1
|
Alpsten F, van Veelen B, Valdes‐Cortez C, Berumen F, Ahnesjö A, Carlsson Tedgren Å. Improved heterogeneity handling in the collapsed cone dose engine for brachytherapy. Med Phys 2025; 52:585-595. [PMID: 39470290 PMCID: PMC11700003 DOI: 10.1002/mp.17434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Model-based dose calculation algorithms (MBDCA), such as the Advanced Collapsed cone Engine (ACE) in Oncentra Brachy® can be used to overcome the limitations of the TG-43 formalism. ACE is a point kernel superposition algorithm that calculates the total dose separated into primary, first-scatter, and multiple-scatter dose. Albeit ACE yields accurate results under most circumstances, several studies have reported underestimations of the dose to cortical bone. These underestimations are likely caused by approximations in the handling of multiple-scatter dose for non-water media. Such would result in noticeable deviations where the multiple-scatter is a considerable fraction of the total dose, that is, at greater distances from the source. PURPOSE To improve and test the accuracy of the multiple-scatter dose component in the ACE algorithm to remedy its inaccuracy for non-water geometries. METHODS A careful analysis of the transport and absorption of the multiple-scatter energy fluence revealed an inconsistency in the scaling of energy absorption ratios for non-water media of the multiple-scatter kernel. We implemented an updated algorithm version, ACEcorr, and tested it for three different geometries. All had a single 192Ir-source at the center of a cubic water phantom with a box-shaped heterogeneity of either cortical bone or air, positioned at different distances from the source. Dose distributions for the three cases were calculated with ACE and ACEcorr and compared to Monte Carlo simulations, using the percentage dose difference ratio as figure-of-merit. All dose calculation methods scored separately the dose deposited by primary, first-scattered, and multiple-scattered photons. RESULTS The accuracy of the updated algorithm ACEcorr was superior to ACE. In the cortical bone heterogeneity, the mean percentage dose difference ratio for the total dose improved from- 11.7 % $ - 11.7{\mathrm{\% }}$ to- 2.2 % $ - 2.2{\mathrm{\% }}$ (in the worst case) by our update. Less impact was seen in the air heterogeneity, where both ACE and ACEcorr deviated less than 2% from the Monte Carlo results. The algorithm update mainly concerns the multiple-scattered dose component, but an accompanying data processing update also had a small effect ( ≤ $ \le $ 0.5% difference) on the primary and first-scattered dose. The calculation times were not affected. CONCLUSIONS The updates to ACE improved the accuracy of multiple-scatter dose calculation for non-water media, without increasing calculation times.
Collapse
Affiliation(s)
- Freja Alpsten
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Nuclear Medicin and Medical PhysicsKarolinska University HospitalStockholmSweden
| | | | | | - Francisco Berumen
- Service de Physique Médicale et de RadioprotectionCentre Intégré de CancérologieCHU de Québec – Université Laval et Centre de recherche du CHU de QuébecQuebecCanada
- Département de Physiquede Génie Physique et d'Optique et Centre de Recherche sur le CancerUniversité LavalQuebecCanada
| | - Anders Ahnesjö
- Department of ImmunologyGenetics and PathologyUppsala UniversityUppsalaSweden
| | - Åsa Carlsson Tedgren
- Department of Oncology‐PathologyKarolinska InstitutetStockholmSweden
- Department of Nuclear Medicin and Medical PhysicsKarolinska University HospitalStockholmSweden
- Department of HealthMedicine and Caring SciencesLinköping UniversityLinköpingSweden
| |
Collapse
|
2
|
Srivastava S, Venugopal AK, Singh MN. Effect of model-based dose-calculation algorithms in high dose rate brachytherapy of cervical carcinoma. Rep Pract Oncol Radiother 2024; 29:300-308. [PMID: 39144272 PMCID: PMC11321785 DOI: 10.5603/rpor.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/16/2024] [Indexed: 08/16/2024] Open
Abstract
Background Task Group 43 (TG-43) formalism does not consider the tissue and applicator heterogeneities. This study is to compare the effect of model-based dose calculation algorithms, like Advanced Collapsed Cone Engine (ACE), on dose calculation with the TG-43 dose calculation formalism in patients with cervical carcinoma. Materials and methods 20 patients of cervical carcinoma treated with a high dose rate of intracavitary brachytherapy were prospectively studied. The target volume and organs at risk (OARs) were contoured in the Oncentra treatment planning system (Elekta, Veenendaal, The Netherlands). All patients were planned with cobalt-60 (Co-60) and iridium-192 (Ir-192) sources with doses of 21 Gy in 3 fractions. These plans were calculated with TG-43 formalism and a model-based dose calculation algorithm ACE. The dosimetric parameters of TG-43 and ACE-based plans were compared in terms of target coverage and OAR doses. Results For Co-60-based plans, the percentage differences in the D90 and V100 values for high-risk clinical target volume (HR-CTV) were 0.36 ± 0.43% and 0.17 ± 0.31%, respectively. For the bladder, rectum and sigmoid, the percentage differences for D2cc volumes were -0.50 ± 0.51%, -0.16 ± 0.53% and -0.37 ± 1.21%, respectively. For Ir-192-based plans, the percentage difference in the D90 for HR-CTV was 0.54 ± 0.79%, while V100 was 0.24 ± 0.29%. For the bladder, rectum and sigmoid, the doses to 2cc volume were 0.35 ± 1.06%, 0.99 ± 0.74% and 0.74 ± 1.92%, respectively. No significant differences were found in the dosimetric parameters calculated with ACE and TG-43. Conclusion The ACE algorithm reduced doses to OARs and targets. However, ACE and TG-43 did not show significant differences in the dosimetric parameters of the target and OARs with both sources.
Collapse
Affiliation(s)
- Shraddha Srivastava
- Department of Radiotherapy, King George’s Medical University, Lucknow, India
| | | | - Moirangthem Nara Singh
- Department of Radiation Oncology, Regional Institute of Medical Sciences, Manipur, India
| |
Collapse
|
3
|
Sadeghi MH, Sina S, Meigooni AS. Assessing Heterogeneity Effects on Points A, B, and Organs at Risk Doses in High-dose-Rate Brachytherapy for Cervical Cancer - A Comparison of 192Ir and 60Co Sources Using Monte Carlo N-Particle 5. J Med Phys 2024; 49:294-303. [PMID: 39131438 PMCID: PMC11309145 DOI: 10.4103/jmp.jmp_162_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/24/2024] [Accepted: 04/14/2024] [Indexed: 08/13/2024] Open
Abstract
Purpose The present article deals with investigating the effects of tissue heterogeneity consideration on the dose distribution of 192Ir and 60Co sources in high-dose-rate brachytherapy (HDR-BT). Materials and Methods A Monte Carlo N-Particle 5 (MCNP5) code was developed for the simulation of the dose distribution in homogeneous and heterogeneous phantoms for cervical cancer patients. The phantoms represented water-equivalent and human body-equivalent tissues. Treatment data for a patient undergoing HDR-BT with a 192Ir source were used as a reference for validation, and for 60Co, AAPM Task Group 43 methodology was also applied. The dose values were calculated for both source types in the phantoms. Results The results showed a good agreement between the calculated dose in the homogeneous phantom and the real patient's treatment data, with a relative difference of less than 5% for both sources. However, when comparing the absorbed doses at critical points such as Point A right, Point A left, Point B right, Point B left, bladder International Commission on Radiation Units and Measurement (ICRU) point, and recto-vaginal ICRU point, the study revealed significant percentage differences (approximately 5.85% to 12.02%) between the homogeneous and heterogeneous setups for both 192Ir and 60Co sources. The analysis of dose-volume histograms (DVH) indicated that organs at risk, notably the rectum and bladder, still received doses within recommended limits. Conclusions The study concludes that 60Co and 192Ir sources can be effectively used in HDR-BT, provided that careful consideration is given to tissue heterogeneity effects during treatment planning to ensure optimal therapeutic outcomes.
Collapse
Affiliation(s)
- Mohammad Hossein Sadeghi
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Sedigheh Sina
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
- Radiation Research Center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | | |
Collapse
|
4
|
Meftahi M, Song WY. The effect of vaginal cylinder inhomogeneity on the HDR brachytherapy dose calculations using Monte Carlo simulations. J Appl Clin Med Phys 2024; 25:e14228. [PMID: 38043126 PMCID: PMC10795442 DOI: 10.1002/acm2.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/07/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
PURPOSE To analytically assess the heterogeneity effect of vaginal cylinders (VC) made of high-density plastics on dose calculations, considering the prescription point (surface or 5 mm beyond the surface), and benchmark the accuracy of a commercial model-based dose calculation (MBDC) algorithm using Monte Carlo (MC) simulations. METHODS AND MATERIALS The GEANT4 MC code was used to simulate a commercial 192 Ir HDR source and VC, with diameters ranging from 20 to 35 mm, inside a virtual water phantom. Standard plans were generated from a commercial treatment planning system [TPS-BrachyVision ACUROS (BV)] optimized for a treatment length of 5 cm through two dose calculation approaches: (1) assuming all the environment as water (i.e., Dw,w-MC & Dw,w-TG43 ) and (2) accounting for the heterogeneity of VC applicators (i.e., Dw,w-App-MC & Dw,w-App-MBDC ). The compared isodose lines, and dose & energy difference maps were extracted for analysis. In addition, the dose difference on the peripheral surface, along the applicator and at middle of treatment length, as well as apical tip was evaluated. RESULTS The Dw,w-App-MC results indicated that the VC heterogeneity can cause a dose reduction of (up to) % 6.8 on average (for all sizes) on the peripheral surface, translating to 1 mm shrinkage of the isodose lines compared to Dw,w-MC . In addition, the results denoted that BV overestimates the dose on the peripheral surface and apical tip of about 3.7% and 17.9%, respectively, (i.e., Dw,w-App-MBDC vs Dw,w-App-MC ) when prescribing to the surface. However, the difference between the two were negligible at the prescription point when prescribing to 5 mm beyond the surface. CONCLUSION The VCs' heterogeneity could cause dose reduction when prescribing dose to the surface of the applicator, and hence increases the level of uncertainty. Thus, reviewing the TG43 results, in addition to ACUROS, becomes prudent, when evaluating the surface coverage at the apex.
Collapse
Affiliation(s)
- Moeen Meftahi
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Radiation Oncology and Winship Cancer InstituteEmory UniversityAtlantaGeorgiaUSA
| | - William Y. Song
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
5
|
Kallis K, Moore LC, Cortes KG, Brown D, Mayadev J, Moore KL, Meyers SM. Automated treatment planning framework for brachytherapy of cervical cancer using 3D dose predictions. Phys Med Biol 2023; 68:10.1088/1361-6560/acc37c. [PMID: 36898161 PMCID: PMC10101723 DOI: 10.1088/1361-6560/acc37c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/10/2023] [Indexed: 03/12/2023]
Abstract
Objective. To lay the foundation for automated knowledge-based brachytherapy treatment planning using 3D dose estimations, we describe an optimization framework to convert brachytherapy dose distributions directly into dwell times (DTs).Approach. A dose rate kernelḋ(r,θ,φ)was produced by exporting 3D dose for one dwell position from the treatment planning system and normalizing by DT. By translating and rotating this kernel to each dwell position, scaling by DT and summing over all dwell positions, dose was computed (Dcalc). We used a Python-coded COBYLA optimizer to iteratively determine the DTs that minimize the mean squared error betweenDcalcand reference doseDref, computed using voxels withDref80%-120% of prescription. As validation of the optimization, we showed that the optimizer replicates clinical plans whenDref= clinical dose in 40 patients treated with tandem-and-ovoid (T&O) or tandem-and-ring (T&R) and 0-3 needles. Then we demonstrated automated planning in 10 T&O usingDref= dose predicted from a convolutional neural network developed in past work. Validation and automated plans were compared to clinical plans using mean absolute differences (MAD=1N∑n=1Nabsxn-xn') over all voxels (xn= Dose,N= #voxels) and DTs (xn= DT,N= #dwell positions), mean differences (MD) in organD2ccand high-risk CTV D90 over all patients (where positive indicates higher clinical dose), and mean Dice similarity coefficients (DSC) for 100% isodose contours.Main results. Validation plans agreed well with clinical plans (MADdose= 1.1%, MADDT= 4 s or 0.8% of total plan time,D2ccMD = -0.2% to 0.2% and D90 MD = -0.6%, DSC = 0.99). For automated plans, MADdose= 6.5% and MADDT= 10.3 s (2.1%). The slightly higher clinical metrics in automated plans (D2ccMD = -3.8% to 1.3% and D90 MD = -5.1%) were due to higher neural network dose predictions. The overall shape of the automated dose distributions were similar to clinical doses (DSC = 0.91).Significance. Automated planning with 3D dose predictions could provide significant time savings and standardize treatment planning across practitioners, regardless of experience.
Collapse
Affiliation(s)
- Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Lance C Moore
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Katherina G Cortes
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Derek Brown
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Jyoti Mayadev
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Kevin L Moore
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| | - Sandra M Meyers
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States of America
| |
Collapse
|
6
|
Bi S, Chen Z, Sun X, Dai Z. Dosimetric comparison of AcurosBV with AAPM TG43 dose calculation formalism in cervical intraductal high‐dose‐rate brachytherapy using three different applicators. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Su‐yan Bi
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen China
| | - Zhi‐jian Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen China
| | - Xing‐ru Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen China
| | - Zhi‐tao Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen China
| |
Collapse
|
7
|
Otal A, Celada F, Chimeno J, Vijande J, Pellejero S, Perez-Calatayud MJ, Villafranca E, Fuentemilla N, Blazquez F, Rodriguez S, Perez-Calatayud J. Review on Treatment Planning Systems for Cervix Brachytherapy (Interventional Radiotherapy): Some Desirable and Convenient Practical Aspects to Be Implemented from Radiation Oncologist and Medical Physics Perspectives. Cancers (Basel) 2022; 14:3467. [PMID: 35884528 PMCID: PMC9318845 DOI: 10.3390/cancers14143467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Intracavitary brachytherapy (BT, Interventional Radiotherapy, IRT), plays an essential role in the curative intent of locally advanced cervical cancer, for which the conventional approach involves external beam radiotherapy with concurrent chemotherapy followed by BT. This work aims to review the different methodologies used by commercially available treatment planning systems (TPSs) in exclusive magnetic resonance imaging-based (MRI) cervix BT with interstitial component treatments. Practical aspects and improvements to be implemented into the TPSs are discussed. This review is based on the clinical expertise of a group of radiation oncologists and medical physicists and on interactive demos provided by the software manufacturers. The TPS versions considered include all the new tools currently in development for future commercial releases. The specialists from the supplier companies were asked to propose solutions to some of the challenges often encountered in a clinical environment through a questionnaire. The results include not only such answers but also comments by the authors that, in their opinion, could help solve the challenges covered in these questions. This study summarizes the possibilities offered nowadays by commercial TPSs, highlighting the absence of some useful tools that would notably improve the planning of MR-based interstitial component cervix brachytherapy.
Collapse
Affiliation(s)
- Antonio Otal
- Medical Physics Department, Hospital Universitari Arnau de Vilanova, 25198 Lleida, Spain
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Universitat de Valencia (UV), 46010 Valencia, Spain; (J.V.); (J.P.-C.)
| | - Francisco Celada
- Radiotherapy Department, La Fe Hospital, 46026 Valencia, Spain; (F.C.); (M.-J.P.-C.)
| | - Jose Chimeno
- Medical Physics Department, Hospital San Juan, 03550 Alicante, Spain;
| | - Javier Vijande
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Universitat de Valencia (UV), 46010 Valencia, Spain; (J.V.); (J.P.-C.)
- Department of Atomic, Molecular and Nuclear Physics, University of Valencia, 46010 Valencia, Spain
- Instituto de Física Corpuscular, IFIC (UV-CSIC), 46010 Valencia, Spain
| | - Santiago Pellejero
- Radiation Oncology Department, Hospital Universitario de Navarra, 31008 Navarre, Spain; (S.P.); (E.V.); (N.F.)
| | | | - Elena Villafranca
- Radiation Oncology Department, Hospital Universitario de Navarra, 31008 Navarre, Spain; (S.P.); (E.V.); (N.F.)
| | - Naiara Fuentemilla
- Radiation Oncology Department, Hospital Universitario de Navarra, 31008 Navarre, Spain; (S.P.); (E.V.); (N.F.)
| | - Francisco Blazquez
- Radiotherapy Department, Hospital Clínica Benidorm, 03501 Alicante, Spain; (F.B.); (S.R.)
| | - Silvia Rodriguez
- Radiotherapy Department, Hospital Clínica Benidorm, 03501 Alicante, Spain; (F.B.); (S.R.)
| | - Jose Perez-Calatayud
- Unidad Mixta de Investigación en Radiofísica e Instrumentación Nuclear en Medicina (IRIMED), Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Universitat de Valencia (UV), 46010 Valencia, Spain; (J.V.); (J.P.-C.)
- Radiotherapy Department, La Fe Hospital, 46026 Valencia, Spain; (F.C.); (M.-J.P.-C.)
- Radiotherapy Department, Hospital Clínica Benidorm, 03501 Alicante, Spain; (F.B.); (S.R.)
| |
Collapse
|
8
|
Wu A, Tang D, Wu A, Liu Y, Qian L, Zhu L. Comparison of the Dosimetric Influence of Applicator Displacement on 2D and 3D Brachytherapy for Cervical Cancer Treatment. Technol Cancer Res Treat 2021; 20:15330338211041201. [PMID: 34569371 PMCID: PMC8485565 DOI: 10.1177/15330338211041201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To compare the dosimetric influence of applicator displacement on two-dimensional brachytherapy (2D-BT) and three-dimensional brachytherapy (3D-BT) for cervical cancer. Nineteen patients who received computed tomography-guided tandem-and-ovoid (T&O) brachytherapy were retrospectively selected. Both 2D (point-based) and 3D (volume-based) plans with and without virtual applicator displacement in the 3 axes were created for each patient. Dose changes at point A, D90 of the high-risk clinical target volume (HR-CTV) and intermediate-risk CTV (IR-CTV), and the D0.1cc, D1cc, D2cc, and D5cc of organs-at-risk (OARs) caused by applicator displacement were evaluated. Both 2D-BT and 3D-BT plans were sensitive to T&O applicator displacement. The D90 of the CTV and the dose at point A were very sensitive to applicator displacement in the right–left direction (X-axis). An applicator shift of >2 mm in the X-axis resulted in a change of >5% in the dose at point A and D90 of HR-CTV and IR-CTV. In addition, the doses to the OARs were mostly affected by applicator displacement in the anterior–posterior direction (Z-axis). A displacement of <1.5 mm in the Z-axis was required to avoid a dose change of >10% for OARs. For both 2D-BT and 3D-BT plans, T&O displacement greater than ± 2 mm in the X-axis or T&O applicator displacement ± 1.5 mm in the Z-axis resulted in significant dose changes to the tumor and OARs. In comparison with 3D-BT plans, 2D-BT plans delivered a higher dose to the tumor, and the OARs received more undesirable doses when applicator displacement occurred. The influence of applicator displacement on the doses to the tumor and OARs differed between 2D-BT and 3D-BT. Physicians should take individual patient differences into account when selecting a brachytherapy plan to mitigate the influence of applicator displacement.
Collapse
Affiliation(s)
- Ailin Wu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Du Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Aidong Wu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yunqin Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Liting Qian
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Zhu
- Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
9
|
Yousif YAM, Osman AFI, Halato MA. A review of dosimetric impact of implementation of model-based dose calculation algorithms (MBDCAs) for HDR brachytherapy. Phys Eng Sci Med 2021; 44:871-886. [PMID: 34142317 DOI: 10.1007/s13246-021-01029-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
To obtain dose distributions more physically representative to the patient anatomy in brachytherapy, calculation algorithms that can account for heterogeneity are required. The current standard AAPM Task Group No 43 (TG-43) dose calculation formalism has some clinically relevant dosimetric limitations. Lack of tissue heterogeneity and scattered dose corrections are the major weaknesses of the TG-43 formalism and could lead to systematic dose errors in target volumes and organs at risk. Over the last decade, model-based dose calculation algorithms (MBDCAs) have been clinically offered as complementary algorithms beyond the TG43 formalism for high dose rate (HDR) brachytherapy treatment planning. These algorithms provide enhanced dose calculation accuracy by using the information in the patient's computed tomography images, which allows modeling the patient's geometry, material compositions, and the treatment applicator. Several researchers have investigated the implementation of MBDCAs in HDR brachytherapy for dose optimization, but moving toward using them as primary algorithms for dose calculations is still lagging. Therefore, an overview of up-to-date research is needed to familiarize clinicians with the current status of the MBDCAs for different cancers in HDR brachytherapy. In this paper, we review the MBDCAs for HDR brachytherapy from a dosimetric perspective. Treatment sites covered include breast, gynecological, lung, head and neck, esophagus, liver, prostate, and skin cancers. Moreover, we discuss the current status of implementation of MBDCAs and the challenges.
Collapse
Affiliation(s)
- Yousif A M Yousif
- Department of Radiation Oncology, North West Cancer Centre-Tamworth Hospital, Tamworth, Australia.
| | - Alexander F I Osman
- Department of Medical Physics, Al-Neelain University, 11121, Khartoum, Sudan.
| | - Mohammed A Halato
- Department of Medical Physics, Al-Neelain University, 11121, Khartoum, Sudan
| |
Collapse
|
10
|
Duque AS, van Wagenberg T, Seidensticker M, Streitparth F, Walter F, Parodi K, Verhaegen F, Ricke J, Belka C, Paiva Fonseca G, Corradini S, Landry G. Validation of the collapsed cone algorithm for HDR liver brachytherapy against Monte Carlo simulations. Brachytherapy 2021; 20:936-947. [PMID: 34001415 DOI: 10.1016/j.brachy.2021.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To validate the collapsed cone (CC) algorithm against Monte Carlo (MC) simulations for model-based dose calculations in high-dose-rate (HDR) liver brachytherapy. METHODS AND MATERIALS Doses for liver brachytherapy treatment plans of 10 cases were retrospectively recalculated with a model-based approach using Monte Carlo n-Particle Code (MCNP) 6 (Dm,m-MC) and Oncentra Brachy ACE (Dm,m-ACE). Tissue segmentation consisted of assigning uniform compositions and mass densities to predefined Hounsfield Unit (HU) thresholds. Resulting doses were compared according to dose volume histogram parameters typical for clinical routine. These included the percentage liver volume receiving 5 Gy (V5Gy) or 10 Gy (V10Gy), the maximum dose to one cubic centimeter (D1cc) of organs at risk, the clinical target volume (CTV) fractions receiving 150% (V150), 100% (V100), 95% (V95) and 90% (V90) of the prescribed dose and the absolute doses to 95% (D95) and 90% (D90) of the CTV volumes. RESULTS Doses from Oncentra Brachy ACE agreed well with MC simulations. Differences were seen far from the source, in low-density regions and bone structures. Median percentage deviations were 1.1% for the liver V5Gy and 0.4% for the liver V10Gy, with deviations of largest magnitude amounting to 2.2% and 1.0%, respectively. Organs at risk had median deviations ranging from 0.3% to 1.5% for D1cc, with outliers ranging up to 4.6%. CTV volume parameter deviations ranged between -1.5% and 0.5%, dose parameter deviations ranged mostly between -2% and 1%, with two outliers at -4.0% and -3.4% for a small CTV.
Collapse
Affiliation(s)
- Anna Sophie Duque
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Teun van Wagenberg
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Florian Streitparth
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jens Ricke
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Garching, Germany.
| |
Collapse
|
11
|
Liu Y, Wang Y, Shen X, Chen C, Ni H, Sheng N, Hua M, Wu Y. Down-regulation of lncRNA PCGEM1 inhibits cervical carcinoma by modulating the miR-642a-5p/LGMN axis. Exp Mol Pathol 2020; 117:104561. [PMID: 33121976 DOI: 10.1016/j.yexmp.2020.104561] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 02/08/2023]
Abstract
LncRNA PCGEM1 (PCGEM1) has been reported to exert essential effects on the development and progress of various tumors, while the detailed effects and possible mechanisms of PCGEM1 in cervical carcinoma remain unknown. In the present study, PCGEM1 was over-expressed in cervical carcinoma cells as evidenced by real-time quantitative polymerase chain reaction (RT-qPCR) assay. Knockdown of PCGEM1 significantly repressed proliferation, migration, and invasion, while induced G1 arrest in cervical carcinoma cells. In addition, PCGEM1 was predicted to target miR-642a-5p by bioinformatics software, which was further confirmed by luciferase reporter assay. Besides, RT-qPCR assay indicated that miR-642a-5p expression was decreased in cervical carcinoma cells and knockdown of PCGEM1 could accelerate miR-642a-5p expression. Moreover, inhibition of miR-642a-5p partly abolished the functions of PCGEM1 knockdown on proliferation, cell cycle, migration and invasion of cervical carcinoma cells. Furthermore, miR-642a-5p could bind to the 3'-UTR of LGMN, which was over-expressed in the cervical carcinoma cells. Suppression of LGMN partly restored the functions of miR-642a-5p inhibitor on proliferation, cell cycle distribution, migration and invasion in the cervical carcinoma cells treated with the PCGEM1 shRNA. Taken together, our data indicated that knockdown of PCGEM1 inhibited proliferation, migration and invasion in cervical carcinoma by modulating the miR-642a-5p/ LGMN axis.
Collapse
Affiliation(s)
- Yuanlin Liu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China.
| | - Ye Wang
- Shanghai Hanghua International Shipping Agency Co. LTD, Shanghai, China
| | - Xiang Shen
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chen Chen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Huihua Ni
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Minhui Hua
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yanling Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
12
|
Miyasaka Y, Kadoya N, Ito K, Umezawa R, Kubozono M, Yamamoto T, Nakajima Y, Saito M, Takayama Y, Nemoto K, Iwai T, Jingu K. Quantitative analysis of intra-fractional variation in CT-based image guided brachytherapy for cervical cancer patients. Phys Med 2020; 73:164-172. [PMID: 32361574 DOI: 10.1016/j.ejmp.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/09/2020] [Accepted: 04/09/2020] [Indexed: 12/20/2022] Open
Abstract
We quantified intra-fractional dose variation and organ movement during CT-based 3D-image guided brachytherapy (3D-IGBT) in cervical cancer patients. Fifteen patients who underwent CT-based 3D-IGBT were studied. For all patients, pre-delivery CT for treatment planning after applicator insertion and post-delivery CT after dose delivery without changing the applicator position were acquired. Pre- and post-delivery CT were rigidly fused by matching the inserted applicator and planned dose on pre-delivery CT (pre-delivery dose) was mapped on post-delivery CT (post-delivery dose). D2, D1, and D0.1 cm3 of the rectum and bladder were compared between pre- and post-delivery doses with contours on each CT image. Organ movement and deformation was evaluated using deformation vector fields calculated by deformable image registration between pre- and post-delivery CT. We also evaluated dose variation and DVF between with and without a catheter to control filling. Differences in all DVH parameters were <±3% in physical dose and ± 5% in EQD2. However, a > 15% dose difference was found in 13.8% of the fractions in rectum D2 cm3 and in 11.1% of those in bladder D2 cm3. The mean value of DVF for bladder was larger than that of rectum, especially for the superior-inferior (S-I) direction. Insertion catheters in bladder reduced mean dose and DVF variation compared with that of without catheters. In fraction groups with large dose increasing, DVF in the S-I direction was significantly larger than that of other fraction groups. Our results indicated that preparation is needed to reduce changes in the S-I direction affect dose variation.
Collapse
Affiliation(s)
- Yuya Miyasaka
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Noriyuki Kadoya
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | - Kengo Ito
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Rei Umezawa
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Kubozono
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takaya Yamamoto
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yujiro Nakajima
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Masahide Saito
- Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Yoshiki Takayama
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan; Kanagawa Cancer Center, Yokohama, Japan
| | - Kenji Nemoto
- Department of Radiology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Takeo Iwai
- Department of Heavy Particle Medical Science, Yamagata University Graduate School of Medical Science, Yamagata, Japan
| | - Keiichi Jingu
- Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
13
|
Duque AS, Corradini S, Kamp F, Seidensticker M, Streitparth F, Kurz C, Walter F, Parodi K, Verhaegen F, Ricke J, Belka C, Fonseca GP, Landry G. The dosimetric impact of replacing the TG-43 algorithm by model based dose calculation for liver brachytherapy. Radiat Oncol 2020; 15:60. [PMID: 32151255 PMCID: PMC7063719 DOI: 10.1186/s13014-020-01492-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
PURPOSE To compare treatment plans for interstitial high dose rate (HDR) liver brachytherapy with 192Ir calculated according to current-standard TG-43U1 protocol with model-based dose calculation following TG-186 protocol. METHODS We retrospectively evaluated dose volume histogram (DVH) parameters for liver, organs at risk (OARs) and clinical target volumes (CTVs) of 20 patient cases diagnosed with hepatocellular carcinoma (HCC) or metastatic colorectal cancer (mCRC). Dose calculations on a homogeneous water geometry (TG-43U1 surrogate) and on a computed tomography (CT) based geometry (TG-186) were performed using Monte Carlo (MC) simulations. The CTs were segmented based on a combination of assigning TG-186 recommended tissues to fixed Hounsfield Unit (HU) ranges and using organ contours delineated by physicians. For the liver, V5Gy and V10Gy were analysed, and for OARs the dose to 1 cubic centimeter (D1cc). Target coverage was assessed by calculating V150, V100, V95 and V90 as well as D95 and D90. For every DVH parameter, median, minimum and maximum values of the deviations of TG-186 from TG-43U1 were analysed. RESULTS TG-186-calculated dose was found to be on average lower than dose calculated with TG-43U1. The deviation of highest magnitude for liver parameters was -6.2% of the total liver volume. For OARs, the deviations were all smaller than or equal to -0.5 Gy. Target coverage deviations were as high as -1.5% of the total CTV volume and -3.5% of the prescribed dose. CONCLUSIONS In this study we found that TG-43U1 overestimates dose to liver tissue compared to TG-186. This finding may be of clinical importance for cases where dose to the whole liver is the limiting factor.
Collapse
Affiliation(s)
- Anna Sophie Duque
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Max Seidensticker
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Florian Streitparth
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Franziska Walter
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany
| | - Frank Verhaegen
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, Maastricht, 6229 ET, The Netherlands
| | - Jens Ricke
- Klinik und Poliklinik für Radiologie, Klinikum der Universität München, Marchioninistraße 15, Munich, 81377, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany.,German Cancer Consortium (DKTK), Munich, Germany
| | - Gabriel Paiva Fonseca
- Department of Radiation Oncology (MAASTRO clinic), GROW - School for Oncology and Developmental Biology, Maastricht University Medical Centre, Dr. Tanslaan 12, Maastricht, 6229 ET, The Netherlands
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistraße 15, Munich, 81377, Germany. .,Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, Am Coulombwall 1, Garching, 85748, Germany.
| |
Collapse
|