1
|
Čmejlová J, Paprštein F, Suran P, Zelený L, Čmejla R. A New One-Tube Reaction Assay for the Universal Determination of Sweet Cherry ( Prunus avium L.) Self-(In)Compatible MGST- and S-Alleles Using Capillary Fragment Analysis. Int J Mol Sci 2023; 24:ijms24086931. [PMID: 37108095 PMCID: PMC10139232 DOI: 10.3390/ijms24086931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The sweet cherry plant (Prunus avium L.) is primarily self-incompatible, with so-called S-alleles responsible for the inability of flowers to be pollinated not only by their own pollen grains but also by pollen from other cherries having the same S-alleles. This characteristic has wide-ranging impacts on commercial growing, harvesting, and breeding. However, mutations in S-alleles as well as changes in the expression of M locus-encoded glutathione-S-transferase (MGST) can lead to complete or partial self-compatibility, simplifying orchard management and reducing possible crop losses. Knowledge of S-alleles is important for growers and breeders, but current determination methods are challenging, requiring several PCR runs. Here we present a system for the identification of multiple S-alleles and MGST promoter variants in one-tube PCR, with subsequent fragment analysis on a capillary genetic analyzer. The assay was shown to unequivocally determine three MGST alleles, 14 self-incompatible S-alleles, and all three known self-compatible S-alleles (S3', S4', S5') in 55 combinations tested, and thus it is especially suitable for routine S-allele diagnostics and molecular marker-assisted breeding for self-compatible sweet cherries. In addition, we identified a previously unknown S-allele in the 'Techlovicka´ genotype (S54) and a new variant of the MGST promoter with an 8-bp deletion in the ´Kronio´ cultivar.
Collapse
Affiliation(s)
- Jana Čmejlová
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - František Paprštein
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - Pavol Suran
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - Lubor Zelený
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| | - Radek Čmejla
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, 508 01 Hořice, Czech Republic
| |
Collapse
|
2
|
Deng L, Wang T, Hu J, Yang X, Yao Y, Jin Z, Huang Z, Sun G, Xiong B, Liao L, Wang Z. Effects of Pollen Sources on Fruit Set and Fruit Characteristics of 'Fengtangli' Plum ( Prunus salicina Lindl.) Based on Microscopic and Transcriptomic Analysis. Int J Mol Sci 2022; 23:12959. [PMID: 36361746 PMCID: PMC9656660 DOI: 10.3390/ijms232112959] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 09/29/2023] Open
Abstract
Adequate yield and fruit quality are required in commercial plum production. The pollen source has been shown to influence fruit set and fruit characteristics. In this study, 'Siyueli', 'Fenghuangli' and 'Yinhongli' were used as pollinizers of 'Fengtangli' plum. Additionally, self-pollination, mixed pollination, and open pollination were performed. We characterized the differences in pollen tube growth, fruit set and fruit quality among pollination combinations. 'Fengtangli' flowers pollinated by 'Fenghuangli' had more pistils with pollen tubes penetrating the ovary and the highest fruit set rate, while the lowest fruit set rate was obtained from self-pollination. In self-pollinated flowers, 33% of pistils had at least one pollen tube reaching the ovary, implying that 'Fengtangli' is partially self-compatible. Pollen sources affected 'Fengtangli' fruit size, weight, pulp thickness, soluble solids, and sugar content. Transcriptome analysis of 'Siyueli'-pollinated and 'Yinhongli'-pollinated fruits revealed 2762 and 1018 differentially expressed genes (DEGs) involved in the response to different pollen sources. DEGs were enriched in plant hormone signal transduction, starch and sucrose metabolism, and MAPK signaling pathways. Our findings provide a reference for the selection of suitable pollinizers for 'Fengtangli' plum and promote future research on the metaxenia effect at the molecular level.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Zhihui Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Genome-wide identification and expression pattern analysis of the ribonuclease T2 family in Eucommia ulmoides. Sci Rep 2021; 11:6900. [PMID: 33767357 PMCID: PMC7994793 DOI: 10.1038/s41598-021-86337-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
The 2′,3′-cycling ribonuclease (RNase) genes are catalysts of RNA cleavage and include the RNase T2 gene family. RNase T2 genes perform important roles in plants and have been conserved in the genome of eukaryotic organisms. In this study we identified 21 EURNS genes in Eucommia ulmoides Oliver (E. ulmoides) and analyzed their structure, chromosomal location, phylogenetic tree, gene duplication, stress-related cis-elements, and expression patterns in different tissues. The length of 21 predicted EURNS proteins ranged from 143 to 374 amino acids (aa), their molecular weight (MW) ranged from 16.21 to 42.38 kDa, and their isoelectric point (PI) value ranged from 5.08 to 9.09. Two classifications (class I and class III) were obtained from the conserved domains analysis and phylogenetic tree. EURNS proteins contained a total of 15 motifs. Motif 1, motif 2, motif 3, and motif 7 were distributed in multiple sequences and were similar to the conserved domain of RNase T2. EURNS genes with similar structure and the predicted EURNS proteins with conserved motif compositions are in the same group in the phylogenetic tree. The results of RT-PCR and transcription data showed that EURNS genes have tissue-specific expression and exhibited obvious trends in different developmental stages. Gene duplication analysis results indicated that segment duplication may be the dominant duplication mode in this gene family. This study provides a theoretical basis for research on the RNase T2 gene family and lays a foundation for the further study of EURNS genes.
Collapse
|
4
|
Lénárt J, Gere A, Causon T, Hann S, Dernovics M, Németh O, Hegedűs A, Halász J. LC-MS based metabolic fingerprinting of apricot pistils after self-compatible and self-incompatible pollinations. PLANT MOLECULAR BIOLOGY 2021; 105:435-447. [PMID: 33296063 PMCID: PMC7892686 DOI: 10.1007/s11103-020-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE LC-MS based metabolomics approach revealed that putative metabolites other than flavonoids may significantly contribute to the sexual compatibility reactions in Prunus armeniaca. Possible mechanisms on related microtubule-stabilizing effects are provided. Identification of metabolites playing crucial roles in sexual incompatibility reactions in apricot (Prunus armeniaca L.) was the aim of the study. Metabolic fingerprints of self-compatible and self-incompatible apricot pistils were created using liquid chromatography coupled to time-of-flight mass spectrometry followed by untargeted compound search. Multivariate statistical analysis revealed 15 significant differential compounds among the total of 4006 and 1005 aligned metabolites in positive and negative ion modes, respectively. Total explained variance of 89.55% in principal component analysis (PCA) indicated high quality of differential expression analysis. The statistical analysis showed significant differences between genotypes and pollination time as well, which demonstrated high performance of the metabolic fingerprinting and revealed the presence of metabolites with significant influence on the self-incompatibility reactions. Finally, polyketide-based macrolides similar to peloruside A and a hydroxy sphingosine derivative are suggested to be significant differential metabolites in the experiment. These results indicate a strategy of pollen tubes to protect microtubules and avoid growth arrest involved in sexual incompatibility reactions of apricot.
Collapse
Affiliation(s)
- József Lénárt
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Attila Gere
- Department of Postharvest Sciences and Sensory Evaluation, Faculty of Food Science, Szent István University, Villányi út 29-43, 1118, Budapest, Hungary
| | - Tim Causon
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Stephan Hann
- Institute of Analytical Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Mihály Dernovics
- Department of Plant Physiology, Agricultural Institute, Centre for Agricultural Research, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Olga Németh
- Department of Applied Chemistry, Faculty of Food Science, Szent István University, Villányi út 29-43, Budapest, 1118, Hungary
| | - Attila Hegedűs
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary
| | - Júlia Halász
- Department of Genetics and Plant Breeding, Faculty of Horticultural Science, Szent István University, Ménesi út 44, Budapest, 1118, Hungary.
| |
Collapse
|
5
|
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, Yue C, Gallardo K, McCracken V, Coe M, Hardner C, Zurn JD, Hokanson S, van de Weg E, Jung S, Main D, da Silva Linge C, Vanderzande S, Davis TM, Mahoney LL, Finn C, Peace C. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. HORTICULTURE RESEARCH 2020; 7:177. [PMID: 33328430 PMCID: PMC7603521 DOI: 10.1038/s41438-020-00398-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.
Collapse
Affiliation(s)
- Amy F Iezzoni
- Michigan State University, East Lansing, MI, 48824, USA.
| | - Jim McFerson
- Washington State University, Wenatchee, WA, 98801, USA
| | - James Luby
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Chengyan Yue
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Michael Coe
- Cedar Lake Research Group, Portland, OR, 97215, USA
| | | | | | | | - Eric van de Weg
- Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Sook Jung
- Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | - Cameron Peace
- Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
Eremina O, Eremin V, Smirnov R. Genealogical analysis of large-fruited sweet cherry varieties in accordance with the S-locus of parental forms, and the pattern of inheritance of large-fruited in the presence of S5 and S9 alleles in the genome. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202503005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of various molecular techniques greatly assists breeders in the selection of parental pairs in directional crossing. The selection of forms with the desired properties at the stage of hybrid progeny is a very laborious work, especially in the selection of fruit crops. This is due to the long life cycle and the impossibility of identifying valuable traits in the first years of the life of a hybrid plant. The use of the definition of S-loci in the genotype of a hybrid of sweet cherry allows at the early stage, before entering fruiting, to isolate genotypes with valuable traits.
Collapse
|
7
|
Calle A, Cai L, Iezzoni A, Wünsch A. Genetic Dissection of Bloom Time in Low Chilling Sweet Cherry ( Prunus avium L.) Using a Multi-Family QTL Approach. FRONTIERS IN PLANT SCIENCE 2019; 10:1647. [PMID: 31998337 PMCID: PMC6962179 DOI: 10.3389/fpls.2019.01647] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/22/2019] [Indexed: 05/22/2023]
Abstract
Bloom time in sweet cherry (Prunus avium L.) is a highly heritable trait that varies between genotypes and depends on the environmental conditions. Bud-break occurs after chill and heat requirements of each genotype are fulfilled, and dormancy is released. Bloom time is a critical trait for fruit production as matching cultivar adaptation to the growing area is essential for adequate fruit set. Additionally, low chilling cultivars are of interest to extend sweet cherry production to warmer regions, and for the crop adaptation to increasing winter and spring temperatures. The aim of this work is to investigate the genetic control of this trait by analyzing multiple families derived from the low chilling and extra-early flowering local Spanish cultivar 'Cristobalina' and other cultivars with higher chilling requirements and medium to late bloom times. Bloom time evaluation in six related sweet cherry populations confirmed a high heritability of this trait, and skewed distribution toward late flowering, revealing possible dominance of the late bloom alleles. SNP genotyping of the six populations (n = 406) resulted in a consensus map of 1269 SNPs. Quantitative trait loci (QTL) analysis using the Bayesian approach implemented by FlexQTL™ software revealed two major QTLs on linkage groups 1 and 2 (qP-BT1.1m and qP-BT2.1m) that explained 47.6% of the phenotypic variation. The QTL on linkage group 1 was mapped to a 0.26 Mbp region that overlaps with the DORMANCY ASSOCIATED MADS-BOX (DAM) genes. This finding is consistent with peach results that indicate that these genes are major determinants of chilling requirement in Prunus. Haplotype analysis of the linkage group 1 and 2 QTL regions showed that 'Cristobalina' was the only cultivar tested that contributed early bloom time alleles for these two QTLs. This work contributes to knowledge of the genetic control of chilling requirement and bloom date and will enable marker-assisted selection for low chilling in sweet cherry breeding programs.
Collapse
Affiliation(s)
- Alejandro Calle
- Unidad de Hotofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Lichun Cai
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Amy Iezzoni
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Ana Wünsch
- Unidad de Hotofruticultura, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, (CITA-Universidad de Zaragoza), Zaragoza, Spain
- *Correspondence: Ana Wünsch,
| |
Collapse
|
8
|
Do Canto J, Studer B, Lubberstedt T. Overcoming self-incompatibility in grasses: a pathway to hybrid breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1815-29. [PMID: 27577253 DOI: 10.1007/s00122-016-2775-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/24/2016] [Indexed: 05/24/2023]
Abstract
Allogamous grasses exhibit an effective two-locus gametophytic self-incompatibility (SI) system, limiting the range of breeding techniques applicable for cultivar development. Current breeding methods based on populations are characterized by comparably low genetic gains for important traits such as biomass yield. To implement more efficient breeding schemes, the overall understanding of the SI system is crucial as are the mechanisms involved in the breakdown of SI. Self-fertile variants in outcrossing grasses have been studied, and the current level of knowledge includes approximate gene locations, linked molecular markers and first hypotheses on their mode of action. Environmental conditions increasing seed set upon self-pollination have also been described. Even though some strategies were proposed to take advantage of self-fertility, there have, so far, not been changes in the methods applied in cultivar development for allogamous grasses. In this review, we describe the current knowledge about self-fertility in allogamous grasses and outline strategies to incorporate this trait for implementation in synthetic and hybrid breeding schemes.
Collapse
Affiliation(s)
- Javier Do Canto
- Department of Agronomy, Iowa State University, 2104 Agronomy Hall, Ames, IA, 50011-1010, USA.
- National Institute of Agricultural Research, INIA, Route 5 km 386, Tacuarembo, Uruguay.
| | - Bruno Studer
- Forage Crop Genetics, Institute of Agricultural Sciences, ETH Zurich, LFW Building, University Street 2, Zurich, 8092, Switzerland
| | - Thomas Lubberstedt
- Department of Agronomy, Iowa State University, 2104 Agronomy Hall, Ames, IA, 50011-1010, USA
| |
Collapse
|
9
|
Sassa H. Molecular mechanism of the S-RNase-based gametophytic self-incompatibility in fruit trees of Rosaceae. BREEDING SCIENCE 2016; 66:116-21. [PMID: 27069396 PMCID: PMC4780795 DOI: 10.1270/jsbbs.66.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 05/07/2023]
Abstract
Self-incompatibility (SI) is a major obstacle for stable fruit production in fruit trees of Rosaceae. SI of Rosaceae is controlled by the S locus on which at least two genes, pistil S and pollen S, are located. The product of the pistil S gene is a polymorphic and extracellular ribonuclease, called S-RNase, while that of the pollen S gene is a protein containing the F-box motif, SFB (S haplotype-specific F-box protein)/SFBB (S locus F-box brothers). Recent studies suggested that SI of Rosaceae includes two different systems, i.e., Prunus of tribe Amygdaleae exhibits a self-recognition system in which its SFB recognizes self-S-RNase, while tribe Pyreae (Pyrus and Malus) shows a non-self-recognition system in which many SFBB proteins are involved in SI, each recognizing subset of non-self-S-RNases. Further biochemical and biological characterization of the S locus genes, as well as other genes required for SI not located at the S locus, will help our understanding of the molecular mechanisms, origin, and evolution of SI of Rosaceae, and may provide the basis for breeding of self-compatible fruit tree cultivars.
Collapse
|
10
|
Gonthier L, Blassiau C, Mörchen M, Cadalen T, Poiret M, Hendriks T, Quillet MC. High-density genetic maps for loci involved in nuclear male sterility (NMS1) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L., Asteraceae). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2103-21. [PMID: 23689744 DOI: 10.1007/s00122-013-2122-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 05/08/2013] [Indexed: 05/14/2023]
Abstract
High-density genetic maps were constructed for loci involved in nuclear male sterility (NMS1-locus) and sporophytic self-incompatibility (S-locus) in chicory (Cichorium intybus L.). The mapping population consisted of 389 F1' individuals derived from a cross between two plants, K28 (male-sterile) and K59 (pollen-fertile), both heterozygous at the S-locus. This F1' mapping population segregated for both male sterility (MS) and strong self-incompatibility (SI) phenotypes. Phenotyping F1' individuals for MS allowed us to map the NMS1-locus to linkage group (LG) 5, while controlled diallel and factorial crosses to identify compatible/incompatible phenotypes mapped the S-locus to LG2. To increase the density of markers around these loci, bulked segregant analysis was used. Bulks and parental plants K28 and K59 were screened using amplified fragment length polymorphism (AFLP) analysis, with a complete set of 256 primer combinations of EcoRI-ANN and MseI-CNN. A total of 31,000 fragments were generated, of which 2,350 showed polymorphism between K59 and K28. Thirteen AFLP markers were identified close to the NMS1-locus and six in the vicinity of the S-locus. From these AFLP markers, eight were transformed into sequence-characterized amplified region (SCAR) markers and of these five showed co-dominant polymorphism. The chromosomal regions containing the NMS1-locus and the S-locus were each confined to a region of 0.8 cM. In addition, we mapped genes encoding proteins similar to S-receptor kinase, the female determinant of sporophytic SI in the Brasicaceae, and also markers in the vicinity of the putative S-locus of sunflower, but none of these genes or markers mapped close to the chicory S-locus.
Collapse
Affiliation(s)
- Lucy Gonthier
- Université de Lille, UMR INRA-Lille 1 1281, Stress Abiotiques et Différenciation des Végétaux Cultivés, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
11
|
An S-locus independent pollen factor confers self-compatibility in 'Katy' apricot. PLoS One 2013; 8:e53947. [PMID: 23342044 PMCID: PMC3544744 DOI: 10.1371/journal.pone.0053947] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/06/2012] [Indexed: 11/19/2022] Open
Abstract
Loss of pollen-S function in Prunus self-compatible cultivars has been mostly associated with deletions or insertions in the S-haplotype-specific F-box (SFB) genes. However, self-compatible pollen-part mutants defective for non-S-locus factors have also been found, for instance, in the apricot (Prunus armeniaca) cv. ‘Canino’. In the present study, we report the genetic and molecular analysis of another self-compatible apricot cv. termed ‘Katy’. S-genotype of ‘Katy’ was determined as S1S2 and S-RNase PCR-typing of selfing and outcrossing populations from ‘Katy’ showed that pollen gametes bearing either the S1- or the S2-haplotype were able to overcome self-incompatibility (SI) barriers. Sequence analyses showed no SNP or indel affecting the SFB1 and SFB2 alleles from ‘Katy’ and, moreover, no evidence of pollen-S duplication was found. As a whole, the obtained results are compatible with the hypothesis that the loss-of-function of a S-locus unlinked factor gametophytically expressed in pollen (M’-locus) leads to SI breakdown in ‘Katy’. A mapping strategy based on segregation distortion loci mapped the M’-locus within an interval of 9.4 cM at the distal end of chr.3 corresponding to ∼1.29 Mb in the peach (Prunus persica) genome. Interestingly, pollen-part mutations (PPMs) causing self-compatibility (SC) in the apricot cvs. ‘Canino’ and ‘Katy’ are located within an overlapping region of ∼273 Kb in chr.3. No evidence is yet available to discern if they affect the same gene or not, but molecular markers seem to indicate that both cultivars are genetically unrelated suggesting that every PPM may have arisen independently. Further research will be necessary to reveal the precise nature of ‘Katy’ PPM, but fine-mapping already enables SC marker-assisted selection and paves the way for future positional cloning of the underlying gene.
Collapse
|
12
|
Zuriaga E, Molina L, Badenes ML, Romero C. Physical mapping of a pollen modifier locus controlling self-incompatibility in apricot and synteny analysis within the Rosaceae. PLANT MOLECULAR BIOLOGY 2012; 79:229-242. [PMID: 22481163 DOI: 10.1007/s11103-012-9908-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 03/23/2012] [Indexed: 05/31/2023]
Abstract
S-locus products (S-RNase and F-box proteins) are essential for the gametophytic self-incompatibility (GSI) specific recognition in Prunus. However, accumulated genetic evidence suggests that other S-locus unlinked factors are also required for GSI. For instance, GSI breakdown was associated with a pollen-part mutation unlinked to the S-locus in the apricot (Prunus armeniaca L.) cv. 'Canino'. Fine-mapping of this mutated modifier gene (M-locus) and the synteny analysis of the M-locus within the Rosaceae are here reported. A segregation distortion loci mapping strategy, based on a selectively genotyped population, was used to map the M-locus. In addition, a bacterial artificial chromosome (BAC) contig was constructed for this region using overlapping oligonucleotides probes, and BAC-end sequences (BES) were blasted against Rosaceae genomes to perform micro-synteny analysis. The M-locus was mapped to the distal part of chr.3 flanked by two SSR markers within an interval of 1.8 cM corresponding to ~364 Kb in the peach (Prunus persica L. Batsch) genome. In the integrated genetic-physical map of this region, BES were mapped against the peach scaffold_3 and BACs were anchored to the apricot map. Micro-syntenic blocks were detected in apple (Malus × domestica Borkh.) LG17/9 and strawberry (Fragaria vesca L.) FG6 chromosomes. The M-locus fine-scale mapping provides a solid basis for self-compatibility marker-assisted selection and for positional cloning of the underlying gene, a necessary goal to elucidate the pollen rejection mechanism in Prunus. In a wider context, the syntenic regions identified in peach, apple and strawberry might be useful to interpret GSI evolution in Rosaceae.
Collapse
Affiliation(s)
- Elena Zuriaga
- Instituto Valenciano de Investigaciones Agrarias-IVIA, Apartado Oficial, 46113 Moncada, Valencia, Spain.
| | | | | | | |
Collapse
|
13
|
Fernandez i Marti A, Athanson B, Koepke T, Font i Forcada C, Dhingra A, Oraguzie N. Genetic diversity and relatedness of sweet cherry (prunus avium L.) cultivars based on single nucleotide polymorphic markers. FRONTIERS IN PLANT SCIENCE 2012; 3:116. [PMID: 22737155 PMCID: PMC3382262 DOI: 10.3389/fpls.2012.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 05/21/2023]
Abstract
Most previous studies on genetic fingerprinting and cultivar relatedness in sweet cherry were based on isoenzyme, RAPD, and simple sequence repeat (SSR) markers. This study was carried out to assess the utility of single nucleotide polymorphism (SNP) markers generated from 3' untranslated regions (UTR) for genetic fingerprinting in sweet cherry. A total of 114 sweet cherry germplasm representing advanced selections, commercial cultivars, and old cultivars imported from different parts of the world were screened with seven SSR markers developed from other Prunus species and with 40 SNPs obtained from 3' UTR sequences of Rainier and Bing sweet cherry cultivars. Both types of marker study had 99 accessions in common. The SSR data was used to validate the SNP results. Results showed that the average number of alleles per locus, mean observed heterozygosity, expected heterozygosity, and polymorphic information content values were higher in SSRs than in SNPs although both set of markers were similar in their grouping of the sweet cherry accessions as shown in the dendrogram. SNPs were able to distinguish sport mutants from their wild type germplasm. For example, "Stella" was separated from "Compact Stella." This demonstrates the greater power of SNPs for discriminating mutants from their original parents than SSRs. In addition, SNP markers confirmed parentage and also determined relationships of the accessions in a manner consistent with their pedigree relationships. We would recommend the use of 3' UTR SNPs for genetic fingerprinting, parentage verification, gene mapping, and study of genetic diversity in sweet cherry.
Collapse
Affiliation(s)
- Angel Fernandez i Marti
- Departamento Biología Molecular, Parque Científico Tecnológico Aula DeiZaragoza, Spain
- Unidad de Fruticultura, Centro de Investigación y Tecnología Agroalimentario de AragónZaragoza, Spain
| | - Blessing Athanson
- Irrigated Agriculture Research and Extension Centre, Washington State UniversityPullman, WA, USA
| | - Tyson Koepke
- Department of Horticulture and Landscape Architecture, Washington State UniversityPullman, WA, USA
| | | | - Amit Dhingra
- Department of Horticulture and Landscape Architecture, Washington State UniversityPullman, WA, USA
| | - Nnadozie Oraguzie
- Irrigated Agriculture Research and Extension Centre, Washington State UniversityPullman, WA, USA
- *Correspondence: Nnadozie Oraguzie, Irrigated Agriculture Research and Extension Centre, Washington State University, 24106 North Bunn Road, Pullman, WA 99350, USA. e-mail:
| |
Collapse
|