1
|
Zhou Y, Singh SK, Patra B, Liu Y, Pattanaik S, Yuan L. Mitogen-activated protein kinase-mediated regulation of plant specialized metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:262-276. [PMID: 39305223 DOI: 10.1093/jxb/erae400] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/19/2024] [Indexed: 01/11/2025]
Abstract
Post-transcriptional and post-translational modification of transcription factors (TFs) and pathway enzymes significantly affect the stress-stimulated biosynthesis of specialized metabolites (SMs). Protein phosphorylation is one of the conserved and ancient mechanisms that critically influences many biological processes including specialized metabolism. The phosphorylation of TFs and enzymes by protein kinases (PKs), especially the mitogen-activated protein kinases (MAPKs), is well studied in plants. While the roles of MAPKs in plant growth and development, phytohormone signaling, and immunity are well elucidated, significant recent advances have also been made in understanding the involvement of MAPKs in specialized metabolism. However, a comprehensive review highlighting the significant progress in the past several years is notably missing. This review focuses on MAPK-mediated regulation of several important SMs, including phenylpropanoids (flavonoids and lignin), terpenoids (artemisinin and other terpenoids), alkaloids (terpenoid indole alkaloids and nicotine), and other nitrogen- and sulfur-containing SMs (camalexin and indole glucosinolates). In addition to MAPKs, other PKs also regulate SM biosynthesis. For comparison, we briefly discuss the regulation by other PKs, such as sucrose non-fermenting-1 (SNF)-related protein kinases (SnRKs) and calcium-dependent protein kinases (CPKs). Furthermore, we provide future perspectives in this active area of research.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
2
|
Shoji T, Hashimoto T, Saito K. Genetic regulation and manipulation of nicotine biosynthesis in tobacco: strategies to eliminate addictive alkaloids. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1741-1753. [PMID: 37647764 PMCID: PMC10938045 DOI: 10.1093/jxb/erad341] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
Tobacco (Nicotiana tabacum L.) is a widely cultivated crop of the genus Nicotiana. Due to the highly addictive nature of tobacco products, tobacco smoking remains the leading cause of preventable death and disease. There is therefore a critical need to develop tobacco varieties with reduced or non-addictive nicotine levels. Nicotine and related pyridine alkaloids biosynthesized in the roots of tobacco plants are transported to the leaves, where they are stored in vacuoles as a defense against predators. Jasmonate, a defense-related plant hormone, plays a crucial signaling role in activating transcriptional regulators that coordinate the expression of downstream metabolic and transport genes involved in nicotine production. In recent years, substantial progress has been made in molecular and genomics research, revealing many metabolic and regulatory genes involved in nicotine biosynthesis. These advances have enabled us to develop tobacco plants with low or ultra-low nicotine levels through various methodologies, such as mutational breeding, genetic engineering, and genome editing. We review the recent progress on genetic manipulation of nicotine production in tobacco, which serves as an excellent example of plant metabolic engineering with profound social implications.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Instutute of Natural Medicine, University of Toyama, Sugitani, Toyama, Toyama 930-0194, Japan
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Takashi Hashimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
3
|
Singh D, Dwivedi S, Sinha H, Singh N, Trivedi PK. Mutation in shoot-to-root mobile transcription factor, ELONGATED HYPOCOTYL 5, leads to low nicotine levels in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133255. [PMID: 38103287 DOI: 10.1016/j.jhazmat.2023.133255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Tobacco remains one of the most commercially important crops due to the parasympathomimetic alkaloid nicotine used in cigarettes. Most genes involved in nicotine biosynthesis are expressed in root tissues; however, their light-dependent regulation has not been studied. Here, we identified the ELONGATED HYPOCOTYL 5 homolog, NtHY5, from Nicotiana tabacum and demonstrated that NtHY5 could complement the Arabidopsis thaliana hy5 mutant at molecular, morphological and biochemical levels. We report the development of CRISPR/Cas9-based knockout mutant plants of tobacco, NtHY5CR, and show down-regulation of the nicotine and phenylpropanoid pathway genes leading to a significant reduction in nicotine and flavonol content, whereas NtHY5 overexpression (NtHY5OX) plants show the opposite effect. Grafting experiments using wild-type, NtHY5CR, and NtHY5OX indicated that NtHY5 moves from shoot-to-root to regulate nicotine biosynthesis in the root tissue. Shoot HY5, directly or through enhancing expression of the root HY5, promotes nicotine biosynthesis by binding to light-responsive G-boxes present in the NtPMT, NtQPT and NtODC promoters. We conclude that the mobility of HY5 from shoot-to-root regulates light-dependent nicotine biosynthesis. The CRISPR/Cas9-based mutants developed, in this study; with low nicotine accumulation in leaves could help people to overcome their nicotine addiction and the risk of death.
Collapse
Affiliation(s)
- Deeksha Singh
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shambhavi Dwivedi
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Hiteshwari Sinha
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nivedita Singh
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
| | - Prabodh Kumar Trivedi
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India.
| |
Collapse
|
4
|
Hou X, Singh SK, Werkman JR, Liu Y, Yuan Q, Wu X, Patra B, Sui X, Lyu R, Wang B, Liu X, Li Y, Ma W, Pattanaik S, Yuan L. Partial desensitization of MYC2 transcription factor alters the interaction with jasmonate signaling components and affects specialized metabolism. Int J Biol Macromol 2023; 252:126472. [PMID: 37625752 DOI: 10.1016/j.ijbiomac.2023.126472] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
The activity of bHLH transcription factor MYC2, a key regulator in jasmonate signaling and plant specialized metabolism, is sensitive to repression by JASMONATE-ZIM-domain (JAZ) proteins and co-activation by the mediator subunit MED25. The substitution of a conserved aspartic acid (D) to asparagine (N) in the JAZ-interacting domain (JID) of Arabidopsis MYC2 affects interaction with JAZ, although the mechanism remained unclear. The effects of the conserved residue MYC2D128 on interaction with MED25 have not been investigated. Using tobacco as a model, we generated all possible substitutions of aspartic acid 128 (D128) in NtMYC2a. NtMYC2aD128N partially desensitized the repression by JAZ proteins, while strongly interacting with MED25, resulting in increased expression of nicotine pathway genes and nicotine accumulation in tobacco hairy roots overexpressing NtMYC2aD128N compared to those overexpressing NtMYC2a. The proline substitution, NtMYC2aD128P, negatively affected transactivation and abolished the interaction with JAZ proteins and MED25. Structural modeling and simulation suggest that the overall stability of the JID binding pocket is a predominant cause for the observed effects of substitutions at D128. The D128N substitution has an overall stabilizing effect on the binding pocket, which is destabilized by D128P. Our study offers an innovative tool to increase the production of plant natural products.
Collapse
Affiliation(s)
- Xin Hou
- Department of Tobacco, College of Plant Protection, Shandong Agricultural University, Shandong Province Key Laboratory of Agricultural Microbiology, Tai'an 271018, China
| | - Sanjay Kumar Singh
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Joshua R Werkman
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Yongliang Liu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Qinghua Yuan
- Crop Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Crop Genetic Improvement of Guangdong Province, Guangdong Provincial Engineering & Technology Research Center for Tobacco Breeding and Comprehensive Utilization, Guangzhou 510640, China
| | - Xia Wu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Barunava Patra
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, Yunnan, China
| | - Xiaoyu Liu
- Pomology Institute, Shanxi Agricultural University, Taigu 030815, Shanxi, China
| | - Yongqing Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510520, China
| | - Wei Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Ling Yuan
- Department of Plant and Soil Sciences, Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
5
|
Lin J, Yin X, Zeng Y, Hong X, Zhang S, Cui B, Zhu Q, Liang Z, Xue Z, Yang D. Progress and prospect: Biosynthesis of plant natural products based on plant chassis. Biotechnol Adv 2023; 69:108266. [PMID: 37778531 DOI: 10.1016/j.biotechadv.2023.108266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
Plant-derived natural products are a specific class of active substances with numerous applications in the medical, energy, and industrial fields. Many of these substances are in high demand and have become the fundamental materials for various purposes. Recently, the use of synthetic biology to produce plant-derived natural products has become a significant trend. Plant chassis, in particular, offer unique advantages over microbial chassis in terms of cell structure, product affinity, safety, and storage. The development of the plant hairy root tissue culture system has accelerated the commercialization and industrialization of synthetic biology in the production of plant-derived natural products. This paper will present recent progress in the synthesis of various plant natural products using plant chassis, organized by the types of different structures. Additionally, we will summarize the four primary types of plant chassis used for synthesizing natural products from plant sources and review the enabling technologies that have contributed to the development of synthetic biology in recent years. Finally, we will present the role of isolated and combined use of different optimization strategies in breaking the upper limit of natural product production in plant chassis. This review aims to provide practical references for synthetic biologists and highlight the great commercial potential of plant chassis biosynthesis, such as hairy roots.
Collapse
Affiliation(s)
- Junjie Lin
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xue Yin
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China
| | - Youran Zeng
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xinyu Hong
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Shuncang Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Beimi Cui
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Qinlong Zhu
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zongsuo Liang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zheyong Xue
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Harbin 150040, China..
| | - Dongfeng Yang
- College of Life Sciences and Medicine, Key Laboratory of Plant Secondary Metabolism and Regulation in Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; Shaoxing Biomedical Research Institute of Zhejiang Sci-Tech University Co., Ltd, Zhejiang Engineering Research Center for the Development Technology of Medicinal and Edible Homologous Health Food, Shaoxing 312075, China.
| |
Collapse
|
6
|
Liu Y, Singh SK, Pattanaik S, Wang H, Yuan L. Light regulation of the biosynthesis of phenolics, terpenoids, and alkaloids in plants. Commun Biol 2023; 6:1055. [PMID: 37853112 PMCID: PMC10584869 DOI: 10.1038/s42003-023-05435-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Biosynthesis of specialized metabolites (SM), including phenolics, terpenoids, and alkaloids, is stimulated by many environmental factors including light. In recent years, significant progress has been made in understanding the regulatory mechanisms involved in light-stimulated SM biosynthesis at the transcriptional, posttranscriptional, and posttranslational levels of regulation. While several excellent recent reviews have primarily focused on the impacts of general environmental factors, including light, on biosynthesis of an individual class of SM, here we highlight the regulation of three major SM biosynthesis pathways by light-responsive gene expression, microRNA regulation, and posttranslational modification of regulatory proteins. In addition, we present our future perspectives on this topic.
Collapse
Affiliation(s)
- Yongliang Liu
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sanjay K Singh
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA
| | - Sitakanta Pattanaik
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| | - Hongxia Wang
- Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences Chenshan Botanical Garden, 3888 Chenhua Road, 201602, Songjiang, Shanghai, China.
| | - Ling Yuan
- Department of Plant and Soil Sciences and Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
7
|
Jain R, Bhardwaj P, Guleria S, Pandey A, Kumar S. Polyamine metabolizing rhizobacteria Pseudomonas sp. GBPI_506 modulates hormone signaling to enhance lateral roots and nicotine biosynthesis in Nicotiana benthamiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 195:193-205. [PMID: 36641943 DOI: 10.1016/j.plaphy.2023.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Beneficial rhizobacteria in the soil are important drivers of plant health and growth. In this study, we provide the draft genome of a root colonizing and auxin-producing Pseudomonas sp. strain GBPI_506. The bacterium was investigated for its contribution in the growth of Nicotiana benthamiana (Nb) and biosynthesis of nicotine. The bacterium showed chemotaxis towards root exudates potentially mediated by putrescine, a polyamine compound, to colonize the roots of Nb. Application of the bacterium with the roots of Nb, increased plant biomass and total soluble sugars in the leaves, and promoted lateral root (LR) development as compared to the un-inoculated plants. Confocal analysis using transgenic (DR5:GFP) Arabidopsis showed increased auxin trafficking in the LR of inoculated plants. Upregulation of nicotine biosynthesis genes and genes involved in salicylic acid (SA) and jasmonic acid (JA) signaling in the roots of inoculated plants suggested increased nicotine biosynthesis as a result of bacterial application. An increased JA content in roots and nicotine accumulation in leaves provided evidence on JA-mediated upregulation of nicotine biosynthesis in the bacterized plants. The findings suggested that the bacterial root colonization triggered networking between auxin, SA, and JA to facilitate LR development leading to enhanced plant growth and nicotine biosynthesis in Nb.
Collapse
Affiliation(s)
- Rahul Jain
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| | - Priyanka Bhardwaj
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India.
| | - Shweta Guleria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| | - Anita Pandey
- Graphic Era Deemed to be University, Dehradun, 248002, Uttarakhand, India.
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, 176061, Himachal Pradesh, India.
| |
Collapse
|
8
|
Godbole RC, Pable AA, Singh S, Barvkar VT. Interplay of transcription factors orchestrating the biosynthesis of plant alkaloids. 3 Biotech 2022; 12:250. [PMID: 36051988 PMCID: PMC9424429 DOI: 10.1007/s13205-022-03316-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Plants produce a range of secondary metabolites primarily as defence molecules. A plant has to invest considerable energy to synthesise alkaloids, and sometimes they are even toxic to themselves. Hence, the biosynthesis of alkaloids is a spatiotemporally regulated process under quantitative feedback regulation which is accomplished by the signal reception, transcriptional/translational regulation, transport, storage and accumulation. The transcription factors (TFs) initiate the biosynthesis of alkaloids after appropriate cues. The present study recapitulates last decade understanding of the role of TFs in alkaloid biosynthesis. The present review discusses TF families, viz. AP2/ERF, bHLH, WRKY, MYB involved in the biosynthesis of various types of alkaloids. It also highlights the role of the jasmonic acid cascade and post-translational modifications of TF proteins. A thorough understanding of TFs will help us to decide a strategy to facilitate successful pathway manipulation and in vitro production.
Collapse
Affiliation(s)
- Rucha C. Godbole
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| | - Anupama A. Pable
- Department of Microbiology, Savitribai Phule Pune University, Pune, 411007 India
| | - Sudhir Singh
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre (BARC), Mumbai, 400085 India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 India
| | - Vitthal T. Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune, 411007 India
| |
Collapse
|
9
|
Xie Y, Ding M, Yin X, Wang G, Zhang B, Chen L, Ma P, Dong J. MAPKK2/4/5/7-MAPK3-JAZs modulate phenolic acid biosynthesis in Salvia miltiorrhiza. PHYTOCHEMISTRY 2022; 199:113177. [PMID: 35358599 DOI: 10.1016/j.phytochem.2022.113177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Phenolic acids are the major bioactive metabolites produced in Salvia miltiorrhiza, a traditional Chinese medicine called Danshen. Many phytohormone elicitor treatments induce phenolic acid biosynthesis, even though the underlying mechanism remains obscure. Expression pattern analysis showed that SmMAPK3 was highly expressed in leaves, and SmMAPK3 was significantly induced by salicylic acid (SA) and methyl jasmonate (JA). Bioinformatics analysis revealed that SmMAPK3 belongs to group A and contains a TEY motif in the activation loop together with three conserved regions (P-loop, C-loop and CD-domain). A previous study speculated that SmMAPK3 is likely a positive regulator in the biosynthesis of phenolic acids in S. miltiorrhiza. In this study, overexpression of SmMAPK3 increased phenolic acid biosynthetic gene expression and enhanced the accumulation of phenolic acids in S. miltiorrhiza plantlets. Yeast two-hybrid (Y2H) analysis and firefly luciferase complementation imaging (LCI) assays revealed that SmMAPKK2/4/5/7-SmMAPK3-SmJAZs form a cascade that regulates the accumulation of phenolic acids. In summary, this work deepens our understanding of the posttranscriptional regulatory mechanisms of phenolic acid biosynthesis and sheds new light on metabolic engineering in S. miltiorrhiza.
Collapse
Affiliation(s)
- Yongfeng Xie
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Meiling Ding
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Xuecui Yin
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Guanfeng Wang
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Bin Zhang
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Lingxiang Chen
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Pengda Ma
- College of Life Sciences, Northwest A & F University, Yangling, China.
| | - Juane Dong
- College of Life Sciences, Northwest A & F University, Yangling, China.
| |
Collapse
|
10
|
Lu F, Li W, Peng Y, Cao Y, Qu J, Sun F, Yang Q, Lu Y, Zhang X, Zheng L, Fu F, Yu H. ZmPP2C26 Alternative Splicing Variants Negatively Regulate Drought Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2022; 13:851531. [PMID: 35463404 PMCID: PMC9024303 DOI: 10.3389/fpls.2022.851531] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 06/09/2023]
Abstract
Serine/threonine protein phosphatase 2C (PP2C) dephosphorylates proteins and plays crucial roles in plant growth, development, and stress response. In this study, we characterized a clade B member of maize PP2C family, i.e., ZmPP2C26, that negatively regulated drought tolerance by dephosphorylating ZmMAPK3 and ZmMAPK7 in maize. The ZmPP2C26 gene generated ZmPP2C26L and ZmPP2C26S isoforms through untypical alternative splicing. ZmPP2C26S lost 71 amino acids including an MAPK interaction motif and showed higher phosphatase activity than ZmPP2C26L. ZmPP2C26L directly interacted with, dephosphorylated ZmMAPK3 and ZmMAPK7, and localized in chloroplast and nucleus, but ZmPP2C26S only dephosphorylated ZmMAPK3 and localized in cytosol and nucleus. The expression of ZmPP2C26L and ZmPP2C26 was significantly inhibited by drought stress. Meanwhile, the maize zmpp2c26 mutant exhibited enhancement of drought tolerance with higher root length, root weight, chlorophyll content, and photosynthetic rate compared with wild type. However, overexpression of ZmPP2C26L and ZmPP2C26S significantly decreased drought tolerance in Arabidopsis and rice with lower root length, chlorophyll content, and photosynthetic rate. Phosphoproteomic analysis revealed that the ZmPP2C26 protein also altered phosphorylation level of proteins involved in photosynthesis. This study provides insights into understanding the mechanism of PP2C in response to abiotic stress.
Collapse
Affiliation(s)
- Fengzhong Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wanchen Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yalin Peng
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingtao Qu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Fuai Sun
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qingqing Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yanli Lu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Lanjie Zheng
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fengling Fu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Haoqiang Yu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Bian S, Sui X, Wang J, Tian T, Wang C, Zhao X, Liu X, Fang N, Zhang Y, Liu Y, Du Y, Wang B, Timko MP, Zhang Z, Zhang H. NtMYB305a binds to the jasmonate-responsive GAG region of NtPMT1a promoter to regulate nicotine biosynthesis. PLANT PHYSIOLOGY 2022; 188:151-166. [PMID: 34601578 PMCID: PMC8774768 DOI: 10.1093/plphys/kiab458] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/31/2021] [Indexed: 06/02/2023]
Abstract
MYB transcription factors play essential roles in regulating plant secondary metabolism and jasmonate (JA) signaling. Putrescine N-methyltransferase is a key JA-regulated step in the biosynthesis of nicotine, an alkaloidal compound highly accumulated in Nicotiana spp. Here we report the identification of NtMYB305a in tobacco (Nicotiana tabacum) as a regulatory component of nicotine biosynthesis and demonstrate that it binds to the JA-responsive GAG region, which comprises a G-box, an AT-rich motif, and a GCC-box-like element, in the NtPMT1a promoter. Yeast one-hybrid analysis, electrophoretic mobility shift assay and chromatin immunoprecipitation assays showed that NtMYB305a binds to the GAG region in vitro and in vivo. Binding specifically occurs at the ∼30-bp AT-rich motif in a G/C-base-independent manner, thus defining the AT-rich motif as previously unknown MYB-binding element. NtMYB305a localized in the nucleus of tobacco cells where it is capable of activating the expression of a 4×GAG-driven GUS reporter in an AT-rich motif-dependent manner. NtMYB305a positively regulates nicotine biosynthesis and the expression of NtPMT and other nicotine pathway genes. NtMYB305a acts synergistically with NtMYC2a to regulate nicotine biosynthesis, but no interaction between these two proteins was detected. This identification of NtMYB305a provides insights into the regulation of nicotine biosynthesis and extends the roles played by MYB transcription factors in plant secondary metabolism.
Collapse
Affiliation(s)
- Shiquan Bian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xueyi Sui
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Jiahao Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Tian Tian
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Chunkai Wang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xue Zhao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiaofeng Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Ning Fang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yu Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yanhua Liu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yongmei Du
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Bingwu Wang
- Tobacco Breeding and Biotechnology Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | - Zhongfeng Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hongbo Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
12
|
Reprogramming plant specialized metabolism by manipulating protein kinases. ABIOTECH 2021; 2:226-239. [PMID: 34377580 PMCID: PMC8209778 DOI: 10.1007/s42994-021-00053-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Being sessile, plants have evolved sophisticated mechanisms to balance between growth and defense to survive in the harsh environment. The transition from growth to defense is commonly achieved by factors, such as protein kinases (PKs) and transcription factors, that initiate signal transduction and regulate specialized metabolism. Plants produce an array of lineage-specific specialized metabolites for chemical defense and stress tolerance. Some of these molecules are also used by humans as drugs. However, many of these defense-responsive metabolites are toxic to plant cells and inhibitory to growth and development. Plants have, thus, evolved complex regulatory networks to balance the accumulation of the toxic metabolites. Perception of external stimuli is a vital part of the regulatory network. Protein kinase-mediated signaling activates a series of defense responses by phosphorylating the target proteins and translating the stimulus into downstream cellular signaling. As biosynthesis of specialized metabolites is triggered when plants perceive stimuli, a possible connection between PKs and specialized metabolism is well recognized. However, the roles of PKs in plant specialized metabolism have not received much attention until recently. Here, we summarize the recent advances in understanding PKs in plant specialized metabolism. We aim to highlight how the stimulatory signals are transduced, leading to the biosynthesis of corresponding metabolites. We discuss the post-translational regulation of specialized metabolism and provide insights into the mechanisms by which plants respond to the external signals. In addition, we propose possible strategies to increase the production of plant specialized metabolites in biotechnological applications using PKs.
Collapse
|