1
|
Braschi EL, Morris CG, Yeung AR, De Leo AN. Impact of Maximum Point Dose Within the Planning Target Volume on Local Control of Nonsmall Cell Lung Cancer Treated With Stereotactic Body Radiotherapy. Am J Clin Oncol 2024; 47:217-222. [PMID: 38148589 DOI: 10.1097/coc.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND No consensus exists on the maximum dose delivered to the planning target volume (PTV) in the delivery of stereotactic body radiotherapy (SBRT) for primary lung cancer. We investigated whether higher biologically effective doses (BED) within the PTV were associated with improved tumor control. METHODS We reviewed patients with early-stage, node-negative nonsmall cell lung cancer who received curative-intent SBRT between 2005 and 2018. We calculated the maximum BED (maxBED) within the PTV for all patients, analyzing outcomes using the cumulative incidence method and Fine-Gray test statistics to assess prognostic impact. RESULTS We analyzed 171 patients (median age, 70.2; range, 43 to 90 y) with 181 lung nodules. Median follow-up was 2.7 years (range, 0.1 to 12 y) for all patients and 4.2 years (range, 0.2 to 8.4 y) for living patients. Median maximum tumor diameter was 1.9 cm (range, 0.7 to 5.6 cm). Patients received a prescription of 48 or 50 Gy in 4 or 5 fractions, respectively, except for one who received 60 Gy in 5 fractions. Median maxBED was 120 Gy (range, 101 to 171 Gy). There was no difference in the 3-year local control (LC) rate among patients treated with a maxBED<120 Gy versus ≥120 Gy ( P =0.83). CONCLUSIONS No significant differences in LC were observed between patients with early-stage nonsmall cell lung cancer treated with SBRT in 4 or 5 fractions with a maxBED≥120 Gy. However, a higher maxBED trended toward improved LC rates, suggesting a maxBED threshold greater than 120 Gy may be needed to improve LC rates.
Collapse
Affiliation(s)
- Erica L Braschi
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL
| | | | | | | |
Collapse
|
2
|
Eriguchi T, Takeda A, Nemoto T, Tsurugai Y, Sanuki N, Tateishi Y, Kibe Y, Akiba T, Inoue M, Nagashima K, Horita N. Relationship between Dose Prescription Methods and Local Control Rate in Stereotactic Body Radiotherapy for Early Stage Non-Small-Cell Lung Cancer: Systematic Review and Meta-Analysis. Cancers (Basel) 2022; 14:3815. [PMID: 35954478 PMCID: PMC9367274 DOI: 10.3390/cancers14153815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Variations in dose prescription methods in stereotactic body radiotherapy (SBRT) for early stage non-small-cell lung cancer (ES-NSCLC) make it difficult to properly compare the outcomes of published studies. We conducted a comprehensive search of the published literature to summarize the outcomes by discerning the relationship between local control (LC) and dose prescription sites. We systematically searched PubMed to identify observational studies reporting LC after SBRT for peripheral ES-NSCLC. The correlations between LC and four types of biologically effective doses (BED) were evaluated, which were calculated from nominal, central, and peripheral prescription points and, from those, the average BED. To evaluate information on SBRT for peripheral ES-NSCLC, 188 studies were analyzed. The number of relevant articles increased over time. The use of an inhomogeneity correction was mentioned in less than half of the articles, even among the most recent. To evaluate the relationship between the four BEDs and LC, 33 studies were analyzed. Univariate meta-regression revealed that only the central BED significantly correlated with the 3-year LC of SBRT for ES-NSCLC (p = 0.03). As a limitation, tumor volume, which might affect the results of this study, could not be considered due to a lack of data. In conclusion, the central dose prescription is appropriate for evaluating the correlation between the dose and LC of SBRT for ES-NSCLC. The standardization of SBRT dose prescriptions is desirable.
Collapse
Affiliation(s)
- Takahisa Eriguchi
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Atsuya Takeda
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Takafumi Nemoto
- Department of Radiation Oncology, Keio University Hospital, Shinjuku, Tokyo 160-8582, Japan
| | - Yuichiro Tsurugai
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Naoko Sanuki
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Yudai Tateishi
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Yuichi Kibe
- Radiation Oncology Center, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Takeshi Akiba
- Department of Radiation Oncology, Tokai University Hachioji Hospital, Hachioji 192-0032, Japan
| | - Mari Inoue
- Department of Respiratory Medicine, Ofuna Chuo Hospital, Kamakura 247-0056, Japan
| | - Kengo Nagashima
- Biostatistics Unit, Clinical and Translational Research Center, Keio University Hospital, Shinjuku, Tokyo 160-8582, Japan
| | - Nobuyuki Horita
- Chemotherapy Center, Yokohama City University Hospital, Yokohama 236-0004, Japan
| |
Collapse
|
3
|
Assessment of Correlation between Dual-Energy Ct (De-Ct)-Derived Iodine Concentration and Local Flourodeoxyglucose (Fdg) Uptake in Patients with Primary Non-Small-Cell Lung Cancer. Tomography 2022; 8:1770-1780. [PMID: 35894014 PMCID: PMC9326656 DOI: 10.3390/tomography8040149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
(1) The current literature contains several studies investigating the correlation between dual-energy-derived iodine concentration (IC) and positron emission tomography (PET)-derived Flourodeoxyglucose (18F-FDG) uptake in patients with non-small-cell lung cancer (NSCLC). In previously published studies, either the entire tumor volume or a region of interest containing the maximum IC or 18F-FDG was assessed. However, the results have been inconsistent. The objective of this study was to correlate IC with FDG both within the entire volume and regional sub-volumes of primary tumors in patients with NSCLC. (2) In this retrospective study, a total of 22 patients with NSCLC who underwent both dual-energy CT (DE-CT) and 18F-FDG PET/CT were included. A region of interest (ROI) encircling the entire primary tumor was delineated, and a rigid registration of the DE-CT, iodine maps and FDG images was performed for the ROI. The correlation between tumor measurements and area-specific measurements of ICpeak and the peak standardized uptake value (SUVpeak) was found. Finally, a correlation between tumor volume and the distance between SUVpeak and ICpeak centroids was found. (3) For the entire tumor, moderate-to-strong correlations were found between SUVmax and ICmax (R = 0.62, p = 0.002), and metabolic tumor volume vs. total iodine content (R = 0.91, p < 0.001), respectively. For local tumor sub-volumes, a negative correlation was found between ICpeak and SUVpeak (R = −0.58, p = 0.0046). Furthermore, a strong correlation was found between the tumor volume and the distance in millimeters between SUVpeak and ICpeak centroids (R = 0.81, p < 0.0001). (4) In patients with NSCLC, high FDG uptakes and high DE-CT-derived iodine concentrations correlated on a whole-tumor level, but the peak areas were positioned at different locations within the tumor. 18F-FDG PET/CT and DE-CT provide complementary information and might represent different underlying patho-physiologies.
Collapse
|
4
|
Martin SS, Muscogiuri E, Burchett PF, van Assen M, Tessarin G, Vogl TJ, Schoepf UJ, De Cecco CN. Tumorous tissue characterization using integrated 18F-FDG PET/dual-energy CT in lung cancer: Combining iodine enhancement and glycolytic activity. Eur J Radiol 2022; 150:110116. [PMID: 34996651 DOI: 10.1016/j.ejrad.2021.110116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 12/19/2021] [Indexed: 11/03/2022]
Abstract
Positron emission tomography/computed tomography (PET/CT) with 18F-fluorodeoxyglucose (18F-FDG) has become the method of choice for tumor staging in lung cancer patients with improved diagnostic accuracy for the evaluation of lymph node involvement and distant metastasis. Due to its spectral capabilities, dual-energy CT (DECT) employs a material decomposition algorithm enabling precise quantification of iodine concentrations in distinct tissues. This technique enhances the characterization of tumor blood supply and has demonstrated promising results for the assessment of therapy response in patients with lung cancer. Several studies have demonstrated that DECT provides additional value to the PET-based evaluation of glycolytic activity, especially for the evaluation of therapy response and follow-up of patients with lung cancer. The combination of PET and DECT in a single scanner system enables the simultaneous assessment of glycolytic activity and iodine enhancement, offering further insight to the characterization of tumorous tissues. Recently a new approach of a novel integrated PET/DECT was investigated in a pilot study on patients with non-small cell lung cancer (NSCLC). The study showed a moderate correlation between PET-based standard uptake values (SUV) and DECT-based iodine densities in the evaluation of lung tumorous tissue but with limited assessment of lymph nodes. The following review on tumorous tissue characterization using PET and DECT imaging describes the strengths and limitations of this novel technique.
Collapse
Affiliation(s)
- Simon S Martin
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Emanuele Muscogiuri
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA; Institute of Radiology, University of Rome "Sapienza", Rome, Italy
| | - Philip F Burchett
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Giovanni Tessarin
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA; Department of Medicine-DIMED, Institute of Radiology, University of Padova, Italy
| | - Thomas J Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston, SC, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Kupik O, Metin Y, Eren G, Orhan Metin N, Arpa M. A comparison study of dual-energy spectral CT and 18F-FDG PET/CT in primary tumors and lymph nodes of lung cancer. ACTA ACUST UNITED AC 2021; 27:275-282. [PMID: 33455897 DOI: 10.5152/dir.2021.20016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE We aimed to investigate whether there is a correlation between dual-energy spectral computed tomography (DESCT) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) parameters in primary tumor and metastatic lymph nodes in patients with newly diagnosed lung cancer. METHODS Primary tumor and metastatic lymph nodes of 68 patients diagnosed with lung cancer were evaluated retrospectively with 18F-FDG PET/CT and DESCT imaging. The histologic subtypes were adenocarcinoma (n=29), squamous cell carcinoma (SCC) (n=26), small cell lung cancer (SCLC) (n=11), and large cell neuroendocrine cancer (LCNEC) (n=2). In terms of PET parameters, SUVmax, SUVmean, SULmax, SULmean, SULpeak, and normalized SUL values were obtained for primary tumors and metastatic lymph nodes. In terms of DESCT parameters, maximum and mean iodine content (IC), normalized IC values, iodine enhancement (IE) and normalized IE values were calculated. RESULTS We found no correlation between DESCT and 18F-FDG PET/CT parameters in primary tumors and metastatic lymph nodes. In addition, no correlation was found in the analysis performed in any of the histologic subgroups. In patients with a primary tumor <3 cm, there was a moderate negative correlation between the parameters SUVmax-ICmax (r= -0.456, p = 0.043), SUVmean-ICmax (r= -0.464, p = 0.039) SULmean-ICmax (r= -0.497, p = 0.026), SUVmax-ICmean (r= -0.527, p = 0.020), SULmean-ICmean (r= -0.499, p = 0.025), and SULpeak-ICmean (r= -0.488, p = 0.029). CONCLUSION We consider that DESCT and 18F-FDG PET/CT indicate different characteristics of the tumors and should not supersede each other.
Collapse
Affiliation(s)
- Osman Kupik
- Department of Nuclear Medicine Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Yavuz Metin
- Department of Radiology, Ankara University School of Medicine, Ibni Sina Hospital, Ankara, Turkey
| | - Gülnihan Eren
- Department of Radiation Oncology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Nurgul Orhan Metin
- Department of Radiology, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| | - Medeni Arpa
- Department of Biochemistry, Recep Tayyip Erdoğan University School of Medicine, Rize, Turkey
| |
Collapse
|
6
|
Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG-PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis. Diagnostics (Basel) 2020; 10:diagnostics10121030. [PMID: 33271785 PMCID: PMC7761090 DOI: 10.3390/diagnostics10121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022] Open
Abstract
Positron emission tomography (PET) imaging with 2-deoxy-2-[18F]-fluorodeoxyglucose (FDG) was proposed as prognostic marker in radiotherapy. Various uptake metrics and cut points were used, potentially leading to inflated effect estimates. Here, we performed a meta-analysis and systematic review of the prognostic value of pretreatment FDG–PET in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC), with tests for publication bias. Hazard ratio (HR) for overall survival (OS), disease free survival (DFS), and local control was extracted or derived from the 57 studies included. Test for publication bias was performed, and the number of statistical tests and cut-point optimizations were registered. Eggers regression related to correlation of SUVmax with OS/DFS yielded p = 0.08/p = 0.02 for HNSCC and p < 0.001/p = 0.014 for NSCLC. No outcomes showed significant correlation with SUVmax, when adjusting for publication bias effect, whereas all four showed a correlation in the conventional meta-analysis. The number of statistical tests and cut points were high with no indication of improvement over time. Our analysis showed significant evidence of publication bias leading to inflated estimates of the prognostic value of SUVmax. We suggest that improved management of these complexities, including predefined statistical analysis plans, are critical for a reliable assessment of FDG–PET.
Collapse
|
7
|
Kim C, Kim W, Park SJ, Lee YH, Hwang SH, Yong HS, Oh YW, Kang EY, Lee KY. Application of Dual-Energy Spectral Computed Tomography to Thoracic Oncology Imaging. Korean J Radiol 2020; 21:838-850. [PMID: 32524784 PMCID: PMC7289700 DOI: 10.3348/kjr.2019.0711] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/16/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
Computed tomography (CT) is an important imaging modality in evaluating thoracic malignancies. The clinical utility of dual-energy spectral computed tomography (DESCT) has recently been realized. DESCT allows for virtual monoenergetic or monochromatic imaging, virtual non-contrast or unenhanced imaging, iodine concentration measurement, and effective atomic number (Zeff map). The application of information gained using this technique in the field of thoracic oncology is important, and therefore many studies have been conducted to explore the use of DESCT in the evaluation and management of thoracic malignancies. Here we summarize and review recent DESCT studies on clinical applications related to thoracic oncology.
Collapse
Affiliation(s)
- Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Wooil Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sung Joon Park
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Korea
| | - Young Hen Lee
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Sung Ho Hwang
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hwan Seok Yong
- Department of Radiology, Korea University Guro Hospital, College of Medicine Korea University, Seoul, Korea
| | - Yu Whan Oh
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Eun Young Kang
- Department of Radiology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - Ki Yeol Lee
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea.
| |
Collapse
|
8
|
Ijsseldijk MA, Shoni M, Siegert C, Wiering B, van Engelenburg AKC, Tsai TC, Ten Broek RPG, Lebenthal A. Oncologic Outcomes of Surgery Versus SBRT for Non-Small-Cell Lung Carcinoma: A Systematic Review and Meta-analysis. Clin Lung Cancer 2020; 22:e235-e292. [PMID: 32912754 DOI: 10.1016/j.cllc.2020.04.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/21/2020] [Accepted: 04/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The optimal treatment of stage I non-small-cell lung carcinoma is subject to debate. The aim of this study was to compare overall survival and oncologic outcomes of lobar resection (LR), sublobar resection (SR), and stereotactic body radiotherapy (SBRT). METHODS A systematic review and meta-analysis of oncologic outcomes of propensity matched comparative and noncomparative cohort studies was performed. Outcomes of interest were overall survival and disease-free survival. The inverse variance method and the random-effects method for meta-analysis were utilized to assess the pooled estimates. RESULTS A total of 100 studies with patients treated for clinical stage I non-small-cell lung carcinoma were included. Long-term overall and disease-free survival after LR was superior over SBRT in all comparisons, and for most comparisons, SR was superior to SBRT. Noncomparative studies showed superior long-term overall and disease-free survival for both LR and SR over SBRT. Although the papers were heterogeneous and of low quality, results remained essentially the same throughout a large number of stratifications and sensitivity analyses. CONCLUSION Results of this systematic review and meta-analysis showed that LR has superior outcomes compared to SBRT for cI non-small-cell lung carcinoma. New trials are underway evaluating long-term results of SBRT in potentially operable patients.
Collapse
Affiliation(s)
- Michiel A Ijsseldijk
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands; Division of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Melina Shoni
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Charles Siegert
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, MA
| | - Bastiaan Wiering
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands
| | | | - Thomas C Tsai
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA
| | - Richard P G Ten Broek
- Division of Surgery, Slingeland Ziekenhuis, Doetinchem, The Netherlands; Division of Surgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Abraham Lebenthal
- Division of Thoracic Surgery, Brigham and Women's Hospital, Boston, MA; Division of Thoracic Surgery, West Roxbury Veterans Administration, West Roxbury, MA; Harvard Medical School, Boston, MA
| |
Collapse
|
9
|
Fehrenbach U, Feldhaus F, Kahn J, Böning G, Maurer MH, Renz D, Frost N, Streitparth F. Tumour response in non-small-cell lung cancer patients treated with chemoradiotherapy - Can spectral CT predict recurrence? J Med Imaging Radiat Oncol 2019; 63:641-649. [PMID: 31282130 DOI: 10.1111/1754-9485.12926] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Tumour response in lung cancer treatment is monitored by measuring lesion size in computed tomography (CT). Spectral CT (SCT) offers additional information on tumour tissue besides morphology. We evaluated SCT iodine content (IC) and performed spectral slope analysis to assess the response of non-small-cell lung cancer (NSCLC) to chemoradiotherapy (CRT). METHODS Eighty-three patients with advanced NSCLC treated by CRT prospectively underwent single-phase, contrast-enhanced SCT. Evaluation of all patients included treatment response (RECIST 1.1), quantitative measurements as well as SCT IC determination and spectral slope analysis in NSCLC primaries. Measurements were performed at the maximum cross-diameter of tumours and in areas with high iodine values (hotspot analysis). Iodine difference (ΔIC) was calculated. Secondary outcome parameters were IC and spectral slopes in mediastinal lymph nodes (n = 61). RESULTS Twenty-four patients (29%) showed complete remission after CRT. Thirty-four patients (41%) had stable disease (SDSCT ) or partial regression (PRSCT ). Progressive disease (PDSCT ) was seen in 25 patients (30%). Hotspot analysis showed significantly higher iodine values in PDSCT than in SDSCT /PRSCT (P < 0.001). Ten patients (12%) with initially stable disease in SCT showed progressive disease during follow-up for up to 18 months (PDFU ). These patients also had significantly higher hotspot iodine values and ΔIC in the initial scan compared to patients with SD throughout the follow-up period (SDFU ) (29%) (P < 0.001). Enlarged lymph nodes showed significantly lower iodine content and a lower spectral slope pitch than normal-sized nodes (P = 0.003 to 0.029). CONCLUSION Spectral CT-derived iodine content of NSCLC following CRT may help in predicting recurrence. Hotspot analysis and iodine heterogeneity allow the identification of residual vascularisation as an indicator of vital tumour tissue, indicating that IC might be a suitable imaging biomarker for predicting tumour progression. Iodine content and spectral slope analysis might also help in identifying metastatic lymph nodes.
Collapse
Affiliation(s)
- Uli Fehrenbach
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Felix Feldhaus
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Johannes Kahn
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Georg Böning
- Radiology, Charité University Medicine Berlin, Berlin, Germany
| | - Martin H Maurer
- Radiology, University Hospital/Inselspital Bern, Bern, Switzerland
| | - Diane Renz
- Radiology, University Hospital Jena, Jena, Germany
| | - Nikolaj Frost
- Internal Medicine - Pulmonology, Charité University Medicine Berlin, Berlin, Germany
| | - Florian Streitparth
- Radiology, Charité University Medicine Berlin, Berlin, Germany.,Radiology, University Hospital Munich, Ludwig-Maximilians University (LMU), Munich, Germany
| |
Collapse
|
10
|
Ito R, Iwano S, Shimamoto H, Umakoshi H, Kawaguchi K, Ito S, Kato K, Naganawa S. A comparative analysis of dual-phase dual-energy CT and FDG-PET/CT for the prediction of histopathological invasiveness of non-small cell lung cancer. Eur J Radiol 2017; 95:186-191. [PMID: 28987666 DOI: 10.1016/j.ejrad.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/07/2017] [Accepted: 08/11/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To compare dual-phase dual-energy CT (DE-CT) with FDG-PET/CT for predicting histopathological locoregional invasiveness of non-small cell lung cancers (NSCLCs). MATERIALS AND METHODS We selected 63 consecutive patients with NSCLC lesions (37 males, 26 females; age range, 44-85 years; mean age, 69 years) who were evaluated preoperatively by both DE-CT and PET/CT at our institution. Postoperative microscopic invasiveness (lymphatic permeation, vascular invasion, and/or pleural involvement) was reviewed, and we defined locoregionally invasive tumors as those that had at least one positive finding of microscopic invasiveness. DE-CT scanning in the arterial and delayed phases was performed after injection of iodinated contrast media using 140-kVp and 80-kVp tube voltages. Three-dimensional iodine-related attenuation of primary tumors in the arterial and delayed phases was quantified automatically using "syngo Dual Energy Lung Nodules" application software, and the ratio of arterial phase to delayed phase enhancement (A/D ratio) was calculated. The A/D ratio and SUVmax on PET/CT were evaluated with respect to postoperative invasiveness by univariate logistic regression analysis. RESULTS The A/D ratio was significantly correlated with lymphatic permeation, vascular invasion, and pleural involvement (p=0.011, p=0.021, and p=0.010, respectively). In contrast, the SUVmax was significantly correlated with pleural involvement (p=0.020) but not with lymphatic permeation or vascular invasion (p=0.088 and p=0.100, respectively). In the subgroup of patients with lesion diameters ≤2cm, the A/D ratio was significantly correlated with locoregional invasiveness (p=0.040), while the SUVmax was not (p=0.121). CONCLUSION For the prediction of microscopic invasiveness of NSCLCs, the diagnostic performance of dual-phase DE-CT may be comparable to that of FDG-PET/CT.
Collapse
Affiliation(s)
- Rintaro Ito
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Shingo Iwano
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan.
| | - Hironori Shimamoto
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Hiroyasu Umakoshi
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Koji Kawaguchi
- Nagoya University Graduate School of Medicine, Department of Thoracic Surgery, Japan
| | - Shinji Ito
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| | - Katsuhiko Kato
- Nagoya University Graduate School of Medicine, Department of Radiological and Medical Laboratory Sciences, Japan
| | - Shinji Naganawa
- Nagoya University Graduate School of Medicine, Department of Radiology, 65 Tsurumai-cho, Showa-ku, Nagoya 4668550, Japan
| |
Collapse
|
11
|
Thureau S, Hapdey S, Vera P. [Role of functional imaging in the definition of target volumes for lung cancer radiotherapy]. Cancer Radiother 2016; 20:699-704. [PMID: 27614514 DOI: 10.1016/j.canrad.2016.08.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Functional imaging with positron emission tomography (PET) is interesting to optimize lung radiotherapy planning, and probably to deliver a heterogeneous dose or adapt the radiation dose during treatment. Only fluorodeoxyglucose (FDG) PET-computed tomography (CT) is validated for staging lung cancer and planning radiotherapy. The optimal segmentation methods remain to be defined as well as the interest of "dose painting" from pre-treatment PET (metabolism: FDG) or hypoxia (fluoromisonidazole: FMISO) and the interest of replanning based on pertherapeutic PET.
Collapse
Affiliation(s)
- S Thureau
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Département de radiothérapie et de physique médicale, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France.
| | - S Hapdey
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France
| | - P Vera
- Département de médecine nucléaire, centre de lutte contre le cancer Henri-Becquerel, rue d'Amiens, 76000 Rouen, France; Laboratoire QuantIF, EA4108-Litis, FR CNRS 3638, 1, rue d'Amiens, 76000 Rouen, France
| |
Collapse
|