1
|
Hamza AM, Ali WDK, Hassanein N, Albassam WB, Barry M, AlFaifi AMM, Altayyar KAS, Aboabat NAM, Alshaiddi WKF, AbuSabbah HMH, Alamri AH, Albabtain SAH, Alsayed E. Relation between macrophage inflammatory protein-1 and intercellular adhesion molecule-1 and computed tomography findings in critically-ill saudi covid-19 patients. J Infect Public Health 2022; 15:1497-1502. [PMID: 36423464 PMCID: PMC9617641 DOI: 10.1016/j.jiph.2022.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/06/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Several, clinical and biochemical factors were suggested as risk factors for more severe forms of Covid-19. Macrophage inflammatory protein-1 alpha (MIP-1α, CCL3) is a chemokine mainly involved in cell adhesion and migration. Intracellular adhesion molecule 1 (ICAM-1) is an inducible cell adhesion molecule involved in multiple immune processes. The present study aimed to assess the relationship between baseline serum MIP-1α and ICAM-1 level in critically-ill Covid-19 patients and the severity of computed tomography (CT) findings. METHODS The study included 100 consecutive critically-ill patients with Covid-19 infection. Diagnosis of infection was established on the basis of RT-PCR tests. Serum MIP-1α and ICAM-1 levels were assessed using commercially available ELISA kits. All patients were subjected to a high-resolution computed tomography assessment. RESULTS According to the computed tomography severity score, patients were classified into those with moderate/severe (n=49) and mild (n = 51) pulmonary involvement. Severe involvement was associated with significantly higher MIP-1α and ICAM-1 level. Correlation analysis identified significant positive correlations between MIP-1α and age, D-dimer, IL6, in contrast, there was an inverse correlation with INF-alpha. Additionally, ICAM-1 showed significant positive correlations with age, D-Dimer,- TNF-α, IL6,while an inverse correlation with INF-alpha was observed. CONCLUSIONS MIP-1α and ICAM-1 level are related to CT radiological severity in Covid-19 patients. Moreover, these markers are well-correlated with other inflammatory markers suggesting that they can be used as reliable prognostic markers in Covid-19 patients.
Collapse
Affiliation(s)
- Aljohara Mohmoud Hamza
- Department of Anesthesia, Princess Nourah Bint Abdulrahman University, Kingdom of Saudi Arabia
| | | | - Nagwa Hassanein
- Department of Clinical Pathology, Faculty of medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Waddah Bader Albassam
- Radiology Department, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | - Mohammad Barry
- Radiology Department, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | - Abdullah Mofareh Mousa AlFaifi
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | | | - Nuha Abdulrahman M. Aboabat
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | - Wafa Khaled Fahad Alshaiddi
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | | | - Ahmed Hameed Alamri
- Department of pathology and Laboratory Medicine, King Abdullah Bin Abdulaziz University Hospital, Kingdom of Saudi Arabia
| | | | - Eman Alsayed
- Department of Clinical Pathology, Minia University, Egypt,Corresponding author
| |
Collapse
|
2
|
Schwarz E, Carson WE. Analysis of potential biomarkers of response to IL‐12 therapy. J Leukoc Biol 2022; 112:557-567. [PMID: 35790025 PMCID: PMC9542878 DOI: 10.1002/jlb.5ru1221-675r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/07/2022] [Indexed: 11/10/2022] Open
Abstract
IL‐12 is a proinflammatory cytokine capable of inducing a wide range of effects on both innate and adaptive immune responses. Its stimulatory effects on T cells and NK cells have led to its classification as a potential inducer of antitumor immunity. Clinical trials have been attempting to harness its immune‐stimulating capacity since the 1990s and have had much success despite notable toxicity issues early on. Several methods of IL‐12 delivery have been employed including i.v., s.c., and local administrations as well as plasmid and gene therapies. However, despite differing methods, dosages, and cancer types utilized in these clinical trials, there are still many patients who do not respond to IL‐12 therapy. This creates an opportunity for further investigation into the immunologic differences between responding and nonresponding patients in order to better understand the variable efficacy of IL‐12 therapy. This review focuses on a limited collection of IL‐12 clinical trials, which further analyzed these individual subsets and detected biologic variables correlating with differential patient responses. A comprehensive review of these potential biomarkers identified 7 analytes that correlated with beneficial patient responses in 3 or more clinical trials. These were increased levels of IFN‐γ, IP‐10, TNF‐α, MIP‐1α, MIG, and CD4+ and CD8+ T cells, with a decrease in VEGF, bFGF, FoxP3+ T regulatory cells, and M2 macrophages. These potential biomarkers highlight the possibility of identifying immunologic determinants of patient response to IL‐12 therapy to conserve valuable resources and benefit patients.
Collapse
Affiliation(s)
- Emily Schwarz
- Biomedical Sciences Graduate Program, College of Medicine The Ohio State University Columbus Ohio USA
| | - William E. Carson
- Comprehensive Cancer Center The Ohio State University Columbus Ohio USA
- Department of Surgery, Division of Surgical Oncology The Ohio State University Columbus Ohio USA
| |
Collapse
|
3
|
Sung PS. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin Mol Hepatol 2022; 28:333-350. [PMID: 34665953 PMCID: PMC9293612 DOI: 10.3350/cmh.2021.0308] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
The tumor microenvironment generally shows a substantial immunosuppressive activity in hepatocellular carcinoma (HCC), accounting for the suboptimal efficacy of immune-based treatments for this difficult-to-treat cancer. The crosstalk between tumor cells and various cell types in the tumor microenvironment is strongly related to HCC progression and treatment resistance. Monocytes are recruited to the HCC tumor microenvironment by various factors and become tumor-associated macrophages (TAMs) with distinct phenotypes. TAMs often contribute to weakened tumor-specific immune responses and a more aggressive phenotype of malignancy. Recent single-cell RNA-sequencing data have demonstrated the central roles of specific TAMs in tumorigenesis and treatment resistance by their interactions with various cell populations in the HCC tumor microenvironment. This review focuses on the roles of TAMs and the crosstalk between TAMs and neighboring cell types in the HCC tumor microenvironment.
Collapse
Affiliation(s)
- Pil Soo Sung
- The Catholic University Liver Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Wang L, Jiang J, Chen Y, Jia Q, Chu Q. The roles of CC chemokines in response to radiation. Radiat Oncol 2022; 17:63. [PMID: 35365161 PMCID: PMC8974090 DOI: 10.1186/s13014-022-02038-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/20/2022] [Indexed: 01/21/2023] Open
Abstract
Radiotherapy is an effective regimen for cancer treatment alone or combined with chemotherapy or immunotherapy. The direct effect of radiotherapy involves radiation-induced DNA damage, and most studies have focused on this area to improve the efficacy of radiotherapy. Recently, the immunomodulatory effect of radiation on the tumour microenvironment has attracted much interest. Dying tumour cells can release multiple immune-related molecules, including tumour-associated antigens, chemokines, and inflammatory mediators. Then, immune cells are attracted to the irradiated site, exerting immunostimulatory or immunosuppressive effects. CC chemokines play pivotal roles in the trafficking process. The CC chemokine family includes 28 members that attract different immune subsets. Upon irradiation, tumour cells or immune cells can release different CC chemokines. Here, we mainly discuss the importance of CCL2, CCL3, CCL5, CCL8, CCL11, CCL20 and CCL22 in radiotherapy. In irradiated normal tissues, released chemokines induce epithelial to mesenchymal transition, thus promoting tissue injury. In the tumour microenvironment, released chemokines recruit cancer-associated cells, such as tumour-infiltrating lymphocytes, myeloid-derived suppressor cells and tumour-associated macrophages, to the tumour niche. Thus, CC chemokines have protumour and antitumour properties. Based on the complex roles of CC chemokines in the response to radiation, it would be promising to target specific chemokines to alleviate radiation-induced injury or promote tumour control.
Collapse
|
5
|
Zhou D, Luan J, Huang C, Li J. Tumor-Associated Macrophages in Hepatocellular Carcinoma: Friend or Foe? Gut Liver 2021; 15:500-516. [PMID: 33087588 PMCID: PMC8283292 DOI: 10.5009/gnl20223] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, and it has diverse etiologies with multiple mechanisms. The diagnosis of HCC typically occurs at advanced stages when there are limited therapeutic options. Hepatocarcinogenesis is considered a multistep process, and hepatic macrophages play a critical role in the inflammatory process leading to HCC. Emerging evidence has shown that tumor-associated macrophages (TAMs) are crucial components defining the HCC immune microenvironment and represent an appealing option for disrupting the formation and development of HCC. In this review, we summarize the current knowledge of the polarization and function of TAMs in the pathogenesis of HCC, as well as the mechanisms underlying TAM-related anti-HCC therapies. Eventually, novel insights into these important aspects of TAMs and their roles in the HCC microenvironment might lead to promising TAM-focused therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Dexi Zhou
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China.,Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, China.,School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Cheng Huang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Shen Y, Bu L, Li R, Chen Z, Tian F, Lu N, Ge Q, Bai Y, Lu Z. Screening effective differential expression genes for hepatic carcinoma with metastasis in the peripheral blood mononuclear cells by RNA-seq. Oncotarget 2018; 8:27976-27989. [PMID: 28427195 PMCID: PMC5438623 DOI: 10.18632/oncotarget.15855] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor metastasis is a multistep process involving a number of genetic alterations so that the genetic diagnosis is got increasingly attentions today. The aim of this study was to use RNA-seq to screen the effective differential expression genes in the peripheral blood mononuclear cells for the hepatic carcinoma with metastasis. The results showed that hepatic carcinoma samples gathered according to different metastasis. CCL3, CCL3L1, JUN, IL8, and IL1B were identified in inflammation mediated by chemokine and cytokine signaling pathway (P00031) in the hepatic carcinoma samples with metastasis, and subsequently confirmed by quantitative real-time polymerase chain reaction. In conclusions, CCL3, CCL3L1, JUN, IL8, and IL1B have the potential to be considered as candidates for future molecular diagnosis of the hepatic carcinoma with metastasis. This work may provide us with new visions into the metastasis process and potential efficient clinical diagnosis in the future.
Collapse
Affiliation(s)
- Yanting Shen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Lu Bu
- Department of Interventional Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, 210009, PR China
| | - Rui Li
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zhenzhu Chen
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Fei Tian
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Na Lu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Yunfei Bai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| | - Zuhong Lu
- Research Center for Learning Science, Southeast University, Nanjing, Jiangsu Province 210096, PR China.,State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province 210096, PR China
| |
Collapse
|