1
|
Cui J, Wang TJ, Zhang YX, She LZ, Zhao YC. Molecular biological mechanisms of radiotherapy-induced skin injury occurrence and treatment. Biomed Pharmacother 2024; 180:117470. [PMID: 39321513 DOI: 10.1016/j.biopha.2024.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/03/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024] Open
Abstract
Radiotherapy-Induced Skin Injury (RISI) is radiation damage to normal skin tissue that primarily occurs during tumor Radiotherapy and occupational exposure. The risk of RISI is high due to the fact that the skin is not only the first body organ that ionizing radiation comes into contact with, but it is also highly sensitive to it, especially the basal cell layer and capillaries. Typical clinical manifestations of RISI include erythema, dry desquamation, moist desquamation, and ulcers, which have been established to significantly impact patient care and cancer treatment. Notably, our current understanding of RISI's pathological mechanisms and signaling pathways is inadequate, and no standard treatments have been established. Radiation-induced oxidative stress, inflammatory responses, fibrosis, apoptosis, and cellular senescence are among the known mechanisms that interact and promote disease progression. Additionally, radiation can damage all cellular components and induce genetic and epigenetic changes, which play a crucial role in the occurrence and progression of skin injury. A deeper understanding of these mechanisms and pathways is crucial for exploring the potential therapeutic targets for RISI. Therefore, in this review, we summarize the key mechanisms and potential treatment methods for RISI, offering a reference for future research and development of treatment strategies.
Collapse
Affiliation(s)
- Jie Cui
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Tie-Jun Wang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yu-Xuan Zhang
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Li-Zhen She
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| | - Yue-Chen Zhao
- Department of Radiation Oncology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
2
|
González-Acedo A, Illescas-Montes R, de Luna-Bertos E, Ruiz C, Ramos-Torrecillas J, García-Martínez O, Melguizo-Rodríguez L. Extra Virgin Olive Oil Phenolic Compounds Modulate the Gene Expression of Biomarkers Involved in Fibroblast Proliferation and Differentiation. Genes (Basel) 2024; 15:173. [PMID: 38397163 PMCID: PMC10887570 DOI: 10.3390/genes15020173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Extra virgin olive oil phenolic compounds have been identified as possible biostimulant agents against different pathological processes, including alterations in healing processes. However, there is little evidence on the molecular mechanisms involved in this process. The aim was to analyse the effect of hydroxytyrosol, tyrosol, and oleocanthal on fibroblast gene expression. PCR was used to determine the expression of different differentiation markers, extracellular matrix elements, and growth factors in cultured human fibroblasts CCD-1064Sk treated with different doses of hydroxytyrosol (10-5 M and 10-6 M), tyrosol (10-5 M and 10-6 M), and oleocanthal (10-6 M and 10-7 M). After 24 h of hydroxytyrosol treatment, increased expression of connective tissue growth factor, fibroblast growth factor (FGF), platelet-derived growth factor, vascular endothelial growth factor, transforming growth factor β1 (TGF-β1), and their receptors was observed. Tyrosol and olecanthal modulated the expression of FGF and TGFβR1. All phytochemicals tested modified the expression of differentiation markers and extracellular matrix elements, increasing gene expression of actin, fibronectin, decorin, collagen I, and III. Phenolic compounds present in extra virgin olive could have a beneficial effect on tissue regeneration by modulating fibroblast physiology.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain;
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS), Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain; (R.I.-M.); (E.d.L.-B.); (C.R.); (J.R.-T.); (L.M.-R.)
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4ª Planta, 18012 Granada, Spain
| |
Collapse
|
3
|
Yang G, Hu S, Jiang H, Cheng K. Peelable Microneedle Patches Deliver Fibroblast Growth Factors to Repair Skin Photoaging Damage. Nanotheranostics 2023; 7:380-392. [PMID: 37426882 PMCID: PMC10327422 DOI: 10.7150/ntno.79187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Rationale: UV light deeply penetrates the dermis, leading to inflammation and cell death with prolonged exposure. This is a major contributor to skin photoaging. In the pharmaceutical field, fibroblast growth factors (FGFs) have gained popularity for enhancing skin quality as they facilitate tissue remodeling and re-epithelization. Nonetheless, their effectiveness is significantly hindered by limited absorption. Methods: We have successfully created a dissolving microneedle (MN) patch that contains hyaluronic acid (HA) loaded with FGF-2 and FGF-21. This patch aims to improve the therapeutic efficiency of these growth factors while providing a simple administration method. We determined the performance of this patch in an animal model of skin photoaging. Results: The FGF-2/FGF-21-loaded MN (FGF-2/FGF-21 MN) patch demonstrated a consistent structure and suitable mechanical properties, allowing for easy insertion and penetration into mouse skin. Within 10 minutes of application, the patch released approximately 38.50 ± 13.38% of the loaded drug. Notably, the FGF-2/FGF-21 MNs exhibited significant improvements in UV-induced acute skin inflammation and reduced mouse skin wrinkles within a span of two weeks. Furthermore, the positive effects continued to enhance over a four-week treatment period. Conclusion: The proposed HA-based peelable MN patch provides an efficient approach for transdermal drug delivery, providing a promising method for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Guojun Yang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, 33 Ba-Da-Chu Rd., Beijing, 100144, P.R. China
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Haiyue Jiang
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union of Medical College, 33 Ba-Da-Chu Rd., Beijing, 100144, P.R. China
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina 27607, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States, and North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
4
|
Guo J, Zhao Z, Shang Z, Tang Z, Zhu H, Zhang K. Nanodrugs with intrinsic radioprotective exertion: Turning the double-edged sword into a single-edged knife. EXPLORATION (BEIJING, CHINA) 2023; 3:20220119. [PMID: 37324033 PMCID: PMC10190950 DOI: 10.1002/exp.20220119] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/10/2023] [Indexed: 06/17/2023]
Abstract
Ionizing radiation (IR) poses a growing threat to human health, and thus ideal radioprotectors with high efficacy and low toxicity still receive widespread attention in radiation medicine. Despite significant progress made in conventional radioprotectants, high toxicity, and low bioavailability still discourage their application. Fortunately, the rapidly evolving nanomaterial technology furnishes reliable tools to address these bottlenecks, opening up the cutting-edge nano-radioprotective medicine, among which the intrinsic nano-radioprotectants characterized by high efficacy, low toxicity, and prolonged blood retention duration, represent the most extensively studied class in this area. Herein, we made the systematic review on this topic, and discussed more specific types of radioprotective nanomaterials and more general clusters of the extensive nano-radioprotectants. In this review, we mainly focused on the development, design innovations, applications, challenges, and prospects of the intrinsic antiradiation nanomedicines, and presented a comprehensive overview, in-depth analysis as well as an updated understanding of the latest advances in this topic. We hope that this review will promote the interdisciplinarity across radiation medicine and nanotechnology and stimulate further valuable studies in this promising field.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
| | - Zhemeng Zhao
- Department of Radiation Medicine, College of Naval MedicineNaval Medical UniversityShanghaiChina
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology CollegeZhejiang Ocean UniversityZhoushanChina
| | - Zeng‐Fu Shang
- Department of Radiation OncologySimmons Comprehensive Cancer Center at UT Southwestern Medical CenterDallasTexasUSA
| | - Zhongmin Tang
- Department of RadiologyUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Huanhuan Zhu
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
| | - Kun Zhang
- Central Laboratory, Shanghai Tenth People's HospitalTongji University School of MedicineShanghaiP. R. China
- National Center for International Research of Bio‐targeting TheranosticsGuangxi Medical UniversityNanningGuangxiP. R. China
- Department of Oncology, Sichuan Provincial People's Hospital, School of MedicineUniversity of Electronic Science and Technology of ChinaChengduSichuanP. R. China
| |
Collapse
|
5
|
Fang Z, Lv Y, Zhang H, He Y, Gao H, Chen C, Wang D, Chen P, Tang S, Li J, Qiu Z, Shi X, Chen L, Yang J, Chen X. A multifunctional hydrogel loaded with two nanoagents improves the pathological microenvironment associated with radiation combined with skin wounds. Acta Biomater 2023; 159:111-127. [PMID: 36736645 DOI: 10.1016/j.actbio.2023.01.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/02/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023]
Abstract
Persistent oxidative stress and recurring waves of inflammation with excessive reactive oxygen species (ROS) and free radical accumulation could be generated by radiation. Exposure to radiation in combination with physical injuries such as wound trauma would produce a more harmful set of medical complications, which was known as radiation combined with skin wounds (RCSWs). However, little attention has been given to RCSW research despite the unsatisfactory therapeutic outcomes. In this study, a dual-nanoagent-loaded multifunctional hydrogel was fabricated to ameliorate the pathological microenvironment associated with RCSWs. The injectable, adhesive, and self-healing hydrogel was prepared by crosslinking carbohydrazide-modified gelatin (Gel-CDH) and oxidized hyaluronic acid (OHA) through the Schiff-base reaction under mild condition. Polydopamine nanoparticles (PDA-NPs) and mesenchymal stem cell-secreted small extracellular vesicles (MSC-sEV) were loaded to relieve radiation-produced tissue inflammation and oxidation impairment and enhance cell vitality and angiogenesis individually or jointly. The proposed PDA-NPs@MSC-sEV hydrogel enhanced cell vitality, as shown by cell proliferation, migration, colony formation, and cell cycle and apoptosis assays in vitro, and promoted reepithelization by attenuating microenvironment pathology in vivo. Notably, a gene set enrichment analysis of proteomic data revealed significant enrichment with adipogenic and hypoxic pathways, which play prominent roles in wound repair. Specifically, target genes were predicted based on differential transcription factor expression. The results suggested that MSC-sEV- and PDA-NP-loaded multifunctional hydrogels may be promising nanotherapies for RCSWs. STATEMENT OF SIGNIFICANCE: The small extracellular vesicle (sEV) has distinct advantages compared with MSCs, and polydopamine nanoparticles (PDA-NPs), known as the biological materials with good cell affinity and histocompatibility which have been reported to scavenge ROS free radicals. In this study, an adhesive, injectable, self-healing, antibacterial, ROS scavenging and amelioration of the radiation related microenvironment hydrogel encapsulating nanoscale particles of MSC-sEV and PDA-NPs (PDA-NPs@MSC-sEV hydrogel) was synthesized for promoting radiation combined with skin wounds (RCSWs). GSEA analysis profiled by proteomics data revealed significant enrichments in the regulations of adipogenic and hypoxic pathways with this multi-functional hydrogel. This is the first report of combining this two promising nanoscale agents for the special skin wounds associated with radiation.
Collapse
Affiliation(s)
- Zhuoqun Fang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Haoruo Zhang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Yuxiang He
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Hangqi Gao
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Caixiang Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Dezhi Wang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Penghong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Shijie Tang
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Stem Cell Research Institute, Fujian Medical University, Fuzhou 350004, China
| | - Junjing Li
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Zhihuang Qiu
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xian'ai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Liangwan Chen
- Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China; Department of Cardiac Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Xiaosong Chen
- Department of Plastic Surgery and Regenerative Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China; Department of Plastic Surgery and Regenerative Medicine Institute, Fujian Medical University, Fuzhou 350001, China; Engineering Research Center of Tissue and Organ Regeneration, Fujian Province University, 350001, China.
| |
Collapse
|
6
|
Hao J, Sun M, Li D, Zhang T, Li J, Zhou D. An IFI6-based hydrogel promotes the healing of radiation-induced skin injury through regulation of the HSF1 activity. J Nanobiotechnology 2022; 20:288. [PMID: 35717249 PMCID: PMC9206756 DOI: 10.1186/s12951-022-01466-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
Radiation-induced skin injury (RISI) is a common complication of radiotherapy. Interferon-alpha inducible protein 6 (IFI6) significantly reduces the radiation sensitivity of HaCaT cells. Sodium alginate (SA) has substantial moisturizing properties. Graphene oxide (GO) is a suitable substrate with physical antibacterial properties. Therefore, we designed materials to modify IFI6 using the biogule of polydopamine (PDA) connected to GO/SA. The structure, size, morphology, and elemental compositions of IFI6-PDA@GO/SA were analyzed. Cytological studies suggested that IFI6-PDA@GO/SA is non-toxic to HaCaT cells, with antibacterial properties. It promotes migration and vascularization and inhibits apoptosis. These cells express IFI6 after irradiation. The mouse model suggested that IFI6-PDA@GO/SA promotes wound healing and reduces reactive oxygen species expression. IFI6-PDA@GO/SA accelerates RISI healing, possibly by initiating the SSBP1/HSF1 signaling pathway. In addition, IFI6-PDA@GO/SA improves the immune microenvironment. This study constitutes the first use of IFI6 as a RISI wound-healing material.
Collapse
Affiliation(s)
- Jie Hao
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Mengyi Sun
- Department of Rehabilitation, The Second Affiliated Hospital of Xinjiang Medical University, Ürümqi, 830092, China
| | - Dong Li
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China
| | - Tao Zhang
- Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Daijun Zhou
- Department of Oncology, Southwest Hospital, Army Medical University, Chongqing, 400038, China. .,Department of Oncology, The General Hospital of Western Theater Command of PLA, Chengdu, 610083, China.
| |
Collapse
|
7
|
Yasunaga M, Kobayashi F, Sogo Y, Murotomi K, Hirose M, Hara Y, Yamazaki M, Ito A. The enhancing effects of heparin on the biological activity of FGF-2 in heparin-FGF-2-calcium phosphate composite layers. Acta Biomater 2022; 148:345-354. [PMID: 35697197 DOI: 10.1016/j.actbio.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/07/2022] [Indexed: 11/19/2022]
Abstract
Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the composite layers is important for its wider application in orthopedics and dentistry. This study incorporated low-molecular-weight heparin (LMWH) into the FGF-2-calcium phosphate composite layers and clarified the enhancing effects of LMWH on the biological activity of FGF-2 in the composite layers in vitro. LMWH-FGF-2-calcium phosphate composite layers were successfully formed on zirconia in supersaturated calcium phosphate solutions. The composite layers comprised continuous and macroscopically homogeneous layers and particles smaller than 500 nm in size composed of amorphous calcium phosphate. The amounts of Ca and P deposited on zirconia remained almost unchanged with the addition of LMWH under the presence of FGF-2 in the supersaturated calcium phosphate solution. The LMWH in the supersaturated calcium phosphate solution increased the stability of FGF-2 in the solution and the amount of FGF-2 in the composite layers. The LMWH in the composite layers increased the mitogenic and endothelial tube-forming activities of FGF-2, and FGF-2 activity of inducing osteogenic differentiation gene expression pattern in the composite layers. Our results indicate that the enhanced biological activity of FGF-2 in the LMWH-FGF-2-calcium phosphate composite layers is attributed to an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the supersaturated calcium phosphate solution and the composite layers. The LMWH-FGF-2-calcium phosphate composite layer is a promising coating for orthopedic and dental implants. STATEMENT OF SIGNIFICANCE: Orthopedic and dental implants coated with fibroblast growth factor-2 (FGF-2)-calcium phosphate composite layers promote dermis formation, bone formation, and angiogenesis because of the biological activity of FGF-2. Enhancing the biological activity of FGF-2 in the layers is important for wider its application in orthopedics and dentistry. This study demonstrates the enhancing effects of low-molecular-weight heparin (LMWH) contained within LMWH-FGF-2-calcium phosphate composite layers on the biological activity of FGF-2 in vitro. Our results indicate that the enhanced biological activity of FGF-2 within the composite layers arises from an LMWH-mediated increase in the amount of FGF-2, which maintains its biological activity in the LMWH-FGF-2-calcium phosphate composite layers and supersaturated calcium phosphate solutions used for coating the composite layers.
Collapse
Affiliation(s)
- Mayu Yasunaga
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan.
| | - Fumiko Kobayashi
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Sogo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Kazutoshi Murotomi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Motohiro Hirose
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Yuki Hara
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yamazaki
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Atsuo Ito
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
8
|
Zhang Z, Li J, Long C, Han Y, Fan J, Misrani A, Ji X. Regulatory Mechanism of circEIF4G2 Targeting miR-26a in Acute Myocardial Infarction. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:5308372. [PMID: 35340248 PMCID: PMC8942649 DOI: 10.1155/2022/5308372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 11/19/2022]
Abstract
Background Acute myocardial infarction (AMI) involves a series of complex cellular and molecular events, including circular RNAs (circRNAs), microRNAs (miRNAs) and other noncoding RNAs. Objective In this study, the regulation mechanism of circEIF4G2 acting on miR-26a on HUVECs (Human Umbilical Vein Endothelial Cells) proliferation, cell cycle and angiogenesis ability was mainly explored in the vascular endothelial growth factor induced (VEGF-induced) angiogenesis model. Methods VEGF induced HUVECs angiogenesis model was constructed, and the expression of circEIF4G2 and miR-26a in VEGF model was detected by qRT-PCR. When circEIF4G2 and miR-26a were knocked down or overexpressed in HUVECs, qRT-PCR was used to detect the expression of circEIF4G2 and miR-26a, CCK-8 was used to detect cell proliferation, flow cytometry was used to detect the cell cycle transition of HUVECs, and cell formation experiment was used to detect the ability of angiogenesis. MiRanda database and Targetscan predicted the binding site of circEIF4G2 and miR-26a, lucifase reporting assay and RNA pull down assay verified the interaction between circEIF4G2 and miR-26a. Results After HUVECs were treated with VEGF, circEIF4G2 was significantly upregulated. After circEIF4G2 was knocked down, the proliferation and angiogenesis of HUVECs cells were decreased, and the process of cell cycle G0/G1 phase was blocked. The overexpression of miR-26a reduced the proliferation and angiogenesis of HUVECs cells and blocked the cell cycle progression of G0/G1 phase. Double lucifase reporter gene assay verified that circEIF4G2 could directly interact with miR-26a through the binding site, and RNA Pull down assay further verified the interaction between circEIF4G2 and miR-26a. When circEIF4G2 and miR-26a were knocked down simultaneously in HUVECs, it was found that knocking down miR-26a could reverse the inhibition of circEIF4G2 on cell proliferation, cycle and angiogenesis. Conclusion In the VEGF model, circEIF4G2 was highly expressed and miR-26a was low expressed. MiR-26a regulates HUVECs proliferation, cycle and angiogenesis by targeting circEIF4G2.
Collapse
Affiliation(s)
- Zaiyong Zhang
- Department of Cardiology, Panyu Central Hospital, Guangzhou 511400, China
- Cardiovascular Institute of Panyu District, Guangzhou 511400, China
| | - Jianhao Li
- Department of Cardiology, Panyu Central Hospital, Guangzhou 511400, China
- Cardiovascular Institute of Panyu District, Guangzhou 511400, China
| | - Cheng Long
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
- School of Life Sciences, South China Normal University, Guangzhou 510630, China
| | - Yuanyuan Han
- Department of Radiology, Panyu Central Hospital, Guangzhou 511400, China
| | - Jun Fan
- Department of Cardiology, Panyu Central Hospital, Guangzhou 511400, China
- Cardiovascular Institute of Panyu District, Guangzhou 511400, China
| | - Afzal Misrani
- South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 511400, China
| | - Xiangyu Ji
- School of Life Sciences, South China Normal University, Guangzhou 510630, China
| |
Collapse
|
9
|
Recent Progress on Heparin–Protamine Particles for Biomedical Application. Polymers (Basel) 2022; 14:polym14050932. [PMID: 35267754 PMCID: PMC8912589 DOI: 10.3390/polym14050932] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Biomolecules are attractive building blocks with self-assembly ability, structural diversity, and excellent functionality for creating artificial materials. Heparin and protamine, a clinically relevant pair of biomolecules used in cardiac and vascular surgery, have been shown to coassemble into particulate polyelectrolyte complexes in vitro. The resulting heparin–protamine particles exhibit adhesive properties that enable advantageous interactions with proteins, cells, and various other substances and have been employed as functional materials for biomedical applications. In this review article, we summarize recent progress in research on the use of heparin–protamine particles as drug carriers, cell adhesives, and cell labels. Studies have demonstrated that heparin–protamine particles are potentially versatile in biomedical fields from drug delivery and regenerative medicine to plastic surgery.
Collapse
|
10
|
Pan Y, Tang W, Fan W, Zhang J, Chen X. Development of nanotechnology-mediated precision radiotherapy for anti-metastasis and radioprotection. Chem Soc Rev 2022; 51:9759-9830. [DOI: 10.1039/d1cs01145f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells.
Collapse
Affiliation(s)
- Yuanbo Pan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
| | - Wei Tang
- Departments of Pharmacy and Diagnostic Radiology, Nanomedicine Translational Research Program, Faculty of Science and Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117544, Singapore
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, 310009, Zhejiang, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, 310009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
11
|
D Manurung R, Ilyas S, Hutahaean S, Rosidah R, Situmorang PC. Diabetic Wound Healing in FGF Expression by Nano Herbal of Rhodomyrtus tomentosa L. and Zanthoxylum acanthopodium Fruits. Pak J Biol Sci 2021; 24:401-408. [PMID: 34486326 DOI: 10.3923/pjbs.2021.401.408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Increased glucose levels in diabetes mellitus patients affect angiogenesis which triggers the duration of the wound to heal. <i>Rhodomyrtus tomentosa</i> leaves (haramonting) and <i>Zanthoxylum acanthopodium </i>fruits (andaliman) are an endemic plant with an antioxidant in Indonesia. This study was aimed to determine histology changes of diabetic wound healing in FGF expression by Nano herbal of haramonting and andaliman. <b>Materials and Methods:</b> This study consisted of 4 groups for each treatment, K<sub>1</sub>: Negative control, K<sub>2</sub>: MEBO, K<sub>3</sub>: Nano herbal of andaliman and K<sub>4</sub>: Nano herbal of haramonting. The treatments were observed on days 0, 4, 8, 12 and 16. Diabetic model rats with alloxan injection (120 mg kg<sup>1</sup>. IP) and rats were declared diabetes mellitus when blood glucose levels reached <u>></u>200 mg dL<sup>1</sup>. The tissue was prepared on paraffin blocks and given Immunohistochemistry staining for FGF analysis. <b>Results:</b> There was a significant difference between all groups (p<0.001) in FGF expression. The proliferation of fibroblasts and collagen was formed by administering nano herbal andaliman and haramonting in rat's skin. The proliferation of cells that occur in the injured skin layer indicates the compounds contained in the nano herbal haramonting and andaliman stimulate cell division and growth to form wound tissue. <b>Conclusion:</b> Nano herbal andaliman and haramonting can be developed into herbs that can be used to treat wounds in diabetes. Another molecular gene analysis is required to get higher yields to further study for diabetic wounds against these two herbs.
Collapse
|
12
|
Forsberg MH, Kink JA, Thickens AS, Lewis BM, Childs CJ, Hematti P, Capitini CM. Exosomes from primed MSCs can educate monocytes as a cellular therapy for hematopoietic acute radiation syndrome. Stem Cell Res Ther 2021; 12:459. [PMID: 34407878 PMCID: PMC8371870 DOI: 10.1186/s13287-021-02491-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acute radiation syndrome (ARS) is caused by acute exposure to ionizing radiation that damages multiple organ systems but especially the bone marrow (BM). We have previously shown that human macrophages educated with exosomes from human BM-derived mesenchymal stromal cells (MSCs) primed with lipopolysaccharide (LPS) prolonged survival in a xenogeneic lethal ARS model. The purpose of this study was to determine if exosomes from LPS-primed MSCs could directly educate human monocytes (LPS-EEMos) for the treatment of ARS. METHODS Human monocytes were educated by exosomes from LPS-primed MSCs and compared to monocytes educated by unprimed MSCs (EEMos) and uneducated monocytes to assess survival and clinical improvement in a xenogeneic mouse model of ARS. Changes in surface molecule expression of exosomes and monocytes after education were determined by flow cytometry, while gene expression was determined by qPCR. Irradiated human CD34+ hematopoietic stem cells (HSCs) were co-cultured with LPS-EEMos, EEMos, or uneducated monocytes to assess effects on HSC survival and proliferation. RESULTS LPS priming of MSCs led to the production of exosomes with increased expression of CD9, CD29, CD44, CD146, and MCSP. LPS-EEMos showed increases in gene expression of IL-6, IL-10, IL-15, IDO, and FGF-2 as compared to EEMos generated from unprimed MSCs. Generation of LPS-EEMos induced a lower percentage of CD14+ monocyte subsets that were CD16+, CD73+, CD86+, or CD206+ but a higher percentage of PD-L1+ cells. LPS-EEMos infused 4 h after lethal irradiation significantly prolonged survival, reducing clinical scores and weight loss as compared to controls. Complete blood counts from LPS-EEMo-treated mice showed enhanced hematopoietic recovery post-nadir. IL-6 receptor blockade completely abrogated the radioprotective survival benefit of LPS-EEMos in vivo in female NSG mice, but only loss of hematopoietic recovery was noted in male NSG mice. PD-1 blockade had no effect on survival. Furthermore, LPS-EEMos also showed benefits in vivo when administered 24 h, but not 48 h, after lethal irradiation. Co-culture of unprimed EEMos or LPS-EEMos with irradiated human CD34+ HSCs led to increased CD34+ proliferation and survival, suggesting hematopoietic recovery may be seen clinically. CONCLUSION LPS-EEMos are a potential counter-measure for hematopoietic ARS, with a reduced biomanufacturing time that facilitates hematopoiesis.
Collapse
Affiliation(s)
- Matthew H Forsberg
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA
| | - John A Kink
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Anna S Thickens
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Bryson M Lewis
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Charlie J Childs
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA
| | - Peiman Hematti
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4033, Madison, WI, 53705, USA.
| | - Christian M Capitini
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, WIMR 4137, Madison, WI, 53705, USA.
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| |
Collapse
|
13
|
Takayama T, Ishihara M, Sato Y, Nakamura S, Fukuda K, Murakami K, Yokoe H. Bioshell calcium oxide (BiSCaO) for cleansing and healing Pseudomonas aeruginosa-infected wounds in hairless rats. Biomed Mater Eng 2021; 31:95-105. [PMID: 32568170 DOI: 10.3233/bme-201082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Scallop shell powder is called bioshell calcium oxide (BiSCaO), which is known to possess deodorizing properties and broad antimicrobial activity against various pathogenic microbes, including viruses, bacteria, spores, and fungi. OBJECTIVE This study aims to investigate the applications of BiSCaO suspension cleansing in clinical situations, for instance for the prevention and treatment of infections in chronic wounds in healing-impaired patients, without delaying wound healing. METHODS The bactericidal activities of 1000 ppm BiSCaO suspension; 500 ppm hypochlorous acid; 1000 ppm povidone iodine; and saline were compared to evaluate in vivo disinfection and healing of Pseudomonas aeruginosa-infected wounds in hairless rats. RESULTS Cleansing of the infected wounds with BiSCaO suspension daily for 3 days significantly enhanced wound healing and reduced the in vivo bacterial counts, in comparison to hypochlorous acid, povidone iodine, and saline. Furthermore, histological examinations showed significantly advanced granulation tissue and capillary formation in the wounds cleansed with BiSCaO suspension than in those cleansed with the other solutions. CONCLUSIONS This study suggested that the possibility of using BiSCaO suspension as a disinfectant for infected wounds and limiting disinfection to 3 days may be sufficient to avoid the negative effects on wound repair.
Collapse
Affiliation(s)
- Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
14
|
Xie J, Zhao M, Wang C, Yong Y, Gu Z, Zhao Y. Rational Design of Nanomaterials for Various Radiation-Induced Diseases Prevention and Treatment. Adv Healthc Mater 2021; 10:e2001615. [PMID: 33506624 DOI: 10.1002/adhm.202001615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Indexed: 12/17/2022]
Abstract
Radiation treatments often unfavorably damage neighboring healthy organs and cause a series of radiation sequelae, such as radiation-induced hematopoietic system diseases, radiation-induced gastrointestinal diseases, radiation-induced lung diseases, and radiation-induced skin diseases. Recently, emerging nanomaterials have exhibited good superiority for these radiation-induced disease treatments. Given this background, the rational design principle of nanomaterials, which helps to optimize the therapeutic efficiency, has been an increasing need. Consequently, it is of great significance to perform a systematic summarization of the advances in this field, which can trigger the development of new high-performance nanoradioprotectors with drug efficiency maximization. Herein, this review highlights the advances and perspectives in the rational design of nanomaterials for preventing and treating various common radiation-induced diseases. Furthermore, the sources, clinical symptoms, and pathogenesis/injury mechanisms of these radiation-induced diseases will also be introduced. Furthermore, current challenges and directions for future efforts in this field are also discussed.
Collapse
Affiliation(s)
- Jiani Xie
- School of Food and Biological Engineering Chengdu University Chengdu 610106 China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
| | - Maoru Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuan Yong
- College of Chemistry and Environment Protection Engineering Southwest Minzu University Chengdu 610041 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
| | - Yuliang Zhao
- Center of Materials Science and Optoelectronics Engineering College of Materials Science and Optoelectronic Technology University of Chinese Academy of Sciences Beijing 100049 China
- GBA Research Innovation Institute for Nanotechnology Guangdong 510700 China
- CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
15
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
|
17
|
Kuwabara M, Sato Y, Ishihara M, Takayama T, Nakamura S, Fukuda K, Murakami K, Yokoe H, Kiyosawa T. Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.wndm.2020.100183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Ishihara M, Nakamura S, Sato Y, Takayama T, Fukuda K, Fujita M, Murakami K, Yokoe H. Heparinoid Complex-Based Heparin-Binding Cytokines and Cell Delivery Carriers. Molecules 2019; 24:molecules24244630. [PMID: 31861225 PMCID: PMC6943580 DOI: 10.3390/molecules24244630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/20/2022] Open
Abstract
Heparinoid is the generic term that is used for heparin, heparan sulfate (HS), and heparin-like molecules of animal or plant origin and synthetic derivatives of sulfated polysaccharides. Various biological activities of heparin/HS are attributed to their specific interaction and regulation with various heparin-binding cytokines, antithrombin (AT), and extracellular matrix (ECM) biomolecules. Specific domains with distinct saccharide sequences in heparin/HS mediate these interactions are mediated and require different highly sulfated saccharide sequences with different combinations of sulfated groups. Multivalent and cluster effects of the specific sulfated sequences in heparinoids are also important factors that control their interactions and biological activities. This review provides an overview of heparinoid-based biomaterials that offer novel means of engineering of various heparin-binding cytokine-delivery systems for biomedical applications and it focuses on our original studies on non-anticoagulant heparin-carrying polystyrene (NAC-HCPS) and polyelectrolyte complex-nano/microparticles (N/MPs), in addition to heparin-coating devices.
Collapse
Affiliation(s)
- Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
- Correspondence: ; Tel.: +81-429-95-1211 (ext. 2610)
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorazawa, Saitama 359-8513, Japan; (S.N.); (Y.S.); (K.F.)
| | - Masanori Fujita
- Division of Environmental Medicine, Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-1324, Japan;
| | - Kaoru Murakami
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| | - Hidetaka Yokoe
- Department of Oral and Maxillofacial Surgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan; (T.T.); (K.M.); (H.Y.)
| |
Collapse
|
19
|
Illescas-Montes R, Melguizo-Rodríguez L, García-Martínez O, de Luna-Bertos E, Manzano-Moreno FJ, Ruiz C, Ramos-Torrecillas J. Human Fibroblast Gene Expression Modulation Using 940 NM Diode Laser. Sci Rep 2019; 9:12037. [PMID: 31427686 PMCID: PMC6700136 DOI: 10.1038/s41598-019-48595-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 08/08/2019] [Indexed: 12/26/2022] Open
Abstract
Low-Level Laser Therapy is used as regenerative therapy in different clinical fields. This is due to its photobiomodulation effect via cell signaling on different cell populations, Including fibroblasts, cells involved in tissue regeneration and healing. The aim was to analyze the effect of 940 nm diode laser on the gene expression of different markers involved in fibroblast growth, differentiation, and migration. Real-time polymerase chain reaction (q-RT-PCR) was used to quantify the expression of fibroblast growth factor (FGF), connective tissue growth factor (CTGF), vascular-endothelial growth factor (VEGF), transforming growth factor β1 (TGF-β1), TGFβ-receptors (TGFβR1, TGFβR2, and TGFβR3), discoidin-domain receptor-2 (DDR2), matrix metalloproteinase-2 (MMP2), α-actin, fibronectin, decorin, and elastin on human fibroblast, treated with single dose (T1) or two doses (T2) of diode laser at 0.5 Watts and 4 J/cm2. A significant increase in the expression of FGF, TGF-β1, TGFβR1, TGFβR2, α-actin, fibronectin, decorin, DDR2 and MMP2 was observed after both treatments. A decrease was observed in expression of elastin (T1 and T2), and CTGF (T2). These changes underlie the biostimulatory effect of laser on fibroblasts, which translates into an increase in short-term proliferation and in long-term differentiation to myofibroblasts. These data support the therapeutic potential of diode laser for wound repair.
Collapse
Affiliation(s)
- Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Elvira de Luna-Bertos
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| | - Francisco Javier Manzano-Moreno
- Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain.,Biomedical Group (BIO277). Department of Stomatology, School of Dentistry, University of Granada, Granada, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain. .,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain. .,Institute of Neuroscience, University of Granada, Centro de Investigación Biomédica (CIBM). Parque de Tecnológico de la Salud (PTS), Granada, Spain.
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Granada, Spain.,Instituto Investigación Biosanitaria ibs.Granada, ibs.Granada, C/ Doctor Azpitarte 4, 4ª planta, Granada, 18012, Spain
| |
Collapse
|
20
|
Zhang GY, Langan EA, Meier NT, Funk W, Siemers F, Paus R. Thyroxine (T4) may promote re-epithelialisation and angiogenesis in wounded human skin ex vivo. PLoS One 2019; 14:e0212659. [PMID: 30925152 PMCID: PMC6440638 DOI: 10.1371/journal.pone.0212659] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/07/2019] [Indexed: 12/18/2022] Open
Abstract
There is a pressing need for improved preclinical model systems in which to study human skin wound healing. Here, we report the development and application of a serum-free full thickness human skin wound healing model. Not only can re-epithelialization (epidermal repair) and angiogenesis be studied in this simple and instructive model, but the model can also be used to identify clinically relevant wound-healing promoting agents, and to dissect underlying candidate mechanisms of action in the target tissue. We present preliminary ex vivo data to suggest that Thyroxine (T4), which reportedly promotes skin wound healing in rodents in vivo, may promote key features of human skin wound healing. Namely, T4 stimulates re-epithelialisation and angiogenesis, and modulates both wound healing-associated epidermal keratin expression and energy metabolism in experimentally wound human skin. Functionally, the wound healing-promoting effects of T4 are at least partially mediated via fibroblast growth factor/fibroblast growth factor receptor-mediated signalling, since they could be significantly antagonized by bFGF-neutralizing antibody. Thus, this pragmatic, easy-to-use full-thickness human skin wound healing model provides a useful preclinical research tool in the search for clinically relevant candidate wound healing-promoting agents. These ex vivo data encourage further pre-clinical testing of topical T4 as a cost-efficient, novel agent in the management of chronic human skin wounds.
Collapse
Affiliation(s)
- Guo-You Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ewan A. Langan
- Department of Dermatology, University of Lübeck, Lübeck, Germany
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
| | | | | | - Frank Siemers
- Department of Plastic and Hand Surgery, BG Klinikum Bergmannstrost, Halle/Salle, Germany
| | - Ralf Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Takabayashi Y, Kuwabara M, Sato Y, Ishihara M, Takikawa M, Nakamura S, Fukuda K, Hiruma S, Kiyosawa T. FGF-2-containing dalteparin/protamine nanoparticles (FGF-2&D/P NPs) ameliorate UV-induced skin photoaging in hairless mice. J Plast Surg Hand Surg 2018; 52:375-381. [DOI: 10.1080/2000656x.2018.1523178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Yuki Takabayashi
- Department of Plastic and Reconstructive Surgery, New Tokyo Hospital, Chiba, Japan
| | - Masahiro Kuwabara
- Department of Plastic and Reconstructive Surgery, New Tokyo Hospital, Chiba, Japan
| | - Yoko Sato
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Megumi Takikawa
- Department of Plastic and Reconstructive Surgery, New Tokyo Hospital, Chiba, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Koichi Fukuda
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Sumiyo Hiruma
- Division of Biomedical Engineering, Research Institute, National Defense Medical College, Tokorozawa, Japan
| | - Tomoharu Kiyosawa
- Department of Plastic and Reconstructive Surgery, New Tokyo Hospital, Chiba, Japan
| |
Collapse
|
22
|
Xie J, Wang C, Zhao F, Gu Z, Zhao Y. Application of Multifunctional Nanomaterials in Radioprotection of Healthy Tissues. Adv Healthc Mater 2018; 7:e1800421. [PMID: 30019546 DOI: 10.1002/adhm.201800421] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/18/2018] [Indexed: 01/06/2023]
Abstract
Radiotherapy has been extensively used in clinic for malignant tumors treatment. However, a severe challenge of it is that the ionizing radiation needed to kill tumors inevitably causes damage to surrounding normal tissues. Although some of the molecular radioprotective drugs, such as amifostine, have been used as clinical adjuvants to radio-protect healthy tissues, their shortcomings such as short systemic circulation time and fast biological clearing from the body largely hinder the sustained bioactivity. Recently, with the rapid development of nanotechnology in the biological field, the multifunctional nanomaterials not only establish powerful drug delivery systems to improve the molecular radioprotective drugs' biological availability, but also open a new route to develop neozoic radioprotective agents because some nanoparticles possess intrinsic radioprotective abilities. Therefore, considering these overwhelming superiorities, this review systematically summarizes the advances in healthy tissue radioprotection applications of multifunctional nanomaterials. Furthermore, this review also points out a perspective of nanomaterial designs for radioprotection applications and discusses the challenges and future outlooks of the nanomaterial-mediated radioprotection.
Collapse
Affiliation(s)
- Jiani Xie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Feng Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety; Institute of High Energy Physics; Chinese Academy of Sciences; Beijing 100049 China
- College of Materials Science and Optoelectronic Technology; University of Chinese Academy of Sciences; Beijing 100049 China
- CAS Center for Excellence in Nanoscience; National Center for Nanoscience and Technology of China; Chinese Academy of Sciences; Beijing 100190 China
| |
Collapse
|
23
|
Akhtar F, Wan X, Wu G, Kesse S, Wang S, He S. Low-Molecular-Weight Heparins: Reduced Size Particulate Systems for Improved Therapeutic Outcomes. Molecules 2018; 23:E1757. [PMID: 30021958 PMCID: PMC6100363 DOI: 10.3390/molecules23071757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 01/10/2023] Open
Abstract
A wide range of diseases have been treated using low-molecular-weight heparins (LMWHs), the drug of choice for anticoagulation. Owing to their better pharmacokinetic features compared to those of unfractionated heparin (uFH), several systems incorporating LMWHs have been investigated to deliver and improve their therapeutic outcomes, especially through development of their micro- and nano-particles. This review article describes current perspectives on the fabrication, characterization, and application of LMWHs-loaded micro- and nano-particles to achieve ameliorated bioavailability. The valuable applications of LMWH will continue to encourage researchers to identify efficient delivery systems that have specific release characteristics and ameliorated bioavailability, overcoming the challenges presented by biological obstructions and the physicochemical properties of LMWHs.
Collapse
Affiliation(s)
- Fahad Akhtar
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Xinyu Wan
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Gang Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Samuel Kesse
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| | - Shaoda Wang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Shuying He
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|