1
|
Yoldi-Achalandabaso A, Vicente R, Muñoz-Rueda A, Pérez-López U. Unveiling herbaceous plant responses to future triple interaction of drought and elevated temperature and [CO 2]: systematic review and meta-analysis. PHYSIOLOGIA PLANTARUM 2025; 177:e70125. [PMID: 39968918 DOI: 10.1111/ppl.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
During the last decades, the breeding of major crops is growing at a slower rate than desirable to meet future food demands in many agro-environments. Moreover, extreme climatic conditions, and particularly, drought impairments associated with climate change, are limiting the genetic gains of crops in temperate areas, especially in the Mediterranean basin. Drought events and atmospheric air temperatures and CO2 concentrations are increasing at an accelerating pace. Unfortunately, not all breeding programmes have been oriented towards developing climate-resilient crops to cope with future climate predictions, so it is unclear how crops will respond under future multiple stress conditions. In this regard, special attention should be paid to the triple interaction effect of drought, elevated temperature and CO2 concentration on plant responses. Our aim was i) to perform a systematic review of the existing literature on the physiological and agronomic responses of herbaceous plants, mainly grasses, legumes, and forbs to this triple interaction, and ii) elucidate general responses through a meta-analysis. The analysis of the literature unveils the great heterogeneity that exists in the experimental designs carried out to date to study multiple stress conditions in herbaceous plants, making it difficult to extrapolate general responses. A meta-analysis of a subset of studies that met the criteria of having grown plants under elevated CO2 concentrations along the whole experiment suggests that the negative effects of drought on plant performance will be mitigated under future climate conditions, although the responses depend on the severity of the stressors and the experimental variables measured.
Collapse
Affiliation(s)
- Ander Yoldi-Achalandabaso
- Fisioklima-AgroSosT Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Rubén Vicente
- Plant Ecophysiology and Metabolism Group, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Department of Abiotic Stress, Institute of Natural Resources and Agrobiology of Salamanca (IRNASA), Spanish National Research Council (CSIC), Salamanca, Spain
| | - Alberto Muñoz-Rueda
- Fisioklima-AgroSosT Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Usue Pérez-López
- Fisioklima-AgroSosT Group, Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
2
|
Xiong J, Yang X, Sun M, Zhang J, Ding L, Sun Z, Feng N, Zheng D, Zhao L, Shen X. Mitigation Effect of Exogenous Nano-Silicon on Salt Stress Damage of Rice Seedlings. Int J Mol Sci 2024; 26:85. [PMID: 39795944 PMCID: PMC11720159 DOI: 10.3390/ijms26010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Salt stress represents a significant abiotic stress factor that impedes the growth of rice. Nano-silicon has the potential to enhance rice growth and salt tolerance. In this experiment, the rice variety 9311 was employed as the test material to simulate salt stress via hydroponics, with the objective of investigating the mitigation effect of foliar application of nano-silicon on rice seedlings. The results demonstrated that NaCl stress markedly impeded the growth of rice seedlings after seven days of NaCl treatment. The foliar application of nano-silicon followed by NaCl stress alleviated the growth of rice seedlings, markedly improved the spatial conformation of the root system, and enhanced photosynthesis compared with that of NaCl stress alone. The activities of antioxidant enzymes were improved. The contents of antioxidants were increased, and the over-accumulation of ROS was reduced. Furthermore, the foliar application of nano-silicon was found to enhance the uptake of Si4+, K+, and Ca2+ in plants, while simultaneously reducing Na+ and Cl- accumulation. Additionally, the content of IAA, CTK, GA, JA, and SA was increased, and ABA was decreased. In conclusion, the foliar application of nano-silicon has been demonstrated to alleviate salt stress injury and improve the growth of rice seedlings.
Collapse
Affiliation(s)
- Jian Xiong
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Xiaohui Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Minmin Sun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Jianqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Linchong Ding
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Zhiyuan Sun
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| | - Liming Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
| | - Xuefeng Shen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524008, China; (J.X.); (X.Y.); (M.S.); (J.Z.); (L.D.); (Z.S.); (N.F.); (D.Z.); (L.Z.)
- National Saline-Tolerant Rice Technology Innovation South China Center, Zhanjiang 524008, China
| |
Collapse
|
3
|
Ashton CJ, Page R, Lobo AKM, Amaral J, Siqueira JA, Orr DJ, Carmo-Silva E. Radiometric determination of rubisco activation state and quantity in leaves. Methods Enzymol 2024; 708:323-351. [PMID: 39572146 DOI: 10.1016/bs.mie.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
Rubisco is the key enzyme in photosynthesis, catalyzing fixation of carbon dioxide from the atmosphere into energy storage molecules. Several inefficiencies in Rubisco limit the rate of photosynthesis, and, therefore, the growth of the plant. Rubisco is sensitive to light, making deactivation of the enzyme upon sampling likely. Moreover, the indirect methods often used to study its activity make obtaining reliable data difficult. In this Chapter, we describe an approach to generate reliable and repeatable data for Rubisco activities, activation state and abundance in plant leaves. We include methods to sample and extract proteins, minimizing Rubisco degradation and deactivation. We describe radiometric techniques to measure Rubisco activities and calculate its activation state at the time of sampling, and to quantify its abundance.
Collapse
Affiliation(s)
- Catherine J Ashton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Rhiannon Page
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Ana K M Lobo
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Joana Amaral
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Joao A Siqueira
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | | |
Collapse
|
4
|
Sansa O, Abberton MT, Ariyo J, Paliwal R, Ige A, Dieng I, Ayo-Vaughan M, Olowe VI, Oyatomi O. Genome-wide Association Studies of Photosynthetic and Agronomic Traits in Cowpea Collection. G3 (BETHESDA, MD.) 2024; 14:jkae233. [PMID: 39365160 PMCID: PMC11631448 DOI: 10.1093/g3journal/jkae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
Exploring genomic regions linked with drought tolerance and photosynthesis in cowpea could accelerate breeding of climate-resilient cowpea varieties A Genome-wide association study (GWAS) was conducted to identify marker-trait associations for agronomic and photosynthetic traits measured under well-watered and water-stressed conditions. One hundred and twelve cowpea accessions from IITA were phenotyped for agronomic and photosynthetic traits across three locations in two years: Ibadan, Ikenne (2020 and 2021) and Kano (2021 and 2022). The accessions were genotyped using 19,000 DArT-Seq SNP markers from which 9,210 markers were utilized for GWAS analysis using BLINK and mixed linear model (MLM) in GAPIT. Results revealed significant accession × environment interactions for measured traits while ΦPSII, ΦNO and ΦNPQ had significant and consistent correlations with grain yield across conditions. GWAS identified five SNP markers having consistent associations with grain yield under well-watered and water-stressed conditions and three markers associated with ΦNPQ and ΦNO. Gene annotations revealed Vigun04g169000 and Vigun08g168900 genes linked with grain yield and highly expressed under water-stressed conditions have functional roles in regulating plant development and adaptive response to environmental stress. Vigun07g133400, Vigun07g132700 and Vigun07g258000 genes linked with ΦNPQ and ΦNO are involved in activities controlling photoprotection and stress-induced damage in plants. This study identified natural genetic variation in cowpea and correlations between photosynthetic traits and grain yield under real-field drought conditions. The identified SNP markers upon validation would be valuable in marker-assisted selection and useful for cowpea breeders to harness the role of photosynthesis in genetic enhancement of cowpea tolerance to drought.
Collapse
Affiliation(s)
- Olakunle Sansa
- International Institute of Tropical Agriculture, IITA, Ibadan 200132, Nigeria
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Nigeria
| | | | - Johnson Ariyo
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Nigeria
| | - Rajneesh Paliwal
- International Institute of Tropical Agriculture, IITA, Ibadan 200132, Nigeria
| | - Adenike Ige
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Ibnou Dieng
- International Institute of Tropical Agriculture, IITA, Ibadan 200132, Nigeria
| | - Moninuola Ayo-Vaughan
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Nigeria
| | - Victor Idowu Olowe
- Department of Plant Breeding and Seed Technology, Federal University of Agriculture, Abeokuta 110124, Nigeria
| | - Olaniyi Oyatomi
- International Institute of Tropical Agriculture, IITA, Ibadan 200132, Nigeria
| |
Collapse
|
5
|
Deng R, Li Y, Feng NJ, Zheng DF, Du YW, Khan A, Xue YB, Zhang JQ, Feng YN. Integrative Analyses Reveal the Physiological and Molecular Role of Prohexadione Calcium in Regulating Salt Tolerance in Rice. Int J Mol Sci 2024; 25:9124. [PMID: 39201810 PMCID: PMC11354818 DOI: 10.3390/ijms25169124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Salinity stress severely restricts rice growth. Prohexadione calcium (Pro-Ca) modulation can effectively alleviate salt stress in rice. In this study, we explored the effects of Pro-Ca on enhancing salt tolerance in two rice varieties, IR29 and HD96-1. The results revealed that Pro-Ca markedly enhanced root and shoot morphological traits and improved plant biomass under salt stress. Chlorophyll a and b content were significantly increased, which improved photosynthetic capacity. Transcriptomic and metabolomic data showed that Pro-Ca significantly up-regulated the expression of genes involved in E3 ubiquitin ligases in IR29 and HD96-1 by 2.5-fold and 3-fold, respectively, thereby maintaining Na+ and K+ homeostasis by reducing Na+. Moreover, Pro-Ca treatment significantly down-regulated the expression of Lhcb1, Lhcb2, Lhcb3, Lhcb5, and Lhcb6 in IR29 under salt stress, which led to an increase in photosynthetic efficiency. Furthermore, salt stress + Pro-Ca significantly increased the A-AAR of IR29 and HD96-1 by 2.9-fold and 2.5-fold, respectively, and inhibited endogenous cytokinin synthesis and signal transduction, which promoted root growth. The current findings suggested that Pro-Ca effectively alleviated the harmful effects of salt stress on rice by maintaining abscisic acid content and by promoting oxylipin synthesis. This study provides a molecular basis for Pro-Ca to alleviate salt stress in rice.
Collapse
Affiliation(s)
- Rui Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Yao Li
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Nai-Jie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - Dian-Feng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
- Shenzhen Research Institute, Guangdong Ocean University, Shenzhen 518108, China
| | - You-Wei Du
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Ying-Bin Xue
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Jian-Qin Zhang
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| | - Ya-Nan Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (R.D.); (Y.L.)
- South China Center of National Saline—Tolerant Rice Technology Innovation Center, Zhanjiang 524088, China
| |
Collapse
|
6
|
Evans C, Mogg SL, Soraru C, Wallington E, Coates J, Borrill P. Wheat NAC transcription factor NAC5-1 is a positive regulator of senescence. PLANT DIRECT 2024; 8:e620. [PMID: 38962173 PMCID: PMC11217990 DOI: 10.1002/pld3.620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.
Collapse
Affiliation(s)
- Catherine Evans
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | | | | | | - Juliet Coates
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
7
|
Bouidghaghen J, Moreau L, Beauchêne K, Chapuis R, Mangel N, Cabrera-Bosquet L, Welcker C, Bogard M, Tardieu F. Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field. Nat Commun 2023; 14:6603. [PMID: 37857601 PMCID: PMC10587076 DOI: 10.1038/s41467-023-42298-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Breeding for resilience to climate change requires considering adaptive traits such as plant architecture, stomatal conductance and growth, beyond the current selection for yield. Robotized indoor phenotyping allows measuring such traits at high throughput for speed breeding, but is often considered as non-relevant for field conditions. Here, we show that maize adaptive traits can be inferred in different fields, based on genotypic values obtained indoor and on environmental conditions in each considered field. The modelling of environmental effects allows translation from indoor to fields, but also from one field to another field. Furthermore, genotypic values of considered traits match between indoor and field conditions. Genomic prediction results in adequate ranking of genotypes for the tested traits, although with lesser precision for elite varieties presenting reduced phenotypic variability. Hence, it distinguishes genotypes with high or low values for adaptive traits, conferring either spender or conservative strategies for water use under future climates.
Collapse
Affiliation(s)
- Jugurta Bouidghaghen
- LEPSE, Univ Montpellier, INRAE, Montpellier, France
- ARVALIS, Chemin de la côte vieille, Baziège, France
| | - Laurence Moreau
- GQE-Le Moulon, INRAE, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Katia Beauchêne
- ARVALIS, 45 Voie Romaine, Ouzouer-Le-Marché, Beauce La Romaine, France
| | | | - Nathalie Mangel
- ARVALIS, Station de recherche et d'expérimentation, Boigneville, France
| | | | | | | | | |
Collapse
|
8
|
Heuermann MC, Knoch D, Junker A, Altmann T. Natural plant growth and development achieved in the IPK PhenoSphere by dynamic environment simulation. Nat Commun 2023; 14:5783. [PMID: 37723146 PMCID: PMC10507097 DOI: 10.1038/s41467-023-41332-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
In plant science, the suboptimal match of growing conditions hampers the transfer of knowledge from controlled environments in glasshouses or climate chambers to field environments. Here we present the PhenoSphere, a plant cultivation infrastructure designed to simulate field-like environments in a reproducible manner. To benchmark the PhenoSphere, the effects on plant growth of weather conditions of a single maize growing season and of an averaged season over three years are compared to those of a standard glasshouse and of four years of field trials. The single season simulation proves superior to the glasshouse and the averaged season in the PhenoSphere: The simulated weather regime of the single season triggers plant growth and development progression very similar to that observed in the field. Hence, the PhenoSphere enables detailed analyses of performance-related trait expression and causal biological mechanisms in plant populations exposed to weather conditions of current and anticipated future climate scenarios.
Collapse
Affiliation(s)
- Marc C Heuermann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland OT Gatersleben, Germany.
| | - Dominic Knoch
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland OT Gatersleben, Germany
| | - Astrid Junker
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland OT Gatersleben, Germany
- Syngenta Seeds GmbH, Zum Knipkenbach 20, 32107, Bad Salzuflen, Germany
| | - Thomas Altmann
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Seeland OT Gatersleben, Germany
| |
Collapse
|
9
|
Doddrell NH, Lawson T, Raines CA, Wagstaff C, Simkin AJ. Feeding the world: impacts of elevated [CO 2] on nutrient content of greenhouse grown fruit crops and options for future yield gains. HORTICULTURE RESEARCH 2023; 10:uhad026. [PMID: 37090096 PMCID: PMC10116952 DOI: 10.1093/hr/uhad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Several long-term studies have provided strong support demonstrating that growing crops under elevated [CO2] can increase photosynthesis and result in an increase in yield, flavour and nutritional content (including but not limited to Vitamins C, E and pro-vitamin A). In the case of tomato, increases in yield by as much as 80% are observed when plants are cultivated at 1000 ppm [CO2], which is consistent with current commercial greenhouse production methods in the tomato fruit industry. These results provide a clear demonstration of the potential for elevating [CO2] for improving yield and quality in greenhouse crops. The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated [CO2] on fruit yield and fruit nutritional quality. In the final section, we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO2 growth conditions.
Collapse
Affiliation(s)
- Nicholas H Doddrell
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | | | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Andrew J Simkin
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- School of Biosciences, University of Kent, Canterbury, United Kingdom CT2 7NJ, UK
| |
Collapse
|
10
|
Meng F, Feng N, Zheng D, Liu M, Zhang R, Huang X, Huang A, Chen Z. Exogenous Hemin alleviates NaCl stress by promoting photosynthesis and carbon metabolism in rice seedlings. Sci Rep 2023; 13:3497. [PMID: 36859499 PMCID: PMC9977858 DOI: 10.1038/s41598-023-30619-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/27/2023] [Indexed: 03/03/2023] Open
Abstract
It is widely known that salt stress restricts rice growth and productivity severely. However, little information is available regarding the stage of rice seedlings subjected to the Heme oxygenase 1 (HO-1) inducer, Hemin. This study aimed to investigate the effects of salt stress on two rice varieties (Huanghuazhan and Xiangliangyou 900) and the effect of Hemin in promoting photosynthesis, carbohydrate metabolism, and key enzymes under salt-stress conditions. At the stage of three leaves and one heart, Huanghuazhan (HHZ) and Xiangliangyou 900 (XLY900) were sprayed with 5 μmol·L-1 Hemin and then subjected to 50 mM NaCl stress. The results showed that NaCl stress decreased the contents of chlorophyll a, chlorophyll b, and carotenoids. Furthermore, the net photosynthetic rate (Pn) decreased remarkably and the starch content was also lowered. However, NaCl treatment enhanced the concentration of sucrose and soluble sugar, simultaneously enhancing the sucrose metabolism. Nevertheless, the foliar spraying of exogenous Hemin mediated the increase in fructose and starch content, along with the activities of key enzymes' soluble acid invertase (SAInv), basic/neutral invertase (A/N-Inv), and sucrose synthase (SS) in rice leaves under NaCl stress. The sucrose phosphate synthase (SPS) in leaves decreased significantly, and the fructose accumulation in leaves increased. Hemin also mediated the increase of starch content and the α-amylase, total amylase, and starch phosphorylase (SP) activities under NaCl stress. Under stress conditions, the application of the Heme oxygenase 1 (HO-1) inhibitor, ZnPP failed to alleviate the damage to rice seedlings by NaCl stress. The ZnPP treatment showed similar tendency to the NaCl treatment on pigment content, gas exchange parameters and carbon metabolism related products and enzymes. However, ZnPP decreased carotenoids, fructose, starch content and enzyme activities related to starch metabolism. The regulation effect of Hemin on HuangHuaZhan was better than XiangLiangYou 900. These results indicate that Hemin improved the effects of salt stress on the photosynthesis and physiological characteristics of rice leaves as a result of enhanced carbohydrate metabolism. Thus, Hemin could alleviate the damage caused by salt stress to a certain extent.
Collapse
Affiliation(s)
- Fengyan Meng
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Naijie Feng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China. .,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China. .,Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008, China. .,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008, China. .,Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518108, China.
| | - Meiling Liu
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Rongjun Zhang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Xixin Huang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Anqi Huang
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China ,National Saline-tolerant Rice Technology Innovation Center, South China, Zhanjiang, 524008 China
| | - Ziming Chen
- grid.411846.e0000 0001 0685 868XCollege of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524008 China
| |
Collapse
|
11
|
Lauterberg M, Saranga Y, Deblieck M, Klukas C, Krugman T, Perovic D, Ordon F, Graner A, Neumann K. Precision phenotyping across the life cycle to validate and decipher drought-adaptive QTLs of wild emmer wheat ( Triticum turgidum ssp. dicoccoides) introduced into elite wheat varieties. FRONTIERS IN PLANT SCIENCE 2022; 13:965287. [PMID: 36311121 PMCID: PMC9598872 DOI: 10.3389/fpls.2022.965287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Drought events or the combination of drought and heat conditions are expected to become more frequent due to global warming, and wheat yields may fall below their long-term average. One way to increase climate-resilience of modern high-yielding varieties is by their genetic improvement with beneficial alleles from crop wild relatives. In the present study, the effect of two beneficial QTLs introgressed from wild emmer wheat and incorporated in the three wheat varieties BarNir, Zahir and Uzan was studied under well-watered conditions and under drought stress using non-destructive High-throughput Phenotyping (HTP) throughout the life cycle in a single pot-experiment. Plants were daily imaged with RGB top and side view cameras and watered automatically. Further, at two time points, the quantum yield of photosystem II was measured with a top view FluorCam. The QTL carrying near isogenic lines (NILs) were compared with their corresponding parents by t-test for all non-invasively obtained traits and for the manually determined agronomic and yield parameters. Data quality of phenotypic traits (repeatability) in the controlled HTP experiment was above 85% throughout the life cycle and at maturity. Drought stress had a strong effect on growth in all wheat genotypes causing biomass reduction from 2% up to 70% at early and late points in the drought period, respectively. At maturity, the drought caused 47-55% decreases in yield-related traits grain weight, straw weight and total biomass and reduced TKW by 10%, while water use efficiency (WUE) increased under drought by 29%. The yield-enhancing effect of the introgressed QTLs under drought conditions that were previously demonstrated under field/screenhouse conditions in Israel, could be mostly confirmed in a greenhouse pot experiment using HTP. Daily precision phenotyping enabled to decipher the mode of action of the QTLs in the different genetic backgrounds throughout the entire wheat life cycle. Daily phenotyping allowed a precise determination of the timing and size of the QTLs effect (s) and further yielded information about which image-derived traits are informative at which developmental stage of wheat during the entire life cycle. Maximum height and estimated biovolume were reached about a week after heading, so experiments that only aim at exploring these traits would not need a longer observation period. To obtain information on different onset and progress of senescence, the CVa curves represented best the ongoing senescence of plants. The QTL on 7A in the BarNir background was found to improve yield under drought by increased biomass growth, a higher photosynthetic performance, a higher WUE and a "stay green effect."
Collapse
Affiliation(s)
- Madita Lauterberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Yehoshua Saranga
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Mathieu Deblieck
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Christian Klukas
- Digitalization in Research and Development (ROM), BASF SE, Ludwigshafen am Rhein, Germany
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn-Institute, Quedlinburg, Germany
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| |
Collapse
|
12
|
Kromdijk J, McCormick AJ. Genetic variation in photosynthesis: many variants make light work. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3053-3056. [PMID: 35606158 PMCID: PMC9126730 DOI: 10.1093/jxb/erac129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Johannes Kromdijk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W Gregory drive, Urbana, IL 61801, USA
| | - Alistair J McCormick
- SynthSys & Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| |
Collapse
|