improvement is often associated with an increase in low doses. The aim of this study is to quantify these results more accurately.Methods:For each patient treated with 3DCRT, a second VMAT treatment plan was calculated. Usual dosimetric parameters such as target coverage or dose to the organs at risk were used to achieve the comparisons.Results:For planning target volume, homogeneity and conformity indices showed superiority of VMAT (respectively 0·07 and 0·87) compared to 3DCRT (0·11 and 0·57). For spinal cord planning organ at risk volume, the median maximum dose was 45·6 Gy in 3DCRT against 19·3 Gy in VMAT. Heart volume receiving at least 35 Gy (V35) decreased from 15·64% in 3DCRT to 8·28% in VMAT. Oesophagus V50 was higher in 3DCRT (25·45%) than in VMAT (14·03%). The mean lung dose was 17·9 Gy in 3DCRT versus 15·5 Gy in VMAT. Moreover, volumes receiving 5, 10 and 15 Gy were not significantly different between the two techniques when VMAT was performed with partial arcs.Conclusion:All the dosimetric parameters were improved with VMAT compared to the 3DCRT without increasing low doses when using partial arcs.
Collapse
|
3
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
4
|
Utilisation de la scanographie quadridimensionnelle : principaux aspects techniques et intérêts cliniques. Cancer Radiother 2019; 23:334-341. [DOI: 10.1016/j.canrad.2018.07.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 11/22/2022]
|
5
|
Thoracic Organ Doses and Cancer Risk from Low Pitch Helical 4-Dimensional Computed Tomography Scans. BIOMED RESEARCH INTERNATIONAL 2019; 2018:8927290. [PMID: 30345309 PMCID: PMC6174794 DOI: 10.1155/2018/8927290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/18/2018] [Accepted: 09/04/2018] [Indexed: 11/17/2022]
Abstract
Purpose To investigate the dose depositions to organs at risk (OARs) and associated cancer risk in cancer patients scanned with 4-dimensional computed tomography (4DCT) as compared with conventional 3DCT. Methods and Materials The radiotherapy treatment planning CT image and structure sets of 102 patients were converted to CT phantoms. The effective diameters of those patients were computed. Thoracic scan protocols in 4DCT and 3DCT were simulated and verified with a validated Monte Carlo code. The doses to OARs (heart, lungs, esophagus, trachea, spinal cord, and skin) were calculated and their correlations with patient effective diameter were investigated. The associated cancer risk was calculated using the published models in BEIR VII reports. Results The average of mean dose to thoracic organs was in the range of 7.82-11.84 cGy per 4DCT scan and 0.64-0.85 cGy per 3DCT scan. The average dose delivered per 4DCT scan was 12.8-fold higher than that of 3DCT scan. The organ dose was linearly decreased as the function of patients' effective diameter. The ranges of intercept and slope of the linear function were 17.17-30.95 and -0.0278--0.0576 among patients' 4DCT scans, and 1.63-2.43 and -0.003--0.0045 among patients' 3DCT scans. Relative risk of cancer increased (with a ratio of 15.68:1) resulting from 4DCT scans as compared to 3DCT scans. Conclusions As compared to 3DCT, 4DCT scans deliver more organ doses, especially for pediatric patients. Substantial increase in lung cancer risk is associated with higher radiation dose from 4DCT and smaller patients' size as well as younger age.
Collapse
|
6
|
Zhou HY, Zhang JG, Li R, Zhang XM, Chen TW, Liu N, Jiang Y, Wu L. Tumour motion of oesophageal squamous cell carcinoma evaluated by cine MRI: associated with tumour location. Clin Radiol 2018; 73:676.e1-676.e7. [PMID: 29573787 DOI: 10.1016/j.crad.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/13/2018] [Indexed: 02/07/2023]
Abstract
AIM To evaluate the association between oesophageal tumour motion and tumour location using cine magnetic resonance imaging (MRI). MATERIALS AND METHODS Thirty-three consecutive patients with oesophageal squamous cell carcinoma were enrolled, and underwent cine MRI of oesophageal tumours. The maximum displacements in the anterior-posterior (A-P), superior-inferior (S-I), and left-right (L-R) directions of the tumours were assessed statistically to show their associations with tumour location. RESULTS Tumour motion in A-P and S-I directions increased from upper to lower oesophagus (r=0.505, p=0.003; and r=0.600, p<0.001, respectively). In A-P and S-I directions, tumours showed larger motion in the lower oesophagus than in the upper or middle oesophagus (all p<0.05). Motion of middle and lower oesophageal tumours in the S-I direction was larger than in L-R or A-P direction (all p<0.05). To provide 95% geometric coverage for the motion of upper oesophageal tumours, statistical analysis showed margins of 3.75 mm in L-R direction, 3.72 mm in A-P direction, and 5.38 mm in S-I direction. For the motion of tumours of the middle oesophagus, 95% coverage required margins of 8.50, 6.62, and 11.96 mm in L-R, A-P, and S-I directions, respectively, and for lower oesophageal tumours, 95% coverage required margins of 9.17, 9.68, and 12.98 mm in L-R, A-P, and S-I direction, respectively. CONCLUSION Oesophageal tumour motion in different directions can be associated with tumour location as shown on cine MRI, suggesting that the present findings could be helpful for better understanding oesophageal tumour motion and gating individualised radiation delivery strategies.
Collapse
Affiliation(s)
- H-Y Zhou
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China
| | - J-G Zhang
- Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - R Li
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China
| | - X-M Zhang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China
| | - T-W Chen
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China.
| | - N Liu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China
| | - Y Jiang
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China
| | - L Wu
- Sichuan Key Laboratory of Medical Imaging, and Department of Radiology, Nanchong, Sichuan, China
| |
Collapse
|
7
|
Jin F, Luo HL, Zhou J, He YN, Liu XF, Zhong MS, Yang H, Li C, Li QC, Huang X, Tian XM, Qiu D, He GL, Yin L, Wang Y. Cancer risk assessment in modern radiotherapy workflow with medical big data. Cancer Manag Res 2018; 10:1665-1675. [PMID: 29970965 PMCID: PMC6021004 DOI: 10.2147/cmar.s164980] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Modern radiotherapy (RT) is being enriched by big digital data and intensive technology. Multimodality image registration, intelligence-guided planning, real-time tracking, image-guided RT (IGRT), and automatic follow-up surveys are the products of the digital era. Enormous digital data are created in the process of treatment, including benefits and risks. Generally, decision making in RT tries to balance these two aspects, which is based on the archival and retrieving of data from various platforms. However, modern risk-based analysis shows that many errors that occur in radiation oncology are due to failures in workflow. These errors can lead to imbalance between benefits and risks. In addition, the exact mechanism and dose-response relationship for radiation-induced malignancy are not well understood. The cancer risk in modern RT workflow continues to be a problem. Therefore, in this review, we develop risk assessments based on our current knowledge of IGRT and provide strategies for cancer risk reduction. Artificial intelligence (AI) such as machine learning is also discussed because big data are transforming RT via AI.
Collapse
Affiliation(s)
- Fu Jin
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Huan-Li Luo
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Juan Zhou
- Forensic Identification Center, College of Criminal Investigation, Southwest University of Political Science and Law, Chongqing, People’s Republic of China
| | - Ya-Nan He
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xian-Feng Liu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Ming-Song Zhong
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Han Yang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Chao Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Qi-Cheng Li
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xia Huang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Xiu-Mei Tian
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Da Qiu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Guang-Lei He
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Li Yin
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| | - Ying Wang
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing Cancer Institute, Chongqing Cancer Hospital, Chongqing, People’s Republic of China
| |
Collapse
|
8
|
O'Connell D, Ruan D, Thomas DH, Dou TH, Lewis JH, Santhanam A, Lee P, Low DA. A prospective gating method to acquire a diverse set of free-breathing CT images for model-based 4DCT. Phys Med Biol 2018; 63:04NT03. [PMID: 29350191 DOI: 10.1088/1361-6560/aaa90f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Breathing motion modeling requires observation of tissues at sufficiently distinct respiratory states for proper 4D characterization. This work proposes a method to improve sampling of the breathing cycle with limited imaging dose. We designed and tested a prospective free-breathing acquisition protocol with a simulation using datasets from five patients imaged with a model-based 4DCT technique. Each dataset contained 25 free-breathing fast helical CT scans with simultaneous breathing surrogate measurements. Tissue displacements were measured using deformable image registration. A correspondence model related tissue displacement to the surrogate. Model residual was computed by comparing predicted displacements to image registration results. To determine a stopping criteria for the prospective protocol, i.e. when the breathing cycle had been sufficiently sampled, subsets of N scans where 5 ⩽ N ⩽ 9 were used to fit reduced models for each patient. A previously published metric was employed to describe the phase coverage, or 'spread', of the respiratory trajectories of each subset. Minimum phase coverage necessary to achieve mean model residual within 0.5 mm of the full 25-scan model was determined and used as the stopping criteria. Using the patient breathing traces, a prospective acquisition protocol was simulated. In all patients, phase coverage greater than the threshold necessary for model accuracy within 0.5 mm of the 25 scan model was achieved in six or fewer scans. The prospectively selected respiratory trajectories ranked in the (97.5 ± 4.2)th percentile among subsets of the originally sampled scans on average. Simulation results suggest that the proposed prospective method provides an effective means to sample the breathing cycle with limited free-breathing scans. One application of the method is to reduce the imaging dose of a previously published model-based 4DCT protocol to 25% of its original value while achieving mean model residual within 0.5 mm.
Collapse
Affiliation(s)
- D O'Connell
- Department of Radiation Oncology, University of California, Los Angeles, CA 90095, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Brady SL, Shulkin BL. Dose optimization: a review of CT imaging for PET attenuation correction. Clin Transl Imaging 2017. [DOI: 10.1007/s40336-017-0232-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Kannan S, Teo BKK, Solberg T, Hill-Kayser C. Organ motion in pediatric high-risk neuroblastoma patients using four-dimensional computed tomography. J Appl Clin Med Phys 2017; 18:107-114. [PMID: 28291918 PMCID: PMC5689899 DOI: 10.1002/acm2.12012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 10/16/2016] [Indexed: 11/15/2022] Open
Abstract
Purpose/objective(s) High‐risk neuroblastoma (HR‐NBL) requires multimodality treatment, including external beam radiation of the primary tumor site following resection. Radiotherapy planning must take into account motion of the target and adjacent normal anatomy, both of which are poorly understood in the pediatric population, and which may differ significantly from those in adults. Methods/materials We examined 4DCT scans of 15 consecutive pediatric patients treated for HR‐NBL, most with tumors in the abdominal cavity. The diaphragm and organs at risk were contoured at full inhale, full exhale, and on free‐breathing scans. Maximum displacement of organs between full inhale and full exhale was measured in the anterior, posterior, superior, inferior, left, and right directions, as was displacement of centroids in the A/P, S/I, and L/R axes. Contours on free‐breathing scans were compared to those on 4D scans. Results Maximum displacement was along the S/I axis, with the superior aspects of organs moving more than the inferior, implying organ compression with respiration. Liver and spleen exhibited the largest motion, which correlated strongly with the S/I motion of the diaphragm. The maximum organ motion observed in the abdomen and thorax were 4.5 mm and 7.4 mm, respectively, while maximum diaphragm displacement was 5.7 mm. Overall findings mirrored observations in adults, but with smaller magnitudes, as expected. No consistent margins could be added to the free‐breathing scans to encompass the motion determined using 4DCT. Conclusions Organ motion within the pediatric abdomen and pelvis is similar to that observed in adults, but with smaller magnitude. Precise margins to accommodate motion are patient‐specific, underscoring the need for 4DCT scanning when possible.
Collapse
Affiliation(s)
- Sneha Kannan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Boon-Keng Kevin Teo
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy Solberg
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christine Hill-Kayser
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
11
|
Kalantari F, Wang J. Attenuation correction in 4D-PET using a single-phase attenuation map and rigidity-adaptive deformable registration. Med Phys 2017; 44:522-532. [PMID: 27987223 DOI: 10.1002/mp.12063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/11/2022] Open
Abstract
PURPOSE Four-dimensional positron emission tomography (4D-PET) imaging is a potential solution to the respiratory motion effect in the thoracic region. Computed tomography (CT)-based attenuation correction (AC) is an essential step toward quantitative imaging for PET. However, due to the temporal difference between 4D-PET and a single attenuation map from CT, typically available in routine clinical scanning, motion artifacts are observed in the attenuation-corrected PET images, leading to errors in tumor shape and uptake. We introduced a practical method to align single-phase CT with all other 4D-PET phases for AC. METHODS A penalized non-rigid Demons registration between individual 4D-PET frames without AC provides the motion vectors to be used for warping single-phase attenuation map. The non-rigid Demons registration was used to derive deformation vector fields (DVFs) between PET matched with the CT phase and other 4D-PET images. While attenuated PET images provide useful data for organ borders such as those of the lung and the liver, tumors cannot be distinguished from the background due to loss of contrast. To preserve the tumor shape in different phases, an ROI-covering tumor was excluded from nonrigid transformation. Instead the mean DVF of the central region of the tumor was assigned to all voxels in the ROI. This process mimics a rigid transformation of the tumor along with a nonrigid transformation of other organs. A 4D-XCAT phantom with spherical lung tumors, with diameters ranging from 10 to 40 mm, was used to evaluate the algorithm. The performance of the proposed hybrid method for attenuation map estimation was compared to (a) the Demons nonrigid registration only and (b) a single attenuation map based on quantitative parameters in individual PET frames. RESULTS Motion-related artifacts were significantly reduced in the attenuation-corrected 4D-PET images. When a single attenuation map was used for all individual PET frames, the normalized root-mean-square error (NRMSE) values in tumor region were 49.3% (STD: 8.3%), 50.5% (STD: 9.3%), 51.8% (STD: 10.8%) and 51.5% (STD: 12.1%) for 10-mm, 20-mm, 30-mm, and 40-mm tumors, respectively. These errors were reduced to 11.9% (STD: 2.9%), 13.6% (STD: 3.9%), 13.8% (STD: 4.8%), and 16.7% (STD: 9.3%) by our proposed method for deforming the attenuation map. The relative errors in total lesion glycolysis (TLG) values were -0.25% (STD: 2.87%) and 3.19% (STD: 2.35%) for 30-mm and 40-mm tumors, respectively, in proposed method. The corresponding values for Demons method were 25.22% (STD: 14.79%) and 18.42% (STD: 7.06%). Our proposed hybrid method outperforms the Demons method especially for larger tumors. For tumors smaller than 20 mm, nonrigid transformation could also provide quantitative results. CONCLUSION Although non-AC 4D-PET frames include insignificant anatomical information, they are still useful to estimate the DVFs to align the attenuation map for accurate AC. The proposed hybrid method can recover the AC-related artifacts and provide quantitative AC-PET images.
Collapse
Affiliation(s)
- Faraz Kalantari
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75235-8808, USA
| | - Jing Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75235-8808, USA
| |
Collapse
|
12
|
Graeff C. Robustness of 4D-optimized scanned carbon ion beam therapy against interfractional changes in lung cancer. Radiother Oncol 2017; 122:387-392. [PMID: 28073579 DOI: 10.1016/j.radonc.2016.12.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND PURPOSE Moving targets could be conformally treated with actively scanned carbon ion beams using 4D-optimization. As this heavily exploits 4D-CTs, an important question is whether the conformity also upholds in the context of interfractional changes, i.e. variable positioning, anatomy and breathing patterns. MATERIALS AND METHODS In 4 lung cancer patients, 6 weekly 4D-CTs were available. 4D-CTs and their phases were non-rigidly registered to propagate contours and 4D-doses. On the first 4D-CT, a 4D-optimized plan delivering a uniform dose to each motion phase (total dose 9.4Gy(RBE)) was simulated, as well as an ITV plan for comparison. On the five following 4D-CTs, 4D-dose was forward calculated and evaluated for target coverage and conformity. Variable uniform (3-7mm) and range margins (2mm/%) were investigated. RESULTS For all patients, target coverage (V95>95% accumulated over 5 fractions) could be achieved, but with variable margin size weakly depending on motion amplitude and range changes. The same margins were also necessary for ITV plans, which lead to lower conformity and higher integral doses. CONCLUSION 4D-optimization appears feasible also under interfractional changes and maintains a dosimetric advantage over less conformal ITV irradiations. Further studies are needed to identify patients benefiting most from the technically more complex 4D-optimization.
Collapse
Affiliation(s)
- Christian Graeff
- GSI Helmholzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| |
Collapse
|
13
|
Thomas DH, Ruan D, Williams P, Lamb J, White BM, Dou T, O’Connell D, Lee P, Low DA. Is there an ideal set of prospective scan acquisition phases for fast-helical based 4D-CT? Phys Med Biol 2016; 61:N632-N641. [DOI: 10.1088/0031-9155/61/23/n632] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Kalantari F, Li T, Jin M, Wang J. Respiratory motion correction in 4D-PET by simultaneous motion estimation and image reconstruction (SMEIR). Phys Med Biol 2016; 61:5639-61. [PMID: 27385378 DOI: 10.1088/0031-9155/61/15/5639] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In conventional 4D positron emission tomography (4D-PET), images from different frames are reconstructed individually and aligned by registration methods. Two issues that arise with this approach are as follows: (1) the reconstruction algorithms do not make full use of projection statistics; and (2) the registration between noisy images can result in poor alignment. In this study, we investigated the use of simultaneous motion estimation and image reconstruction (SMEIR) methods for motion estimation/correction in 4D-PET. A modified ordered-subset expectation maximization algorithm coupled with total variation minimization (OSEM-TV) was used to obtain a primary motion-compensated PET (pmc-PET) from all projection data, using Demons derived deformation vector fields (DVFs) as initial motion vectors. A motion model update was performed to obtain an optimal set of DVFs in the pmc-PET and other phases, by matching the forward projection of the deformed pmc-PET with measured projections from other phases. The OSEM-TV image reconstruction was repeated using updated DVFs, and new DVFs were estimated based on updated images. A 4D-XCAT phantom with typical FDG biodistribution was generated to evaluate the performance of the SMEIR algorithm in lung and liver tumors with different contrasts and different diameters (10-40 mm). The image quality of the 4D-PET was greatly improved by the SMEIR algorithm. When all projections were used to reconstruct 3D-PET without motion compensation, motion blurring artifacts were present, leading up to 150% tumor size overestimation and significant quantitative errors, including 50% underestimation of tumor contrast and 59% underestimation of tumor uptake. Errors were reduced to less than 10% in most images by using the SMEIR algorithm, showing its potential in motion estimation/correction in 4D-PET.
Collapse
Affiliation(s)
- Faraz Kalantari
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | | | | |
Collapse
|
15
|
Chamberland M, McEwen MR, Xu T. Technical aspects of real time positron emission tracking for gated radiotherapy. Med Phys 2016; 43:783-95. [PMID: 26843241 DOI: 10.1118/1.4939664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Respiratory motion can lead to treatment errors in the delivery of radiotherapy treatments. Respiratory gating can assist in better conforming the beam delivery to the target volume. We present a study of the technical aspects of a real time positron emission tracking system for potential use in gated radiotherapy. METHODS The tracking system, called PeTrack, uses implanted positron emission markers and position sensitive gamma ray detectors to track breathing motion in real time. PeTrack uses an expectation-maximization algorithm to track the motion of fiducial markers. A normalized least mean squares adaptive filter predicts the location of the markers a short time ahead to account for system response latency. The precision and data collection efficiency of a prototype PeTrack system were measured under conditions simulating gated radiotherapy. The lung insert of a thorax phantom was translated in the inferior-superior direction with regular sinusoidal motion and simulated patient breathing motion (maximum amplitude of motion ±10 mm, period 4 s). The system tracked the motion of a (22)Na fiducial marker (0.34 MBq) embedded in the lung insert every 0.2 s. The position of the was marker was predicted 0.2 s ahead. For sinusoidal motion, the equation used to model the motion was fitted to the data. The precision of the tracking was estimated as the standard deviation of the residuals. Software was also developed to communicate with a Linac and toggle beam delivery. In a separate experiment involving a Linac, 500 monitor units of radiation were delivered to the phantom with a 3 × 3 cm photon beam and with 6 and 10 MV accelerating potential. Radiochromic films were inserted in the phantom to measure spatial dose distribution. In this experiment, the period of motion was set to 60 s to account for beam turn-on latency. The beam was turned off when the marker moved outside of a 5-mm gating window. RESULTS The precision of the tracking in the IS direction was 0.53 mm for a sinusoidally moving target, with an average count rate ∼250 cps. The average prediction error was 1.1 ± 0.6 mm when the marker moved according to irregular patient breathing motion. Across all beam deliveries during the radiochromic film measurements, the average prediction error was 0.8 ± 0.5 mm. The maximum error was 2.5 mm and the 95th percentile error was 1.5 mm. Clear improvement of the dose distribution was observed between gated and nongated deliveries. The full-width at halfmaximum of the dose profiles of gated deliveries differed by 3 mm or less than the static reference dose distribution. Monitoring of the beam on/off times showed synchronization with the location of the marker within the latency of the system. CONCLUSIONS PeTrack can track the motion of internal fiducial positron emission markers with submillimeter precision. The system can be used to gate the delivery of a Linac beam based on the position of a moving fiducial marker. This highlights the potential of the system for use in respiratory-gated radiotherapy.
Collapse
Affiliation(s)
- Marc Chamberland
- Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Malcolm R McEwen
- Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Tong Xu
- Department of Physics, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| |
Collapse
|
16
|
Nakao M, Obara S, Nabatame K, Akahane K, Sanada S, Shirai T. Estimation of organ doses and effective doses in image-guided respiration-gated radiotherapy. RADIATION PROTECTION DOSIMETRY 2016; 168:83-91. [PMID: 25848094 DOI: 10.1093/rpd/ncv015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 02/05/2015] [Indexed: 06/04/2023]
Abstract
Dose conformity in thoracic and abdominal ion-beam radiotherapy is degraded by respiratory motion. To improve conformity, an image-guided respiration-gated system can be used in the treatment room. The purpose of this study was to estimate the organ doses and effective doses to patients from an image-guided respiration-gated system. Glass dosemeters were inserted into an adult anthropomorphic phantom and were attached to the surface on the phantom. The phantom was placed on the treatment couch, and the imaging dose from fluoroscopy was evaluated. In addition to the organ doses, the effective doses were also estimated according to the ICRP Publication 103. The irradiation time is over 3-5 min per beam angle. When image acquisition conditions were assumed for thoracic treatment, the effective doses and maximal skin doses were 0.48-0.79 mSv and 5.9-9.9 mGy, respectively. The estimated doses can be the base data for considering radiological protection in the radiotherapy.
Collapse
Affiliation(s)
- Minoru Nakao
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan Kanazawa University, 5-11-80, Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Satoshi Obara
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Kuniaki Nabatame
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Keiichi Akahane
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shigeru Sanada
- Kanazawa University, 5-11-80, Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Toshiyuki Shirai
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
17
|
Alaei P, Spezi E. Imaging dose from cone beam computed tomography in radiation therapy. Phys Med 2015; 31:647-58. [PMID: 26148865 DOI: 10.1016/j.ejmp.2015.06.003] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 12/26/2022] Open
Abstract
Imaging dose in radiation therapy has traditionally been ignored due to its low magnitude and frequency in comparison to therapeutic dose used to treat patients. The advent of modern, volumetric, imaging modalities, often as an integral part of linear accelerators, has facilitated the implementation of image-guided radiation therapy (IGRT), which is often accomplished by daily imaging of patients. Daily imaging results in additional dose delivered to patient that warrants new attention be given to imaging dose. This review summarizes the imaging dose delivered to patients as the result of cone beam computed tomography (CBCT) imaging performed in radiation therapy using current methods and equipment. This review also summarizes methods to calculate the imaging dose, including the use of Monte Carlo (MC) and treatment planning systems (TPS). Peripheral dose from CBCT imaging, dose reduction methods, the use of effective dose in describing imaging dose, and the measurement of CT dose index (CTDI) in CBCT systems are also reviewed.
Collapse
Affiliation(s)
| | - Emiliano Spezi
- School of Engineering, Cardiff University, Cardiff, Wales, UK; Velindre Cancer Centre, Cardiff, Wales, UK
| |
Collapse
|
18
|
Nguyen NTA, Charron G, Blais D, Roberge D. Turn down the noise—a blinded evaluation of iterative image reconstruction in radiation therapy computed tomography simulation. Pract Radiat Oncol 2015; 5:e393-400. [DOI: 10.1016/j.prro.2014.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/23/2014] [Accepted: 12/29/2014] [Indexed: 11/27/2022]
|