1
|
Evaluation of sperm fertilization capacity of large Japanese field mice (Apodemus speciosus) exposed to chronic low dose-rate radiation after the Fukushima accident. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Nakamura AJ. Beyond visualization of DNA double-strand breaks after radiation exposure. Int J Radiat Biol 2021; 98:522-527. [PMID: 33989105 DOI: 10.1080/09553002.2021.1930268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Radiation science and radiation biology are fields where milestones have been set by numerous woman researchers, as represented by Marie Curie. This shows that it is a research field that is like a model of research diversity in modern society. In this review, I will describe what kind of research activities I have conducted as a Japanese woman researcher in the field of radiation science research. In addition, as a Japanese woman radiobiologist, I will describe the sense of mission I felt after the Fukushima Nuclear Power Plant accident and the research issues we must challenge in the future. CONCLUSION As a Japanese woman researcher, I have felt a bias in gender balance in the field of science in Japan. Also, after the Fukushima nuclear Power Plant accident, I sometimes felt that woman researchers would be more suitable when sharing research results and specialized knowledge with the general public. In recent years, the importance of STEAM (Science-Technology-Engineering-Art-Mathematics) education has been highlighted all over the world, and I believe that the field of radiation science falls exactly into the STEAM education category. STEAM education is for people of all gender. I hope that radiation science research will lead to various younger generations, and that the gender balance of Japanese scientific researchers will increase.
Collapse
Affiliation(s)
- Asako J Nakamura
- Department of Biological Science, College of Sciences, Ibaraki University, Mito, Japan
| |
Collapse
|
3
|
Komatsu K, Iwasaki T, Murata K, Yamashiro H, Goh VST, Nakayama R, Fujishima Y, Ono T, Kino Y, Simizu Y, Takahashi A, Shinoda H, Ariyoshi K, Kasai K, Suzuki M, Palmerini MG, Belli M, Macchiarelli G, Oka T, Fukumoto M, Yoshida MA, Nakata A, Miura T. Morphological reproductive characteristics of testes and fertilization capacity of cryopreserved sperm after the Fukushima accident in raccoon (Procyon lotor). Reprod Domest Anim 2021; 56:484-497. [PMID: 33372327 DOI: 10.1111/rda.13887] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
Since the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident, we have established an archive system of livestock and wild animals from the surrounding ex-evacuation zone. Wildlife within the alert zone have been exposed to low-dose-rate (LDR) radiation for a long continuous time. In this study, we analysed the morphological characteristics of the testes and in vitro fertilization (IVF) capacity of cryopreserved sperm of racoons from the ex-evacuation zone of the FDNPP accident. The radioactivity of caesium-137 (137 Cs) was measured by gamma-ray spectrometry, and the measured radioactivity concentration was 300-6,630 Bq/kg in the Fukushima raccoons. Notably, normal spermatogenesis was observed in the seminiferous tubules of the testes, with the germinal epithelium composed of a spermatogenic cell lineage with no evident ultrastructural alterations; freeze-thawing sperm penetration ability was confirmed using the interspecific zona pellucida-free mouse oocytes IVF assays. This study revealed that the chronic and LDR radiation exposure associated with the FDNPP accident had no adverse effect on the reproductive characteristics and functions of male raccoons.
Collapse
Affiliation(s)
- Kazuki Komatsu
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tsugumi Iwasaki
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Kosuke Murata
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | | | - Ryo Nakayama
- Graduate School of Health Sciences, Hirosaki University, Aomori, Japan
| | - Yohei Fujishima
- Department of Radiation Biology, Tohoku University School of Medicine, Sendai, Japan
| | - Takumi Ono
- Graduate School of Science, Tohoku University, Sendai, Japan
| | - Yasushi Kino
- Graduate School of Science, Tohoku University, Sendai, Japan
| | | | | | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Kentaro Ariyoshi
- Integrated Center for Science and Humanities, Fukushima Medical University, Fukushima, Japan
| | - Kosuke Kasai
- Graduate School of Health Sciences, Hirosaki University, Aomori, Japan
| | - Masatoshi Suzuki
- International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Manuel Belli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Toshitaka Oka
- Sector of Nuclear Science Research, Japan Atomic Energy Agency, Ibaraki, Japan
| | - Manabu Fukumoto
- RIKEN Center for Advanced Intelligence Project, Pathology Informatics Team, Saitama, Japan
| | - Mitsuaki A Yoshida
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan
| | - Akifumi Nakata
- Department of Life Science, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Hokkaido, Japan
| | - Tomisato Miura
- Department of Risk Analysis and Biodosimetry, Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan
| |
Collapse
|
4
|
Endo S, Matsutani Y, Kajimoto T, Tanaka K, Suzuki M. Internal exposure rate conversion coefficients and absorbed fractions of mouse for 137Cs, 134Cs and 90Sr contamination in body. JOURNAL OF RADIATION RESEARCH 2020; 61:535-545. [PMID: 32500146 PMCID: PMC7336567 DOI: 10.1093/jrr/rraa030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to determine parameters for estimating the internal exposure of all organs in mouse experiments from the radioactivity concentration in organs. The estimation of internal exposure rate conversion coefficients and absorbed fractions for 137Cs, 134Cs and 90Sr by the Particle and Heavy Ion Transport code System (PHITS) with a voxel-based mouse phantom is presented. The geometry of the voxel phantom is constructed from computer tomography images of a mouse 9 cm in length weighing 23.9 g. The voxel-based mouse phantom has the following organs: brain, skull, heart, lungs, liver, stomach, spleen, kidneys, bladder, testis and tissue (tissue and other organs). Gamma- and beta-rays from 137Cs, 134Cs and 90Sr sources in each source organ are generated and scored for every target organ. The internal exposure rate conversion coefficients and absorbed fractions are calculated from deposition energies in each target organ from each source organ and are used to generate an internal exposure rate conversion coefficient matrix and an absorbed fraction matrix. The absorbed fractions of beta-rays in the source organs are roughly 0.5-0.8 for 137Cs and 134Cs, and the absorbed fractions of gamma-rays are <0.04 for 137Cs and <0.03 for 134Cs. The internal exposure rate conversion coefficient matrix is defined using the absorbed fractions. The calculated internal exposure rate coefficient matrix is tested under a uniform radioactivity concentration of 1 Bq/kg for 137Cs, 134Cs and 90Sr. The estimated internal exposure rates in the mouse whole body for 137Cs, 134Cs and 90Sr are 3.28 × 10-3, 2.55 × 10-3 and 1.20 × 10-2 μGy/d, respectively. These values are very similar to those for an ellipsoid frog (31.4 g) and an ellipsoid crab egg mass (12.6 g) reported in ICRP Publication 108.
Collapse
Affiliation(s)
- Satoru Endo
- Quantum Energy Applications, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yuki Matsutani
- Quantum Energy Applications, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Tsuyoshi Kajimoto
- Quantum Energy Applications, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kenichi Tanaka
- Quantum Energy Applications, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Masatoshi Suzuki
- International Research Institute of Disaster Science (IRIDeS), Tohoku University, Aramaki Aza-Aoba 468-1, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
5
|
Suzuki M, Suzuki H, Ishiguro H, Saito Y, Watanabe S, Kozutsumi T, Sochi Y, Nishi K, Urushihara Y, Kino Y, Numabe T, Sekine T, Chida K, Fukumoto M. Correlation of Radiocesium Activity between Muscle and Peripheral Blood of Live Cattle Depending on Presence or Absence of Radiocontamination in Feed. Radiat Res 2019; 192:589-601. [PMID: 31556846 DOI: 10.1667/rr15418.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To monitor radiocesium activity in skeletal muscle of live cattle, the animals were given radiocesium-contaminated feed continuously, then switched to contamination-free feed after radiocecium concentration in peripheral blood (PB) reached plateau. Radioactivity in skeletal muscles of neck and rump was measured by attaching the probe of a NaI survey meter closely on the body surface just above the muscle of the live cattle (external measurement). We validated the strong positive correlation between the value of the external measurement and radiocesium activity concentration of dissected muscle (r = 0.89, P < 0.001 for neck; r = 0.80, P < 0.001 for rump). Accumulation of radiocesium both in muscle and PB was proportional to the total amount of radiocesium cattle ingested. However, radioactivity concentration in PB was constant in the cattle that had continuously ingested radiocesium, lower than 2.0 × 105 Bq in total within 67 days from the beginning of radiocesium intake. In addition, the ratio of radiocesium activity in muscle to that in PB was lower during the time when radiocontaminated feed was ingested than that of contamination-free feed ingestion. Using the correlation of radioactivity between muscle and PB, we confirmed that a majority of the cattle in the ex-evacuation zone of the Fukushima Daiichi nuclear power plant accident, from 167 to 365 days after the accident occurred, were in the declining period of radiocesium intake.
Collapse
Affiliation(s)
- Masatoshi Suzuki
- Pathology, Institute of Development, Aging, and Cancer.,Institute for Disaster Reconstruction and Regeneration Research.,Institute for Radiation Disaster Medicine, International Research Institute of Disaster Science
| | - Hidehiko Suzuki
- Course of Miyagi Prefectural Government Livestock Experiment Station, Osaki, Miyagi, Japan
| | - Hirotoshi Ishiguro
- Course of Miyagi Prefectural Government Livestock Experiment Station, Osaki, Miyagi, Japan
| | - Yosuke Saito
- Course of Miyagi Prefectural Government Livestock Experiment Station, Osaki, Miyagi, Japan
| | - Satoshi Watanabe
- Course of Miyagi Prefectural Government Livestock Experiment Station, Osaki, Miyagi, Japan
| | - Tomoyuki Kozutsumi
- Course of Miyagi Prefectural Government Livestock Experiment Station, Osaki, Miyagi, Japan
| | - Yuichiro Sochi
- Course of Sendai Livestock Hygiene Center, Sendai, Miyagi, Japan
| | - Kiyoshi Nishi
- Course of Sendai Livestock Hygiene Center, Sendai, Miyagi, Japan
| | - Yusuke Urushihara
- Pathology, Institute of Development, Aging, and Cancer.,Department of Radiation Biology
| | - Yasushi Kino
- Institute for Radiochemistry, Department of Chemistry
| | - Takashi Numabe
- Course of Miyagi Prefectural Government Livestock Experiment Station, Osaki, Miyagi, Japan
| | - Tsutomu Sekine
- Institute for Natural Science, Institute for Excellence in Higher Education, Tohoku University, Sendai, Miyagi, Japan
| | - Koichi Chida
- Institute for Radiation Disaster Medicine, International Research Institute of Disaster Science.,Course of Radiological Technology, Health Sciences, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- Pathology, Institute of Development, Aging, and Cancer.,RIKEN Center for Advanced Intelligence Project, Pathology Informatics Team, Tokyo 103-0027, Japan
| |
Collapse
|
6
|
Schofield PN, Kulka U, Tapio S, Grosche B. Big data in radiation biology and epidemiology; an overview of the historical and contemporary landscape of data and biomaterial archives. Int J Radiat Biol 2019; 95:861-878. [DOI: 10.1080/09553002.2019.1589026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Paul N. Schofield
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Ulrike Kulka
- Bundesamt fuer Strahlenschutz, Neuherberg, Germany
| | - Soile Tapio
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health GmbH, Institute of Radiation Biology, Neuherberg, Germany
| | | |
Collapse
|
7
|
Saito K, Kuroda K, Suzuki R, Kino Y, Sekine T, Shinoda H, Yamashiro H, Fukuda T, Kobayashi J, Abe Y, Nishimura J, Urushihara Y, Yoneyama H, Fukumoto M, Isogai E. Intestinal Bacteria as Powerful Trapping Lifeforms for the Elimination of Radioactive Cesium. Front Vet Sci 2019; 6:70. [PMID: 30915344 PMCID: PMC6422879 DOI: 10.3389/fvets.2019.00070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 02/18/2019] [Indexed: 11/13/2022] Open
Abstract
In March 2011, an accident at the Fukushima Daiichi Nuclear Power Plant led to major problems, including the release of radionuclides such as Cesium (Cs)-137 into the environment. Ever since this accident, Cs-137 in foods has become a serious problem. In this study, we determined the concentration of Cs-137 in the feces, urine, and ruminal contents of cattle and demonstrated the possibility of its elimination from the body by intestinal bacteria. The results revealed a high Cs-137 concentration in the feces; in fact, this concentration was higher than that in skeletal muscles and other samples from several animals. Furthermore, intestinal bacteria were able to trap Cs-137, showing an uptake ratio within the range of 38–81% in vitro. This uptake appeared to be mediated through the sodium–potassium (Na+-K+) ion pump in the bacterial cell membrane. This inference was drawn based on the fact that the uptake ratio of Cs-137 was decreased in media with high potassium concentration. In addition, it was demonstrated that intestinal bacteria hindered the trapping of Cs-137 by the animal. Cattle feces showed high concentration of Cs-137 and intestinal bacteria trapped Cs-137. This study is the first report showing that intestinal bacteria contribute to the elimination of Cs-137 from the body.
Collapse
Affiliation(s)
- Kazuki Saito
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Kengo Kuroda
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Rie Suzuki
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Yasushi Kino
- Department of Chemistry, Tohoku University, Sendai, Japan
| | - Tsutomu Sekine
- Center for the Advancement of Higher Education, Tohoku University, Sendai, Japan
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Hideaki Yamashiro
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Tomokazu Fukuda
- Faculty of Science and Engineering, Iwate University, Morioka, Japan
| | - Jin Kobayashi
- School of Food, Agricultural and Environmental Sciences, Miyagi University, Sendai, Japan
| | - Yasuyuki Abe
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Junko Nishimura
- Department of Biotechnology and Environmental Engineering, Faculty of Engineering, Hachinohe Institute of Technology, Hachinohe, Japan
| | - Yusuke Urushihara
- Department of Radiation Biology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroshi Yoneyama
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | - Emiko Isogai
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Zander A, Paunesku T, Woloschak G. Radiation databases and archives - examples and comparisons. Int J Radiat Biol 2019; 95:1378-1389. [PMID: 30676164 DOI: 10.1080/09553002.2019.1572249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Studies of ionizing radiation effects through the archiving of data began with standardizing medical treatments in the early 1900s shortly after the discovery of X-rays. Once the breadth of the delayed effects of ionizing radiation was recognized, the need for long-term follow up became apparent. There are now many human archives of data from nuclear disasters and accidents, occupational exposures, and medical procedures. Planned animal irradiation experiments began around the time of the Cold War and included a variety of doses, fractions, dose rates, and types of ionizing radiation. The goal of most of these studies was to supplement information coming from human data through carefully planned experimental conditions and immediate and uninterrupted data collection. This review aims to highlight major archives and databases that have shaped the field of radiation biology and provide a broad range of the types of datasets currently available. By preserving all of these data and tissue sets, radiation biologists can combine databases and conduct large-scale analyses of detailed existing data and perform new assays with cutting edge scientific approaches.
Collapse
Affiliation(s)
- Alia Zander
- Feinberg School of Medicine, Radiation Oncology, Northwestern University , Chicago , IL , USA
| | - Tatjana Paunesku
- Feinberg School of Medicine, Radiation Oncology, Northwestern University , Chicago , IL , USA
| | - Gayle Woloschak
- Feinberg School of Medicine, Radiation Oncology, Northwestern University , Chicago , IL , USA
| |
Collapse
|
9
|
Haematological analysis of Japanese macaques (Macaca fuscata) in the area affected by the Fukushima Daiichi Nuclear Power Plant accident. Sci Rep 2018; 8:16748. [PMID: 30425289 PMCID: PMC6233195 DOI: 10.1038/s41598-018-35104-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/28/2018] [Indexed: 12/25/2022] Open
Abstract
Several populations of wild Japanese macaques (Macaca fuscata) inhabit the area around Fukushima Daiichi Nuclear Power Plant (FNPP). To measure and control the size of these populations, macaques are captured annually. Between May 2013 and December 2014, we performed a haematological analysis of Japanese macaques captured within a 40-km radius of FNPP, the location of a nuclear disaster two years post-accident. The dose-rate of radiocaesium was estimated using the ERICA Tool. The median internal dose-rate was 7.6 μGy/day (ranging from 1.8 to 219 μGy/day) and the external dose-rate was 13.9 μGy/day (ranging from 6.7 to 35.1 μGy/day). We performed multiple regression analyses to estimate the dose-rate effects on haematological values in peripheral blood and bone marrow. The white blood cell and platelet counts showed an inverse correlation with the internal dose-rate in mature macaques. Furthermore, the myeloid cell, megakaryocyte, and haematopoietic cell counts were inversely correlated and the occupancy of adipose tissue was positively correlated with internal dose-rate in femoral bone marrow of mature macaques. These relationships suggest that persistent whole body exposure to low-dose-rate radiation affects haematopoiesis in Japanese macaques.
Collapse
|
10
|
Fukuda T. Estimation of concentration of radionuclides in skeletal muscle from blood, based on the data from abandoned animals in Fukushima. Anim Sci J 2018; 89:843-847. [PMID: 29696737 PMCID: PMC6001777 DOI: 10.1111/asj.13018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/28/2017] [Indexed: 11/29/2022]
Abstract
The damage caused by the earthquake on 11 March, 2011 resulted in a serious nuclear accident in Japan. Due to the damage to the Fukushima Daiichi Nuclear Power Plant (FNPP), large amounts of radioactive substances were released into the environment. In particular, one of the largest safety concerns is radioactive cesium (134Cs and 137Cs). Due to the FNPP nuclear accident, a 20 km area was restricted from human activity, and various types of domestic animals were left in the zone. We collected the organs and tissues from sacrificed animals to obtain scientific data to evaluate the internal deposition of radioactive compounds. At first, we found there is a strong correlation between blood 137Cs and organ 137Cs with data from 44 cattle, indicating that skeletal muscle is the target organ of deposition of radioactive cesium. Second, we analyzed the relationship between blood 137Cs and muscle 137Cs within relatively lower radioactive concentration, suggesting that estimation of concentration of 137Cs is possible from blood concentration of 137Cs. Finally, we developed computer software to estimate the muscle 137Cs concentration from blood samples. Our study contributes to the food safety of livestock products.
Collapse
Affiliation(s)
- Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| |
Collapse
|
11
|
Koarai K, Kino Y, Takahashi A, Suzuki T, Shimizu Y, Chiba M, Osaka K, Sasaki K, Urushihara Y, Fukuda T, Isogai E, Yamashiro H, Oka T, Sekine T, Fukumoto M, Shinoda H. 90Sr specific activity of teeth of abandoned cattle after the Fukushima accident - teeth as an indicator of environmental pollution. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2018; 183:1-6. [PMID: 29274551 DOI: 10.1016/j.jenvrad.2017.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 05/27/2023]
Abstract
90Sr specific activity in the teeth of young cattle that were abandoned in Kawauchi village and Okuma town located in the former evacuation areas of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident were measured. Additionally, specific activity in contaminated surface soils sampled from the same area was measured. (1) All cattle teeth examined were contaminated with 90Sr. The specific activity, however, varied depending on the developmental stage of the teeth during the FNPP accident; teeth that had started development before the accident exhibited comparatively lower values, while teeth developed mainly after the accident showed higher values. (2) Values of 90Sr-specific activity in teeth formed after the FNPP accident were higher than those of the bulk soil but similar to those in the exchangeable fraction (water and CH3COONH4 soluble fractions) of the soil. The findings suggest that 90Sr was incorporated into the teeth during the process of development, and that 90Sr in the soluble and/or leachable fractions of the soil might migrate into teeth and contribute to the amount of 90Sr in the teeth. Thus, the concentration of 90Sr in teeth formed after the FNPP accident might reflect the extent of 90Sr pollution in the environment.
Collapse
Affiliation(s)
| | - Yasushi Kino
- Department of Chemistry, Tohoku University, Japan
| | | | - Toshihiko Suzuki
- Graduate School of Dentistry, Tohoku University, Japan; International Research Institute of Disaster Science, Tohoku University, Japan
| | | | - Mirei Chiba
- Graduate School of Dentistry, Tohoku University, Japan
| | - Ken Osaka
- Graduate School of Dentistry, Tohoku University, Japan; International Research Institute of Disaster Science, Tohoku University, Japan
| | | | | | | | - Emiko Isogai
- Graduate School of Agricultural Science, Tohoku University, Japan
| | | | - Toshitaka Oka
- Department of Chemistry, Tohoku University, Japan; Institute for Excellence in Higher Education, Tohoku University, Japan
| | - Tsutomu Sekine
- Department of Chemistry, Tohoku University, Japan; Institute for Excellence in Higher Education, Tohoku University, Japan.
| | | | | |
Collapse
|
12
|
Morimoto M, Kato A, Kobayashi J, Okuda K, Kuwahara Y, Kino Y, Abe Y, Sekine T, Fukuda T, Isogai E, Fukumoto M. Gene expression analyses of the small intestine of pigs in the ex-evacuation zone of the Fukushima Daiichi Nuclear Power Plant. BMC Vet Res 2017; 13:337. [PMID: 29141628 PMCID: PMC5688657 DOI: 10.1186/s12917-017-1263-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND After the accident at the Fukushima Daiichi Nuclear Power Plant, radioactive contaminants were released over a widespread area. Monitoring the biological effects of radiation exposure in animals in the ex-evacuation zone should be continued to understand the health effects of radiation exposure in humans. The present study aimed to clarify the effects of radiation by investigating whether there is any alteration in the morphology and gene expressions of immune molecules in the intestine of pigs and inobuta (wild boar and domestic pig hybrid) in the ex-evacuation zone in 2012. Gene expression analysis was performed in small intestine samples from pigs, which were collected from January to February 2012, in the ex-evacuation zone. Pigs lived freely in this zone, and their small intestine was considered to be affected by the dietary intake of radioactive contaminants. RESULTS Several genes were selected by microarray analysis for further investigation using real-time polymerase chain reaction. IFN-γ, which is an important inflammatory cytokine, and TLR3, which is a pattern recognize receptor for innate immune system genes, were highly elevated in these pigs. The expressions of the genes of these proteins were associated with the radiation level in the muscles. We also examined the alteration of gene expressions in wild boars 5 years after the disaster. The expression of IFN-γ and TLR3 remained high, and that of Cyclin G1, which is important in the cell cycle, was elevated. CONCLUSIONS We demonstrated that some changes in gene expression occurred in the small intestine of animals in the ex-evacuation zone after radiation. It is difficult to conclude that these alterations are caused by only artificial radionuclides from the Fukushima Daiichi Nuclear Power Plant. However, the animals in the ex-evacuation zone might have experienced some changes owing to radioactive materials, including contaminated soil, small animals, and insects. We need to continue monitoring the effects of long-term radiation exposure in living things.
Collapse
Affiliation(s)
- Motoko Morimoto
- School of Food, Agricultural, and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-Ku, Sendai, Miyagi, 982-0215, Japan.
| | - Ayaka Kato
- School of Food, Agricultural, and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-Ku, Sendai, Miyagi, 982-0215, Japan
| | - Jin Kobayashi
- School of Food, Agricultural, and Environmental Sciences, Miyagi University, 2-2-1 Hatatate, Taihaku-Ku, Sendai, Miyagi, 982-0215, Japan
| | - Kei Okuda
- Institute of Environmental Radioactivity, Fukushima University, Kanayagawa, Fukushima, Japan
| | - Yoshikazu Kuwahara
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Kino
- Department of Chemistry, Tohoku University, Sendai, Miyagi, Japan
| | - Yasuyuki Abe
- Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shobara, Hiroshima, Japan
| | - Tsutomu Sekine
- Institute for Excellence in Higher Education, Tohoku University, Sendai, Miyagi, Japan
| | - Tomokazu Fukuda
- Graduate School of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Emiko Isogai
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Manabu Fukumoto
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
13
|
Nakamura AJ, Suzuki M, Redon CE, Kuwahara Y, Yamashiro H, Abe Y, Takahashi S, Fukuda T, Isogai E, Bonner WM, Fukumoto M. The Causal Relationship between DNA Damage Induction in Bovine Lymphocytes and the Fukushima Nuclear Power Plant Accident. Radiat Res 2017; 187:630-636. [PMID: 28240558 DOI: 10.1667/rr14630.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The Fukushima Daiichi Nuclear Power Plant (FNPP) accident, the largest nuclear incident since the 1986 Chernobyl disaster, occurred when the plant was hit by a tsunami triggered by the Great East Japan Earthquake on March 11, 2011. The subsequent uncontrolled release of radioactive substances resulted in massive evacuations in a 20-km zone. To better understand the biological consequences of the FNPP accident, we have been measuring DNA damage levels in cattle in the evacuation zone. DNA damage was evaluated by assessing the levels of DNA double-strand breaks in peripheral blood lymphocytes by immunocytofluorescence-based quantification of γ-H2AX foci. A greater than two-fold increase in the fraction of damaged lymphocytes was observed in all animal cohorts within the evacuation zone, and the levels of DNA damage decreased slightly over the 700-day sample collection period. While the extent of damage appeared to be independent of the distance from the accident site and the estimated radiation dose from radiocesium, we observed age-dependent accumulation of DNA damage. Thus, this study, which was the first to evaluate the biological impact of the FNPP accident utilizing the γ-H2AX assays, indicated the causal relation between high levels of DNA damage in animals living in the evacuation zone and the FNPP accident.
Collapse
Affiliation(s)
- Asako J Nakamura
- a Department of Biological Sciences, College of Science, Ibaraki University, Mito, Ibaraki, Japan.,b Department of Anatomy and Cell Biology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Masatoshi Suzuki
- c Department of Pathology, Institutes of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Christophe E Redon
- d Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Yoshikazu Kuwahara
- c Department of Pathology, Institutes of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Hideaki Yamashiro
- e Faculty of Agriculture, Niigata University, Niigata, Niigata, Japan
| | - Yasuyuki Abe
- f National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Shintaro Takahashi
- c Department of Pathology, Institutes of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tomokazu Fukuda
- g Laboratory of Cell Engineering and Molecular Genetics, Faculty of Science and Engineering, Iwate University, Morioka, Iwate, Japan
| | - Emiko Isogai
- h Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - William M Bonner
- d Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Manabu Fukumoto
- c Department of Pathology, Institutes of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
14
|
Takino S, Yamashiro H, Sugano Y, Fujishima Y, Nakata A, Kasai K, Hayashi G, Urushihara Y, Suzuki M, Shinoda H, Miura T, Fukumoto M. Analysis of the Effect of Chronic and Low-Dose Radiation Exposure on Spermatogenic Cells of Male Large Japanese Field Mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant Accident. Radiat Res 2017; 187:161-168. [PMID: 28092218 DOI: 10.1667/rr14234.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this study we analyzed the effect of chronic and low-dose-rate (LDR) radiation on spermatogenic cells of large Japanese field mice ( Apodemus speciosus ) after the Fukushima Daiichi Nuclear Power Plant (FNPP) accident. In March 2014, large Japanese field mice were collected from two sites located in, and one site adjacent to, the FNPP ex-evacuation zone: Tanashio, Murohara and Akogi, respectively. Testes from these animals were analyzed histologically. External dose rate from radiocesium (combined 134Cs and 137Cs) in these animals at the sampling sites exhibited 21 μGy/day in Tanashio, 304-365 μGy/day in Murohara and 407-447 μGy/day in Akogi. In the Akogi group, the numbers of spermatogenic cells and proliferating cell nuclear antigen (PCNA)-positive cells per seminiferous tubule were significantly higher compared to the Tanashio and Murohara groups, respectively. TUNEL-positive apoptotic cells tended to be detected at a lower level in the Murohara and Akogi groups compared to the Tanashio group. These results suggest that enhanced spermatogenesis occurred in large Japanese field mice living in and around the FNPP ex-evacuation zone. It remains to be elucidated whether this phenomenon, attributed to chronic exposure to LDR radiation, will benefit or adversely affect large Japanese field mice.
Collapse
Affiliation(s)
- Sachio Takino
- a Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata, 950-2181, Japan
| | - Hideaki Yamashiro
- a Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata, 950-2181, Japan
| | - Yukou Sugano
- a Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishiku, Niigata, 950-2181, Japan
| | - Yohei Fujishima
- b Graduate School of Health Sciences Hirosaki University, 66-1 Honcho, Hirosaki, 036-8564, Japan
| | - Akifumi Nakata
- c Division of Life Science, Hokkaido Pharmaceutical University School of Pharmacy, 7-15-4-1 Maeda, Teine, Sapporo, 006-8590, Japan; and
| | - Kosuke Kasai
- b Graduate School of Health Sciences Hirosaki University, 66-1 Honcho, Hirosaki, 036-8564, Japan
| | | | | | | | - Hisashi Shinoda
- e Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aobaku, Sendai, 980-8575, Japan
| | - Tomisato Miura
- b Graduate School of Health Sciences Hirosaki University, 66-1 Honcho, Hirosaki, 036-8564, Japan
| | | |
Collapse
|
15
|
Urushihara Y, Kawasumi K, Endo S, Tanaka K, Hirakawa Y, Hayashi G, Sekine T, Kino Y, Kuwahara Y, Suzuki M, Fukumoto M, Yamashiro H, Abe Y, Fukuda T, Shinoda H, Isogai E, Arai T, Fukumoto M. Analysis of Plasma Protein Concentrations and Enzyme Activities in Cattle within the Ex-Evacuation Zone of the Fukushima Daiichi Nuclear Plant Accident. PLoS One 2016; 11:e0155069. [PMID: 27159386 PMCID: PMC4861266 DOI: 10.1371/journal.pone.0155069] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 04/24/2016] [Indexed: 11/18/2022] Open
Abstract
The effect of the Fukushima Daiichi Nuclear Power Plant (FNPP) accident on humans and the environment is a global concern. We performed biochemical analyses of plasma from 49 Japanese Black cattle that were euthanized in the ex-evacuation zone set within a 20-km radius of FNPP. Among radionuclides attributable to the FNPP accident, germanium gamma-ray spectrometry detected photopeaks only from 134Cs and 137Cs (radiocesium) commonly in the organs and in soil examined. Radioactivity concentration of radiocesium was the highest in skeletal muscles. Assuming that the animal body was composed of only skeletal muscles, the median of internal dose rate from radiocesium was 12.5 μGy/day (ranging from 1.6 to 33.9 μGy/day). The median of external dose rate calculating from the place the cattle were caught was 18.8 μGy/day (6.0-133.4 μGy/day). The median of internal and external (total) dose rate of the individual cattle was 26.9 μGy/day (9.1-155.1 μGy/day). Plasma levels of malondialdehyde and superoxide dismutase activity were positively and glutathione peroxidase activity was negatively correlated with internal dose rate. Plasma alanine transaminase activity and percent activity of lactate dehydrogenase (LDH)-2, LDH-3 and LDH-4 were positively and LDH-1 was negatively correlated with both internal and total dose rate. These suggest that chronic exposure to low-dose rate of ionizing radiation induces slight stress resulting in modified plasma protein and enzyme levels.
Collapse
Affiliation(s)
- Yusuke Urushihara
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- Fukushima Project Headquarters, National Institute of Radiological Sciences, Chiba, Chiba, Japan
| | - Koh Kawasumi
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Satoru Endo
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenichi Tanaka
- Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yasuko Hirakawa
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Gohei Hayashi
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tsutomu Sekine
- Institute for Excellence in Higher Education, Tohoku University, Sendai, Miyagi, Japan
| | - Yasushi Kino
- Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Yoshikazu Kuwahara
- Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Masatoshi Suzuki
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Motoi Fukumoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | | | - Yasuyuki Abe
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tomokazu Fukuda
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisashi Shinoda
- Graduate School of Dentistry, Tohoku University, Sendai, Miyagi, Japan
| | - Emiko Isogai
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Toshiro Arai
- School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, Japan
| | - Manabu Fukumoto
- Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
- * E-mail:
| |
Collapse
|