1
|
Wu W, Li H, Zhou Q, Wu B, Huang W, Fang Z. Auxin-responsive OsMADS60 negatively mediates rice tillering and grain yield by modulating OsPIN5b expression. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70107. [PMID: 40089916 DOI: 10.1111/tpj.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/17/2025]
Abstract
Rice tillering determines grain yield, yet the molecular regulatory network is still limited. In this study, we demonstrated that the transcription factor OsMADS60 promotes the expression of the auxin transporter OsPIN5b to affect auxin distribution and inhibit rice tillering and grain yield. Natural variation was observed in the promoter region of OsMADS60, with its expression level negatively correlated with tiller number and inducible by auxin. Overexpression of OsMADS60 resulted in reduced tillers and grain yield, whereas CRISPR-mediated knockouts of OsMADS60 led to increased tillering and yield. OsMADS60 was found to directly bind the CArG motif [CATTTAC] in the OsPIN5b promoter, thereby upregulating its expression. Moreover, we found that auxin content in various tissues of OsMADS60 and OsPIN5b overexpression lines increased relative to the wild-type ZH11, whereas the auxin levels in mutant lines showed the opposite trend. Genetic analysis further confirmed that OsPIN5b acted downstream of OsMADS60, coregulating the expression of genes involved in hormone pathways. Our findings reveal that OsMADS60 modulates auxin distribution by promoting OsPIN5b expression, thereby influencing rice tillering. This regulatory mechanism holds significant potential for the genetic improvement of rice architecture and grain yield.
Collapse
Affiliation(s)
- Wenhao Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Hongyu Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Qian Zhou
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, 550025, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
2
|
Ye Q, Jiang W, Wang X, Hu X, Zhang Z, Wu Z, Wang H, Li S, Guo D, He H, Hu LF. Identification of the new allele ptc1-2 and analysis of the regulatory role of PTC1 gene in rice anther development. BMC PLANT BIOLOGY 2024; 24:1062. [PMID: 39528949 PMCID: PMC11552164 DOI: 10.1186/s12870-024-05720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Anther development involves a series of important biological events that are precisely regulated by many genes. Although several important genes involved in rice anther development have been identified, the regulatory network involved in tapetal development and pollen wall formation is still largely unclear. PERSISTENT TAPETAL CELL 1 (PTC1) encodes a PHD-Finger protein, which plays a critical role in the regulation of tapetal cell death and pollen development in rice. Here, we report the isolation and characterization of a new allele ptc1-2 with 2-base deletion in the third exon, causing the absent of the PHD domain due to the sequence change. Cytological analysis revealed delayed tapetal PCD, defective pollen exine formation and abnormal ubisch bodies development. Transcriptome analysis revealed that genes related to pollen wall formation (secondary metabolism, phenylalanine synthesis, and cutin and wax biosynthesis pathways), cell death (cysteine and methionine metabolism and DNA repair pathways), and carbohydrate synthesis (starch and sucrose metabolism pathways) were significantly altered in ptc1-2 mutant. A total of 13 reported anther development genes exhibited significant expression changes in the ptc1-2 mutant. Yeast two-hybrid and BiFC analyses showed that PTC1 could interact with API5, an inhibitor of apoptosis, and the citrin-binding enzyme EDT1. This work is helpful in deepening the understanding of the regulatory network of male reproductive development in rice.
Collapse
Affiliation(s)
- Qing Ye
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - WenXiang Jiang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - XiaoQing Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - XiaFei Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - ZeLing Zhang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhen Wu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Huang Wang
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - SiNing Li
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dandan Guo
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China
| | - HaoHua He
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Li Fang Hu
- College of Agriculture, Jiangxi Agricultural University, Nanchang, 330045, China.
- Key Laboratory of Crop Physiology, Ecology, Genetics and Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Zhang X, Cai Q, Li L, Wang L, Hu Y, Chen X, Zhang D, Persson S, Yuan Z. OsMADS6-OsMADS32 and REP1 control palea cellular heterogeneity and morphogenesis in rice. Dev Cell 2024; 59:1379-1395.e5. [PMID: 38593802 DOI: 10.1016/j.devcel.2024.03.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 01/02/2024] [Accepted: 03/12/2024] [Indexed: 04/11/2024]
Abstract
Precise regulation of cell proliferation and differentiation is vital for organ morphology. Rice palea, serving as sepal, comprises two distinct regions: the marginal region (MRP) and body of palea (BOP), housing heterogeneous cell populations, which makes it an ideal system for studying organ morphogenesis. We report that the transcription factor (TF) REP1 promotes epidermal cell proliferation and differentiation in the BOP, resulting in hard silicified protrusion cells, by regulating the cyclin-dependent kinase gene, OsCDKB1;1. Conversely, TFs OsMADS6 and OsMADS32 are expressed exclusively in the MRP, where they limit cell division rates by inhibiting OsCDKB2;1 expression and promote endoreduplication, yielding elongated epidermal cells. Furthermore, reciprocal inhibition between the OsMADS6-OsMADS32 complex and REP1 fine-tunes the balance between cell division and differentiation during palea morphogenesis. We further show the functional conservation of these organ identity genes in heterogeneous cell growth in Arabidopsis, emphasizing a critical framework for controlling cellular heterogeneity in organ morphogenesis.
Collapse
Affiliation(s)
- Xuelian Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Cai
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Ling Li
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yun Hu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaofei Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, China
| | - Staffan Persson
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Plant & Environmental Sciences, Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg, Denmark
| | - Zheng Yuan
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572024, China.
| |
Collapse
|
4
|
Xie P, Wu Y, Xie Q. Evolution of cereal floral architecture and threshability. TRENDS IN PLANT SCIENCE 2023; 28:1438-1450. [PMID: 37673701 DOI: 10.1016/j.tplants.2023.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/08/2023]
Abstract
Hulled grains, while providing natural protection for seeds, pose a challenge to manual threshing due to the pair of glumes tightly encasing them. Based on natural evolution and artificial domestication, gramineous crops evolved various hull-like floral organs. Recently, progress has been made in uncovering novel domesticated genes associated with cereal threshability and deciphering common regulatory modules pertinent to the specification of hull-like floral organs. Here we review morphological similarities, principal regulators, and common mechanisms implicated in the easy-threshing traits of crops. Understanding the shared and unique features in the developmental process of cereal threshability may not only shed light on the convergent evolution of cereals but also facilitate the de novo domestication of wild cereal germplasm resources through genome-editing technologies.
Collapse
Affiliation(s)
- Peng Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, P. R. China; State Key Laboratory of Crop Germplasm Innovation and Molecular Breeding, National Center of Technology Innovation for Maize, Syngenta Group China, Beijing 102206, China; University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| |
Collapse
|
5
|
Shen L, Liu Y, Zhang L, Sun Z, Wang Z, Jiao Y, Shen K, Guo Z. A transcriptional atlas identifies key regulators and networks for the development of spike tissues in barley. Cell Rep 2023; 42:113441. [PMID: 37971941 DOI: 10.1016/j.celrep.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/06/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023] Open
Abstract
Grain number and size determine grain yield in crops and are closely associated with spikelet fertility and grain filling in barley (Hordeum vulgare). Abortion of spikelet primordia within individual barley spikes causes a 30%-50% loss in the potential number of grains during development from the awn primordium stage to the tipping stage, after that grain filling is the primary factor regulating grain size. To identify transcriptional signatures associated with spike development, we use a six-rowed barley cultivar (Morex) to develop a spatiotemporal transcriptome atlas containing 255 samples covering 17 stages and 5 positions along the spike. We identify several fundamental regulatory networks, in addition to key regulators of spike development and morphology. Specifically, we show HvGELP96, encoding a GDSL domain-containing protein, as a regulator of spikelet fertility and grain number. Our transcriptional atlas offers a powerful resource to answer fundamental questions in spikelet development and degeneration in barley.
Collapse
Affiliation(s)
- Liping Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; China National Botanical Garden, Beijing 100093, China
| | - Yangyang Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhiwen Sun
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziying Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuannian Jiao
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Kuocheng Shen
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zifeng Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; China National Botanical Garden, Beijing 100093, China.
| |
Collapse
|
6
|
He L, Fan Y, Zhang Z, Wei X, Yu J. Identifying Genes Associated with Female Flower Development of Phellodendron amurense Rupr. Using a Transcriptomics Approach. Genes (Basel) 2023; 14:661. [PMID: 36980934 PMCID: PMC10048520 DOI: 10.3390/genes14030661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phellodendron amurense Rupr., a species of Rutaceae, is a nationally protected and valuable medicinal plant. It is generally considered to be dioecious. With the discovery of monoecious P. amurense, the phenomenon that its sex development is regulated by epigenetics has been revealed, but the way epigenetics affects the sex differentiation of P. amurense is still unclear. In this study, we investigated the effect of DNA methylation on the sexual development of P. amurense. The young inflorescences of male plants were treated with the demethylation agent 5-azaC, and the induced female flowers were obtained. The induced female flowers' morphological functions and transcriptome levels were close to those of normally developed plants. Genes associated with the development of female flowers were studied by comparing the differences in transcriptome levels between the male and female flowers. Referring to sex-related genes reported in other plants, 188 candidate genes related to the development of female flowers were obtained, including sex-regulating genes, genes related to the formation and development of sexual organs, genes related to biochemical pathways, and hormone-related genes. RPP0W, PAL3, MCM2, MCM6, SUP, PIN1, AINTEGUMENTA, AINTEGUMENTA-LIKE6, AGL11, SEUSS, SHI-RELATED SEQUENCE 5, and ESR2 were preliminarily considered the key genes for female flower development. This study has demonstrated that epigenetics was involved in the sex regulation of P. amurense, with DNA methylation as one of its regulatory modes. Moreover, some candidate genes related to the sexual differentiation of P. amurense were obtained with analysis. These results are of great significance for further exploring the mechanism of sex differentiation of P. amurense and studying of sex differentiation of plants.
Collapse
Affiliation(s)
| | | | - Zhao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | | | | |
Collapse
|
7
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
8
|
Dreni L. The ABC of Flower Development in Monocots: The Model of Rice Spikelet. Methods Mol Biol 2023; 2686:59-82. [PMID: 37540354 DOI: 10.1007/978-1-0716-3299-4_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The initial seminal studies of flower developmental genetics were made from observations in several eudicot model species, particularly Arabidopsis and Antirrhinum. However, an increasing amount of research in monocot model and crop species is finally giving the credit that monocots deserve for their position in the evolutionary history of Angiosperms, their astonishing diversification and adaptation, their diversified floral structures, their pivotal function in most ecosystems on Earth and, finally, their importance in agriculture and farming, economy, landscaping and feeding mankind. Rice is a staple crop and the major monocot model to study the reproductive phase and flower evolution. Inspired by this, this chapter reviews a story of highly conserved functions related to the ABC model of flower development. Nevertheless, this model is complicated in rice by cases of gene neofunctionalization, like the recruitment of MADS-box genes for the development of the unique organs known as lemma and palea, subfunctionalization, and rewiring of conserved molecular pathways.
Collapse
Affiliation(s)
- Ludovico Dreni
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
9
|
Jiang H, Li Y, Luan M, Huang S, Zhao L, Yang G, Pan G. Single-Molecule Real-Time Sequencing of Full-Length Transcriptome and Identification of Genes Related to Male Development in Cannabis sativa. PLANTS (BASEL, SWITZERLAND) 2022; 11:3559. [PMID: 36559671 PMCID: PMC9782162 DOI: 10.3390/plants11243559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/25/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Female Cannabis sativa plants have important therapeutic properties. The sex ratio of the dioecious cannabis is approximately 1:1. Cultivating homozygous female plants by inducing female plants to produce male flowers is of great practical significance. However, the mechanism underlying cannabis male development remains unclear. In this study, single-molecule real-time (SMRT) sequencing was performed using a mixed sample of female and induced male flowers from the ZYZM1 cannabis variety. A total of 15,241 consensus reads were identified, and 13,657 transcripts were annotated across seven public databases. A total of 48 lncRNAs with an average length of 986.54 bp were identified. In total, 8202 transcripts were annotated as transcription factors, the most common of which were bHLH transcription factors. Moreover, tissue-specific expression pattern analysis showed that 13 MADS transcription factors were highly expressed in male flowers. Furthermore, 232 reads of novel genes were predicted and enriched in lipid metabolism, and qRT-PCR results showed that CER1 may be involved in the development of cannabis male flowers. In addition, 1170 AS events were detected, and two AS events were further validated. Taken together, these results may improve our understanding of the complexity of full-length cannabis transcripts and provide a basis for understanding the molecular mechanism of cannabis male development.
Collapse
Affiliation(s)
- Hui Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Ying Li
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Siqi Huang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Lining Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
| | - Guang Yang
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Gen Pan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Science, Changsha 410205, China
- State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|