1
|
Liu Y, Li X, Meng Y, Wu Y, Jin Y, Ma X, Zhou W, Tan Y, Lin FC, Wang H. The whole genome sequence of Cordyceps cicadae - an edible and potential medicinal fungus. Mol Genet Genomics 2025; 300:50. [PMID: 40399565 DOI: 10.1007/s00438-025-02255-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Cordyceps cicadae is an entomopathogenic fungus from the Cordyceps genus and a well-known edible mushroom with a long history of use in Asia. It contains many bioactive compounds beneficial to human health, giving it broad application prospects in medicine. In this study, we generated the complete genome sequence of C. cicadae strain 2-2 using a combination of Illumina, PacBio, and Hi-C sequencing technologies. This comprehensive genome sequence comprises 9 chromosomes, an N50 contig size of 4,798,690 bp, a GC content ratio of 52.65%, a total size of 34.60 Mb, and 8,019 predicted coding genes. Additionally, we conducted functional annotation of the genome, revealing that 63.2% of the genes were enriched in 50 GO terms and 87.8% in 387 KEGG pathways. We also identified 542 enzyme genes, noting that C. cicadae has a greater number of GHs compared to other fungi in the Cordyceps genus. Notably, NR database analysis revealed that 6,441 genes in C. cicadae are similar to those in Cordyceps fumosorosea, suggesting that C. cicadae may serve as a cost-effective alternative to this expensive traditional medicinal fungus. This study presents the first chromosome-level genome of the Cordyceps genus, providing a comprehensive analysis of the genetic composition and functions of C. cicadae and establishing a foundation for advancing research and development of Cordyceps fungi.
Collapse
Affiliation(s)
- Yuwei Liu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueqian Li
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqi Meng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yifan Wu
- School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Yuting Jin
- Chengde Medical University, Chengde, Hebei, 067000, The People's Republic of China
| | - Xiaotong Ma
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wei Zhou
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yuchong Tan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Fu-Cheng Lin
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro- Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongkai Wang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
2
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Li X, Bruckmann A, Dresselhaus T, Begcy K. Heat stress at the bicellular stage inhibits sperm cell development and transport into pollen tubes. PLANT PHYSIOLOGY 2024; 195:2111-2128. [PMID: 38366643 PMCID: PMC11213256 DOI: 10.1093/plphys/kiae087] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/18/2024]
Abstract
For successful double fertilization in flowering plants (angiosperms), pollen tubes deliver 2 nonmotile sperm cells toward female gametes (egg and central cell, respectively). Heatwaves, especially during the reproduction period, threaten male gametophyte (pollen) development, resulting in severe yield losses. Using maize (Zea mays) as a crop and grass model system, we found strong seed set reduction when moderate heat stress was applied for 2 d during the uni- and bicellular stages of pollen development. We show that heat stress accelerates pollen development and impairs pollen germination capabilities when applied at the unicellular stage. Heat stress at the bicellular stage impairs sperm cell development and transport into pollen tubes. To understand the course of the latter defects, we used marker lines and analyzed the transcriptomes of isolated sperm cells. Heat stress affected the expression of genes associated with transcription, RNA processing and translation, DNA replication, and the cell cycle. This included the genes encoding centromeric histone 3 (CENH3) and α-tubulin. Most genes that were misregulated encode proteins involved in the transition from metaphase to anaphase during pollen mitosis II. Heat stress also activated spindle assembly check point and meta- to anaphase transition genes in sperm cells. In summary, misregulation of the identified genes during heat stress at the bicellular stage results in sperm cell development and transport defects ultimately leading to sterility.
Collapse
Affiliation(s)
- Xingli Li
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Astrid Bruckmann
- Department for Biochemistry I, Biochemistry Centre, University of Regensburg, 93053 Regensburg, Germany
| | - Thomas Dresselhaus
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL32611, USA
| |
Collapse
|
4
|
Zhang YY, Li HK, Huang X, Yuan YJ, Zhang XF, Gao XS, Wang XJ, Wei MM, Huang HS, Li W. Heterozygosity analysis of spontaneous 2n female gametes and centromere mapping of the diploid Hevea brasiliensis based on full-sib triploid populations. PLANT REPRODUCTION 2024; 37:47-56. [PMID: 37758937 DOI: 10.1007/s00497-023-00481-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023]
Abstract
KEY MESSAGE Unreduced megagametophytes via second-division restitution were confirmed through heterozygosity analysis, and four candidate physical centromeres of rubber were located for the first time. The evaluation of maternal heterozygosity restitution (MHR) is vital in identifying the mechanism of 2n gametogenesis and assessing the utilization value of 2n gametes. In this study, three full-sib triploid populations were employed to evaluate the MHR of 2n female gametes of rubber tree clone GT1 and to confirm their genetic derivation. The 2n female gametes of GT1 were derived from second-division restitution (SDR) and transmitted more than half of the parental heterozygosity. In addition, low recombination frequency markers were developed, and four candidate physical centromeres of rubber tree were located for the first time. The confirmation that 2n female gametes of rubber tree clone GT1 are derived from SDR provides insights into the molecular mechanisms of 2n gametogenesis. In addition, the identified centromere location will aid in the development of centromeric markers for the rapid identification of the 2n gametogenesis mechanism.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| | - Hong-Kun Li
- Dehong Institute of Tropical Agricultural Sciences of Yunnan Province, Ruili, 678600, Yunnan, China
| | - Xiao Huang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Yu-Jiao Yuan
- College of Tropical Crops, Yunnan Agricultural University, Puer, 665099, Yunnan, China
| | - Xiao-Fei Zhang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xin-Sheng Gao
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Xiang-Jun Wang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Ming-Ming Wei
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Hua-Sun Huang
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China
| | - Weiguo Li
- State Key Laboratory of Tropical Crop Breeding, State Centre for Rubber Breeding, Key Laboratory of Biology and Genetic Resources of Rubber Tree, Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, Hainan, China.
| |
Collapse
|
5
|
Li Y, Zhan G, Tu M, Wang Y, Cao J, Sun S. A chromosome-scale genome and proteome draft of Tremella fuciformis. Int J Biol Macromol 2023; 247:125749. [PMID: 37429350 DOI: 10.1016/j.ijbiomac.2023.125749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/09/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
In this study, we first reported a high-quality chromosome-scale genome of Tremella fuciformis using Pacbio HiFi sequencing combining Hi-C technology. According to 21.6 Gb PacBio HiFi reads and 18.1 Gb Hi-C valid reads, we drafted a T. fuciformis genome of 27.38 Mb assigned to 10 chromosomes, with the contig N50 of 2.28 Mb, GC content of 56.51 %, BUSCOs completeness of 93.1 % and consensus quality value of 33.7. The following annotation of genomic components predicted 5,171 repeat sequences, 283 RNAs, and 10,150 protein-coding genes. Next, the intracellular proteins at three differential life stages of T. fuciformis (conidium, hyphal and fruiting body) were identified by the shot-gun proteomics. 6,823 canonical proteins (68.1 % of predicted proteome) have been identified with protein FDR cut-off of 0.01, establishing the first proteome draft of predicted protein-coding genes of T. fuciformis. Finally, 24 T. fuciformis polysaccharides (TPS) biosynthesis-related genes in mycelia were identified by comparative transcriptomics and proteomics, which may be more active than in conidium and revealed the TPS biosynthesis process in mycelia. This present study elucidated T. fuciformis genome composition and organization, drafted its associated proteome, and provided a genome-view of TPS biosynthesis, which will be a powerful platform for biological and genetic studies in T. fuciformis.
Collapse
Affiliation(s)
- Yaxing Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Basic Forestry and Proteomics Research Center, Fujian Agriculture and forestry university, China
| | - Guanping Zhan
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Min Tu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and forestry university, China
| | - Yuhua Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and forestry university, China
| | - Jixuan Cao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shujing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
6
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
7
|
Papolu PK, Ramakrishnan M, Mullasseri S, Kalendar R, Wei Q, Zou L, Ahmad Z, Vinod KK, Yang P, Zhou M. Retrotransposons: How the continuous evolutionary front shapes plant genomes for response to heat stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1064847. [PMID: 36570931 PMCID: PMC9780303 DOI: 10.3389/fpls.2022.1064847] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/21/2022] [Indexed: 05/28/2023]
Abstract
Long terminal repeat retrotransposons (LTR retrotransposons) are the most abundant group of mobile genetic elements in eukaryotic genomes and are essential in organizing genomic architecture and phenotypic variations. The diverse families of retrotransposons are related to retroviruses. As retrotransposable elements are dispersed and ubiquitous, their "copy-out and paste-in" life cycle of replicative transposition leads to new genome insertions without the excision of the original element. The overall structure of retrotransposons and the domains responsible for the various phases of their replication is highly conserved in all eukaryotes. The two major superfamilies of LTR retrotransposons, Ty1/Copia and Ty3/Gypsy, are distinguished and dispersed across the chromosomes of higher plants. Members of these superfamilies can increase in copy number and are often activated by various biotic and abiotic stresses due to retrotransposition bursts. LTR retrotransposons are important drivers of species diversity and exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution. Additionally, LTR retrotransposons influence the gene expression patterns of adjacent genes by modulating potential small interfering RNA (siRNA) and RNA-directed DNA methylation (RdDM) pathways. Furthermore, comparative and evolutionary analysis of the most important crop genome sequences and advanced technologies have elucidated the epigenetics and structural and functional modifications driven by LTR retrotransposon during speciation. However, mechanistic insights into LTR retrotransposons remain obscure in plant development due to a lack of advancement in high throughput technologies. In this review, we focus on the key role of LTR retrotransposons response in plants during heat stress, the role of centromeric LTR retrotransposons, and the role of LTR retrotransposon markers in genome expression and evolution.
Collapse
Affiliation(s)
- Pradeep K. Papolu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi, Kerala, India
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, University of Helsinki, Helsinki, Finland
- National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan
| | - Qiang Wei
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Long−Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, China
| | | | - Ping Yang
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhou J, Liu Y, Guo X, Birchler JA, Han F, Su H. Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:2051-2063. [PMID: 35722725 PMCID: PMC9616519 DOI: 10.1111/pbi.13875] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Centromeres are the genomic regions that organize and regulate chromosome behaviours during cell cycle, and their variations are associated with genome instability, karyotype evolution and speciation in eukaryotes. The highly repetitive and epigenetic nature of centromeres were documented during the past half century. With the aid of rapid expansion in genomic biotechnology tools, the complete sequence and structural organization of several plant and human centromeres were revealed recently. Here, we systematically summarize the current knowledge of centromere biology with regard to the DNA compositions and the histone H3 variant (CENH3)-dependent centromere establishment and identity. We discuss the roles of centromere to ensure cell division and to maintain the three-dimensional (3D) genomic architecture in different species. We further highlight the potential applications of manipulating centromeres to generate haploids or to induce polyploids offspring in plant for breeding programs, and of targeting centromeres with CRISPR/Cas for chromosome engineering and speciation. Finally, we also assess the challenges and strategies for de novo design and synthesis of centromeres in plant artificial chromosomes. The biotechnology applications of plant centromeres will be of great potential for the genetic improvement of crops and precise synthetic breeding in the future.
Collapse
Affiliation(s)
- Jingwei Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
| | - Yang Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Xianrui Guo
- Laboratory of Plant Chromosome Biology and Genomic Breeding, School of Life SciencesLinyi UniversityLinyiChina
| | - James A. Birchler
- Division of Biological SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Fangpu Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Handong Su
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryShenzhen Institute of Nutrition and Health, Huazhong Agricultural UniversityWuhanChina
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
9
|
Finseth F, Brown K, Demaree A, Fishman L. Supergene potential of a selfish centromere. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210208. [PMID: 35694746 PMCID: PMC9189507 DOI: 10.1098/rstb.2021.0208] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Selfishly evolving centromeres bias their transmission by exploiting the asymmetry of female meiosis and preferentially segregating to the egg. Such female meiotic drive systems have the potential to be supergenes, with multiple linked loci contributing to drive costs or enhancement. Here, we explore the supergene potential of a selfish centromere (D) in Mimulus guttatus, which was discovered in the Iron Mountain (IM) Oregon population. In the nearby Cone Peak population, D is still a large, non-recombining and costly haplotype that recently swept, but shorter haplotypes and mutational variation suggest a distinct population history. We detected D in five additional populations spanning more than 200 km; together, these findings suggest that selfish centromere dynamics are widespread in M. guttatus. Transcriptome comparisons reveal elevated differences in expression between driving and non-driving haplotypes within, but not outside, the drive region, suggesting large-scale cis effects of D's spread on gene expression. We use the expression data to refine linked candidates that may interact with drive, including Nuclear Autoantigenic Sperm Protein (NASPSIM3), which chaperones the centromere-defining histone CenH3 known to modify Mimulus drive. Together, our results show that selfishly evolving centromeres may exhibit supergene behaviour and lay the foundation for future genetic dissection of drive and its costs. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Findley Finseth
- W.M. Keck Science Department, Claremont McKenna, Scripps, and Pitzer Colleges, Claremont, CA 91711, USA
| | - Keely Brown
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Andrew Demaree
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Lila Fishman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
10
|
Wang B, Yang X, Jia Y, Xu Y, Jia P, Dang N, Wang S, Xu T, Zhao X, Gao S, Dong Q, Ye K. High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 20:4-13. [PMID: 34487862 PMCID: PMC9510872 DOI: 10.1016/j.gpb.2021.08.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
Arabidopsis thaliana is an important and long-established model species for plant molecular biology, genetics, epigenetics, and genomics. However, the latest version of reference genome still contains significant number of missing segments. Here, we report a high-quality and almost complete Col-0 genome assembly with two gaps (Col-XJTU) using combination of Oxford Nanopore Technology ultra-long reads, PacBio high-fidelity long reads, and Hi-C data. The total genome assembly size is 133,725,193 bp, introducing 14.6 Mb of novel sequences compared to the TAIR10.1 reference genome. All five chromosomes of Col-XJTU assembly are highly accurate with consensus quality (QV) scores > 60 (ranging from 62 to 68), which are higher than those of TAIR10.1 reference (QV scores ranging from 45 to 52). We have completely resolved chromosome (Chr) 3 and Chr5 in a telomere-to-telomere manner. Chr4 has been completely resolved except the nucleolar organizing regions, which comprise long repetitive DNA fragments. The Chr1 centromere (CEN1), reportedly around 9 Mb in length, is particularly challenging to assemble due to the presence of tens of thousands of CEN180 satellite repeats. Using the cutting-edge sequencing data and novel computational approaches, we assembled about 4 Mb of sequence for CEN1 and a 3.5-Mb-long CEN2. We investigated the structure and epigenetics of centromeres. We detected four clusters of CEN180 monomers, and found that the centromere-specific histone H3-like protein (CENH3) exhibits a strong preference for CEN180 cluster 3. Moreover, we observed hypomethylation patterns in CENH3-enriched regions. We believe that this high-quality genome assembly, Col-XJTU, would serve as a valuable reference to better understand the global pattern of centromeric polymorphisms, as well as genetic and epigenetic features in plants.
Collapse
Affiliation(s)
- Bo Wang
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaofei Yang
- School of Computer Science and Technology, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yanyan Jia
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yu Xu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng Jia
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningxin Dang
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Songbo Wang
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tun Xu
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xixi Zhao
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Shenghan Gao
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Quanbin Dong
- Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Kai Ye
- MOE Key Laboratory for Intelligent Networks & Network Security, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China; School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China; School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China; Genome Institute, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
11
|
Thondehaalmath T, Kulaar DS, Bondada R, Maruthachalam R. Understanding and exploiting uniparental genome elimination in plants: insights from Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4646-4662. [PMID: 33851980 DOI: 10.1093/jxb/erab161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/10/2021] [Indexed: 06/12/2023]
Abstract
Uniparental genome elimination (UGE) refers to the preferential exclusion of one set of the parental chromosome complement during embryogenesis following successful fertilization, giving rise to uniparental haploid progeny. This artificially induced phenomenon was documented as one of the consequences of distant (wide) hybridization in plants. Ten decades since its discovery, attempts to unravel the molecular mechanism behind this process remained elusive due to a lack of genetic tools and genomic resources in the species exhibiting UGE. Hence, its successful adoption in agronomic crops for in planta (in vivo) haploid production remains implausible. Recently, Arabidopsis thaliana has emerged as a model system to unravel the molecular basis of UGE. It is now possible to simulate the genetic consequences of distant crosses in an A. thaliana intraspecific cross by a simple modification of centromeres, via the manipulation of the centromere-specific histone H3 variant gene, CENH3. Thus, the experimental advantages conferred by A. thaliana have been used to elucidate and exploit the benefits of UGE in crop breeding. In this review, we discuss developments and prospects of CENH3 gene-mediated UGE and other in planta haploid induction strategies to illustrate its potential in expediting plant breeding and genetics in A. thaliana and other model plants.
Collapse
Affiliation(s)
- Tejas Thondehaalmath
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Dilsher Singh Kulaar
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ramesh Bondada
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| | - Ravi Maruthachalam
- School of Biology, Indian Institute of Science Education and Research (IISER)- Thiruvananthapuram, Vithura, Kerala, India
| |
Collapse
|
12
|
Liu L, Wang T. Male gametophyte development in flowering plants: A story of quarantine and sacrifice. JOURNAL OF PLANT PHYSIOLOGY 2021; 258-259:153365. [PMID: 33548696 DOI: 10.1016/j.jplph.2021.153365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 05/19/2023]
Abstract
Over 160 years ago, scientists made the first microscopic observations of angiosperm pollen. Unlike in animals, male meiosis in angiosperms produces a haploid microspore that undergoes one asymmetric division to form a vegetative cell and a generative cell. These two cells have distinct fates: the vegetative cell exits the cell cycle and elongates to form a tip-growing pollen tube; the generative cell divides once more in the pollen grain or within the growing pollen tube to form a pair of sperm cells. The concept that male germ cells are less active than the vegetative cell came from biochemical analyses and pollen structure anatomy early in the last century and is supported by the pollen transcriptome data of the last decade. However, the mechanism of how and when the transcriptional repression in male germ cells occurs is still not fully understood. In this review, we provide a brief account of the cytological and metabolic differentiation between the vegetative cell and male germ cells, with emphasis on the role of temporary callose walls, dynamic nuclear pore density, transcription repression, and histone variants. We further discuss the intercellular movement of small interfering RNA (siRNA) derived from transposable elements (TEs) and reexamine the function of TE expression in male germ cells.
Collapse
Affiliation(s)
- Lingtong Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
13
|
Parry G, Pradillo M, Probst AV, Tatout C. Untangling chromatin interactions. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5115-5118. [PMID: 32803270 DOI: 10.1093/jxb/eraa334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Geraint Parry
- GARNet, School of Biosciences, Cardiff University, Cardiff, UK
| | | | - Aline V Probst
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Christophe Tatout
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| |
Collapse
|