1
|
Huang H, Wu B, Lin W. Characterising respiratory infections among hospitalised children during the COVID-19 pandemic in southeastern China: a cross-sectional study of pathogens and clinical association. BMJ Open 2024; 14:e076824. [PMID: 38199623 PMCID: PMC10807008 DOI: 10.1136/bmjopen-2023-076824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVE Children with acute respiratory tract infections (ARTIs) pose significantly burden on healthcare facilities due to high hospitalisation rates and mortality. However, limited epidemiological and clinical characteristics data on ARTIs in southeastern China during the COVID-19 pandemic exists. DESIGN Cross-sectional. SETTING Tertiary hospital associated with the First Affiliated Hospital, Fujian Medical University, China. PARTICIPANTS 1007 hospitalised children diagnosed with ARTIs, aged 30 days to 15 years, were enrolled in this study from 1 January 2020 to 31 December 2021. OUTCOME MEASURE The primary outcomes are the rate of pathogen infections in children with ARTIs. Secondary outcomes are the description of risk factors associated with ARTIs in children. RESULTS Of the 1007 enrolled children, 28.2%, 42.2%, 21.8% and 7.7% were diagnosed with upper respiratory tract infection, bronchopneumonia, bronchitis and pneumonia, respectively. Mycoplasma pneumoniae (MP) was the most prevalent pathogen (31.9%), followed by influenza B virus (IFVB; 29.1%) and influenza A virus (IFVA; 19.1%). The study found that children under 1 year old (older than 30 days: ORIFVB=12.50; ORMP=8.53), children aged 1-3 years (ORMP=1.62), the winter season (ORIFVA=1.36), the time from symptoms onset to hospitalisation (ORMP=1.10) and increased precipitation (ORLP=1.01) were high-risk factors for ARTIs. CONCLUSION This investigation offers significant insights into the prevalence and distribution of common pathogens among children experiencing ARTIs in the context of the COVID-19 pandemic. The discernment of high-risk factors linked to these pathogens enhances our understanding of the epidemiological characteristics of ARTIs in children.
Collapse
Affiliation(s)
- Huanhuan Huang
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Pain Research Institute, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
| | - Bin Wu
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wei Lin
- Department of Pediatrics, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
2
|
Pilipenco A, Forinová M, Mašková H, Hönig V, Palus M, Lynn Jr. NS, Víšová I, Vrabcová M, Houska M, Anthi J, Spasovová M, Mustacová J, Štěrba J, Dostálek J, Tung CP, Yang AS, Jack R, Dejneka A, Hajdu J, Vaisocherová-Lísalová H. Negligible risk of surface transmission of SARS-CoV-2 in public transportation. J Travel Med 2023; 30:taad065. [PMID: 37133444 PMCID: PMC10481417 DOI: 10.1093/jtm/taad065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/14/2023] [Accepted: 04/22/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Exposure to pathogens in public transport systems is a common means of spreading infection, mainly by inhaling aerosol or droplets from infected individuals. Such particles also contaminate surfaces, creating a potential surface-transmission pathway. METHODS A fast acoustic biosensor with an antifouling nano-coating was introduced to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on exposed surfaces in the Prague Public Transport System. Samples were measured directly without pre-treatment. Results with the sensor gave excellent agreement with parallel quantitative reverse-transcription polymerase chain reaction (qRT-PCR) measurements on 482 surface samples taken from actively used trams, buses, metro trains and platforms between 7 and 9 April 2021, in the middle of the lineage Alpha SARS-CoV-2 epidemic wave when 1 in 240 people were COVID-19 positive in Prague. RESULTS Only ten of the 482 surface swabs produced positive results and none of them contained virus particles capable of replication, indicating that positive samples contained inactive virus particles and/or fragments. Measurements of the rate of decay of SARS-CoV-2 on frequently touched surface materials showed that the virus did not remain viable longer than 1-4 h. The rate of inactivation was the fastest on rubber handrails in metro escalators and the slowest on hard-plastic seats, window glasses and stainless-steel grab rails. As a result of this study, Prague Public Transport Systems revised their cleaning protocols and the lengths of parking times during the pandemic. CONCLUSIONS Our findings suggest that surface transmission played no or negligible role in spreading SARS-CoV-2 in Prague. The results also demonstrate the potential of the new biosensor to serve as a complementary screening tool in epidemic monitoring and prognosis.
Collapse
Affiliation(s)
- Alina Pilipenco
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Michala Forinová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Hana Mašková
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Václav Hönig
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Martin Palus
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute, Hudcova 70, 621 00 Brno, Czech Republic
| | - Nicholas Scott Lynn Jr.
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Ivana Víšová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Markéta Vrabcová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Milan Houska
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Judita Anthi
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Monika Spasovová
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Johana Mustacová
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Ján Štěrba
- Faculty of Science, University of South Bohemia, Branišovská 1645/31a, 370 05 České Budějovice, Czech Republic
| | - Jakub Dostálek
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Chao-Ping Tung
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - An-Suei Yang
- Genomics Research Center, Academia Sinica, 128 Academia Rd., Sec.2, Nankang Dist., Taipei 115, Taiwan
| | - Rachael Jack
- The European Extreme Light Infrastructure, ERIC, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
| | - Alexandr Dejneka
- Institute of Physics of the Czech Academy of Sciences, Na Slovance 2, 182 00 Prague, Czech Republic
| | - Janos Hajdu
- The European Extreme Light Infrastructure, ERIC, Za Radnici 835, 25241 Dolní Břežany, Czech Republic
- Department of Cell and Molecular Biology, Uppsala University, Box 596, 751 24 Uppsala, Sweden
| | | |
Collapse
|
3
|
Begou P, Kassomenos P. The ecosyndemic framework of the global environmental change and the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159327. [PMID: 36220476 PMCID: PMC9547397 DOI: 10.1016/j.scitotenv.2022.159327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The ecosyndemic theory combines the concept of 'synergy' with 'epidemic' and the term "eco" implies the role of the environmental changes. Each of the conditions enhances the negative impacts of the other in an additive way making our society more vulnerable and heightening individual risk factors. In this study, we analyze the mutually reinforcing links between the environment and health from the complexity angle of the ecosyndemic theory and propose the characterization of the COVID-19 pandemic as ecosyndemic. We use the term 'ecosyndemic' because the global environmental change contributes to local-scale, regional-scale and global-scale alterations of the Earth's systems. These changes have their root causes in the way that people interact with the physical, chemical, and biotic factors of the environment. These interactions disturb nature and the consequences have feedbacks in every living organism.
Collapse
Affiliation(s)
- Paraskevi Begou
- Laboratory of Meteorology and Climatology, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece.
| | - Pavlos Kassomenos
- Laboratory of Meteorology and Climatology, Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| |
Collapse
|
4
|
Tsagkaris C, Moysidis DV, Papazoglou AS, Louka AM, Kalaitzidis K, Ahmad S, Essar MY. Detection of SARS-CoV-2 in wastewater raises public awareness of the effects of climate change on human health: The experience from Thessaloniki, Greece. THE JOURNAL OF CLIMATE CHANGE AND HEALTH 2021; 2:100018. [PMID: 34235500 PMCID: PMC8120791 DOI: 10.1016/j.joclim.2021.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
|