1
|
Ristic-Fira AM, Keta OD, Petković VD, Cammarata FP, Petringa G, Cirrone PG, Cuttone G, Incerti S, Petrović IM. DNA damage assessment of human breast and lung carcinoma cells irradiated with protons and carbon ions. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1825035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
| | - Otilija D. Keta
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Vladana D. Petković
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| | - Francesco P. Cammarata
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
- CNR-IBFM, UOS, Cefalù, Italy
| | - Giada Petringa
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Pablo G.A. Cirrone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | - Giacomo Cuttone
- Istituto Nazionale Di Fisica Nucleare, Laboratori Nazionali Del Sud, Catania, Italy
| | | | - Ivan M. Petrović
- Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Li S, Bouchy S, Penninckx S, Marega R, Fichera O, Gallez B, Feron O, Martinive P, Heuskin AC, Michiels C, Lucas S. Antibody-functionalized gold nanoparticles as tumor-targeting radiosensitizers for proton therapy. Nanomedicine (Lond) 2019; 14:317-333. [PMID: 30675822 DOI: 10.2217/nnm-2018-0161] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
AIM This study aimed at developing antibody-functionalized gold nanoparticles (AuNPs) to selectively target cancer cells and probing their potential radiosensitizing effects under proton irradiation. MATERIALS & METHODS AuNPs were conjugated with cetuximab (Ctxb-AuNPs). Ctxb-AuNP uptake was evaluated by transmission electron microscopy and atomic absorption spectroscopy. Radioenhancing effect was assessed using conventional clonogenic assay. RESULTS & CONCLUSION Ctxb-AuNPs specifically bound to and accumulated in EGFR-overexpressing A431 cells, compared with EGFR-negative MDA-MB-453 cells. Ctxb-AuNPs enhanced the effect of proton irradiation in A431 cells but not in MDA-MB-453 cells. These data indicate, for the first time, that combining enhanced uptake by specific targeting and radioenhancing effect, using conjugated AuNPs, is a promising strategy to increase cell killing by protontherapy.
Collapse
Affiliation(s)
- Sha Li
- Research Center for the Physics of Matter & Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Sandra Bouchy
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Sebastien Penninckx
- Research Center for the Physics of Matter & Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Riccardo Marega
- Research Center for the Physics of Matter & Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Ornella Fichera
- Research Center for the Physics of Matter & Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Bernard Gallez
- Biomedical Magnetic Resonance Group (REMA), Louvain Drug Research Institute, Université Catholique de Louvain, B-1200 Woluwé, Saint Lambert, Belgium
| | - Olivier Feron
- Pole of Pharmacology & Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), UCL (Université Catholique de Louvain), B-1200 Brussels, Belgium
| | - Philippe Martinive
- Department of Radiotherapy & Oncology, CHU & University of Liège, B-4000 Liège, Belgium
| | - Anne-Catherine Heuskin
- Research Center for the Physics of Matter & Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Carine Michiels
- Unité de Recherche en Biologie Cellulaire (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| | - Stéphane Lucas
- Research Center for the Physics of Matter & Radiation (PMR-LARN), Namur Research Institute for Life Sciences (NARILIS), University of Namur, B-5000 Namur, Belgium
| |
Collapse
|
3
|
Li S, Penninckx S, Karmani L, Heuskin AC, Watillon K, Marega R, Zola J, Corvaglia V, Genard G, Gallez B, Feron O, Martinive P, Bonifazi D, Michiels C, Lucas S. LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation. NANOTECHNOLOGY 2016; 27:455101. [PMID: 27694702 DOI: 10.1088/0957-4484/27/45/455101] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The development of new modalities and protocols is of major interest to improve the outcome of cancer treatment. Given the appealing physical properties of protons and the emerging evidence of biological relevance of the use of gold nanoparticles (GNPs), the radiosensitization effects of GNPs (5 or 10 nm) have been investigated in vitro in combination with a proton beam of different linear energy transfer (LET). After the incubation with GNPs for 24 h, nanoparticles were observed in the cytoplasm of A431 cells exposed to 10 nm GNPs, and in the cytoplasm as well as the nucleus of cells exposed to 5 nm GNPs. Cell uptake of 0.05 mg ml-1 of GNPs led to 0.78 pg Au/cell and 0.30 pg Au/cell after 24 h incubation for 10 and 5 nm GNPs respectively. A marked radiosensitization effect of GNPs was observed with 25 keV μm-1 protons, but not with 10 keV μm-1 protons. This effect was more pronounced for 10 nm GNPs than for 5 nm GNPs. By using a radical scavenger, a major role of reactive oxygen species in the amplification of the death of irradiated cell was identified. All together, these results open up novel perspectives for using high-Z metallic NPs in protontherapy.
Collapse
Affiliation(s)
- Sha Li
- Research center for the Physics of Matter and Radiation (PMR-LARN), Namur Research Institute For Life Science (NARILIS), University of Namur, B-5000 Namur, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|