1
|
Muñoz-Díaz E, Fuenzalida-Valdivia I, Darrière T, de Bures A, Blanco-Herrera F, Rompais M, Carapito C, Sáez-Vásquez J. Proteomic profiling of Arabidopsis nuclei reveals distinct protein accumulation kinetics upon heat stress. Sci Rep 2024; 14:18914. [PMID: 39143125 PMCID: PMC11324732 DOI: 10.1038/s41598-024-65558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
Heat stress (HS) impacts the nuclear proteome and, subsequently, protein activities in different nuclear compartments. In Arabidopsis thaliana, a short exposure to 37 °C leads to loss of the standard tripartite architecture of the nucleolus, the most prominent nuclear substructure, and, consequently, affects the assembly of ribosomes. Here, we report a quantitative label-free LC‒MS/MS (Liquid Chromatography coupled to tandem Mass Spectrometry) analysis to determine the nuclear proteome of Arabidopsis at 22 °C, HS (37 °C for 4 and 24 h), and a recovery phase. This analysis identified ten distinct groups of proteins based on relative abundance changes in the nucleus before, during and after HS: Early, Late, Transient, Early Persistent, Late Persistent, Recovery, Early-Like, Late-Like, Transient-Like and Continuous Groups (EG, LG, TG, EPG, LPG, RG, ELG, LLG, TLG and CG, respectively). Interestingly, the RNA polymerase I subunit NRPA3 and other main nucleolar proteins, including NUCLEOLIN 1 and FIBRILLARIN 1 and 2, were detected in RG and CG, suggesting that plants require increased nucleolar activity and likely ribosome assembly to restore protein synthesis after HS.
Collapse
Affiliation(s)
- E Muñoz-Díaz
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - I Fuenzalida-Valdivia
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - T Darrière
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - A de Bures
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France
| | - F Blanco-Herrera
- Facultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andrés Bello, 8370146, Santiago, RM, Chile
- ANID - Millennium Institute for Integrative Biology (IBio), Santiago, Chile
- ANID - Millennium Science Initiative Program, Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), 8331150, Santiago, Chile
| | - M Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - C Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - J Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes (LGDP), UMR 5096, CNRS, 66860, Perpignan, France.
- LGDP, UMR 5096, Univ. Perpignan Via Domitia, 66860, Perpignan, France.
| |
Collapse
|
2
|
Fanara S, Schloesser M, Joris M, De Franco S, Vandevenne M, Kerff F, Hanikenne M, Motte P. The Arabidopsis SR45 splicing factor bridges the splicing machinery and the exon-exon junction complex. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2280-2298. [PMID: 38180875 DOI: 10.1093/jxb/erae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
The Arabidopsis splicing factor serine/arginine-rich 45 (SR45) contributes to several biological processes. The sr45-1 loss-of-function mutant exhibits delayed root development, late flowering, unusual numbers of floral organs, shorter siliques with decreased seed sets, narrower leaves and petals, and altered metal distribution. SR45 bears a unique RNA recognition motif (RRM) flanked by one serine/arginine-rich (RS) domain on both sides. Here, we studied the function of each SR45 domains by examining their involvement in: (i) the spatial distribution of SR45; (ii) the establishment of a protein-protein interaction network including spliceosomal and exon-exon junction complex (EJC) components; and (iii) the RNA binding specificity. We report that the endogenous SR45 promoter is active during vegetative and reproductive growth, and that the SR45 protein localizes in the nucleus. We demonstrate that the C-terminal arginine/serine-rich domain is a determinant of nuclear localization. We show that the SR45 RRM domain specifically binds purine-rich RNA motifs via three residues (H101, H141, and Y143), and is also involved in protein-protein interactions. We further show that SR45 bridges both mRNA splicing and surveillance machineries as a partner of EJC core components and peripheral factors, which requires phosphoresidues probably phosphorylated by kinases from both the CLK and SRPK families. Our findings provide insights into the contribution of each SR45 domain to both spliceosome and EJC assemblies.
Collapse
Affiliation(s)
- Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marie Schloesser
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Marine Joris
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| | - Simona De Franco
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Marylène Vandevenne
- InBioS-Center for Protein Engineering, Laboratory of Biological Macromolecules, University of Liège, 4000, Liège, Belgium
| | - Frédéric Kerff
- InBioS-Center for Protein Engineering, Laboratory of Crystallography, University of Liège, 4000, Liège, Belgium
| | - Marc Hanikenne
- InBioS-PhytoSystems, Translational Plant Biology, University of Liège, 4000, Liège, Belgium
| | - Patrick Motte
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, University of Liège, 4000, Liège, Belgium
| |
Collapse
|
3
|
Luha R, Rana V, Vainstein A, Kumar V. Nonsense-mediated mRNA decay pathway in plants under stress: general gene regulatory mechanism and advances. PLANTA 2024; 259:51. [PMID: 38289504 DOI: 10.1007/s00425-023-04317-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 12/23/2023] [Indexed: 02/01/2024]
Abstract
MAIN CONCLUSION Nonsense-mediated mRNA decay in eukaryotes is vital to cellular homeostasis. Further knowledge of its putative role in plant RNA metabolism under stress is pivotal to developing fitness-optimizing strategies. Nonsense-mediated mRNA decay (NMD), part of the mRNA surveillance pathway, is an evolutionarily conserved form of gene regulation in all living organisms. Degradation of mRNA-bearing premature termination codons and regulation of physiological RNA levels highlight NMD's role in shaping the cellular transcriptome. Initially regarded as purely a tool for cellular RNA quality control, NMD is now considered to mediate various aspects of plant developmental processes and responses to environmental changes. Here we offer a basic understanding of NMD in eukaryotes by explaining the concept of premature termination codon recognition and NMD complex formation. We also provide a detailed overview of the NMD mechanism and its role in gene regulation. The potential role of effectors, including ABCE1, in ribosome recycling during the translation process is also explained. Recent reports of alternatively spliced variants of corresponding genes targeted by NMD in Arabidopsis thaliana are provided in tabular format. Detailed figures are also provided to clarify the NMD concept in plants. In particular, accumulating evidence shows that NMD can serve as a novel alternative strategy for genetic manipulation and can help design RNA-based therapies to combat stress in plants. A key point of emphasis is its function as a gene regulatory mechanism as well as its dynamic regulation by environmental and developmental factors. Overall, a detailed molecular understanding of the NMD mechanism can lead to further diverse applications, such as improving cellular homeostasis in living organisms.
Collapse
Affiliation(s)
- Rashmita Luha
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
- Centre for Biosystems Science and Engineering, Indian Institute of Science Bangalore, Bangaluru, India
| | - Varnika Rana
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vinay Kumar
- Department of Botany, School for Basic Sciences, Central University of Punjab, Bathinda, India.
| |
Collapse
|
4
|
Comparative Ubiquitination Proteomics Revealed the Salt Tolerance Mechanism in Sugar Beet Monomeric Additional Line M14. Int J Mol Sci 2022; 23:ijms232416088. [PMID: 36555729 PMCID: PMC9782053 DOI: 10.3390/ijms232416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Post-translational modifications (PTMs) are important molecular processes that regulate organismal responses to different stresses. Ubiquitination modification is not only involved in human health but also plays crucial roles in plant growth, development, and responses to environmental stresses. In this study, we investigated the ubiquitination proteome changes in the salt-tolerant sugar beet monomeric additional line M14 under salt stress treatments. Based on the expression of the key genes of the ubiquitination system and the ubiquitination-modified proteins before and after salt stress, 30 min of 200 mM NaCl treatment and 6 h of 400 mM NaCl treatment were selected as time points. Through label-free proteomics, 4711 and 3607 proteins were identified in plants treated with 200 mM NaCl and 400 mM NaCl, respectively. Among them, 611 and 380 proteins were ubiquitinated, with 1085 and 625 ubiquitination sites, in the two salt stress conditions, respectively. A quantitative analysis revealed that 70 ubiquitinated proteins increased and 47 ubiquitinated proteins decreased. At the total protein level, 42 were induced and 20 were repressed with 200 mM NaCl, while 28 were induced and 27 were repressed with 400 mM NaCl. Gene ontology, KEGG pathway, protein interaction, and PTM crosstalk analyses were performed using the differentially ubiquitinated proteins. The differentially ubiquitinated proteins were mainly involved in cellular transcription and translation processes, signal transduction, metabolic pathways, and the ubiquitin/26S proteasome pathway. The uncovered ubiquitinated proteins constitute an important resource of the plant stress ubiquitinome, and they provide a theoretical basis for the marker-based molecular breeding of crops for enhanced stress tolerance.
Collapse
|
5
|
Dirk LMA, Abdel CG, Ahmad I, Neta ICS, Pereira CC, Pereira FECB, Unêda-Trevisoli SH, Pinheiro DG, Downie AB. Late Embryogenesis Abundant Protein-Client Protein Interactions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E814. [PMID: 32610443 PMCID: PMC7412488 DOI: 10.3390/plants9070814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations. Some LEAPs bind directly to their client proteins, exerting a holdase-type chaperonin function. Finally, instances of LEAP-client protein interactions have been documented, where the LEAP modulates (interferes with) the function of the client protein, acting as a surreptitious rheostat of cellular homeostasis. From the examples identified to date, it is apparent that client protein modulation also serves to mitigate stress. While some LEAPs can physically bind and protect client proteins, some apparently bind to assist the degradation of the client proteins with which they associate. Documented instances of LEAP-client protein binding, even in the absence of stress, brings to the fore the necessity of identifying how the LEAPs are degraded post-stress to render them innocuous, a first step in understanding how the cell regulates their abundance.
Collapse
Affiliation(s)
- Lynnette M. A. Dirk
- Department of Horticulture, University of Kentucky Seed Biology Program, Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA;
| | - Caser Ghaafar Abdel
- Agriculture College, Al-Muthanna University, Samawah, Al-Muthanna 66001, Iraq;
| | - Imran Ahmad
- Department of Horticulture, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa 25120, Pakistan;
| | | | - Cristiane Carvalho Pereira
- Departamento de Agricultura—Setor de Sementes, Federal University of Lavras, Lavras, Minas Gerais CEP: 37200-000, Brazil;
| | | | - Sandra Helena Unêda-Trevisoli
- Department of Vegetable Production, (UNESP) National University of São Paulo, Jaboticabal, São Paulo CEP: 14884-900, Brazil;
| | - Daniel Guariz Pinheiro
- Department of Biology, Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo CEP: 14040-901, Brazil;
| | - Allan Bruce Downie
- Department of Horticulture, University of Kentucky Seed Biology Program, Plant Science Building, 1405 Veterans Drive, University of Kentucky, Lexington, KY 40546-0312, USA;
| |
Collapse
|
6
|
Gong P, Li J, He C. Exon junction complex (EJC) core genes play multiple developmental roles in Physalis floridana. PLANT MOLECULAR BIOLOGY 2018; 98:545-563. [PMID: 30426309 PMCID: PMC6280879 DOI: 10.1007/s11103-018-0795-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
KEY MESSAGE Molecular and functional characterization of four gene families of the Physalis exon junction complex (EJC) core improved our understanding of the evolution and function of EJC core genes in plants. The exon junction complex (EJC) plays significant roles in posttranscriptional regulation of genes in eukaryotes. However, its developmental roles in plants are poorly known. We characterized four EJC core genes from Physalis floridana that were named PFMAGO, PFY14, PFeIF4AIII and PFBTZ. They shared a similar phylogenetic topology and were expressed in all examined organs. PFMAGO, PFY14 and PFeIF4AIII were localized in both the nucleus and cytoplasm while PFBTZ was mainly localized in the cytoplasm. No protein homodimerization was observed, but they could form heterodimers excluding the PFY14-PFBTZ heterodimerization. Virus-induced gene silencing (VIGS) of PFMAGO or PFY14 aborted pollen development and resulted in low plant survival due to a leaf-blight-like phenotype in the shoot apex. Carpel functionality was also impaired in the PFY14 knockdowns, whereas pollen maturation was uniquely affected in PFBTZ-VIGS plants. Once PFeIF4AIII was strongly downregulated, plant survival was reduced via a decomposing root collar after flowering and Chinese lantern morphology was distorted. The expression of Physalis orthologous genes in the DYT1-TDF1-AMS-bHLH91 regulatory cascade that is associated with pollen maturation was significantly downregulated in PFMAGO-, PFY14- and PFBTZ-VIGS flowers. Intron-retention in the transcripts of P. floridana dysfunctional tapetum1 (PFDYT1) occurred in these mutated flowers. Additionally, the expression level of WRKY genes in defense-related pathways in the shoot apex of PFMAGO- or PFY14-VIGS plants and in the root collar of PFeIF4AIII-VIGS plants was significantly downregulated. Taken together, the Physalis EJC core genes play multiple roles including a conserved role in male fertility and newly discovered roles in Chinese lantern development, carpel functionality and defense-related processes. These data increase our understanding of the evolution and functions of EJC core genes in plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jing Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
7
|
Lim CS, T. Wardell SJ, Kleffmann T, Brown CM. The exon-intron gene structure upstream of the initiation codon predicts translation efficiency. Nucleic Acids Res 2018; 46:4575-4591. [PMID: 29684192 PMCID: PMC5961209 DOI: 10.1093/nar/gky282] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Introns in mRNA leaders are common in complex eukaryotes, but often overlooked. These introns are spliced out before translation, leaving exon-exon junctions in the mRNA leaders (leader EEJs). Our multi-omic approach shows that the number of leader EEJs inversely correlates with the main protein translation, as does the number of upstream open reading frames (uORFs). Across the five species studied, the lowest levels of translation were observed for mRNAs with both leader EEJs and uORFs (29%). This class of mRNAs also have ribosome footprints on uORFs, with strong triplet periodicity indicating uORF translation. Furthermore, the positions of both leader EEJ and uORF are conserved between human and mouse. Thus, the uORF, in combination with leader EEJ predicts lower expression for nearly one-third of eukaryotic proteins.
Collapse
Affiliation(s)
- Chun Shen Lim
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Samuel J T. Wardell
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Torsten Kleffmann
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris M Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
8
|
Shaul O. How introns enhance gene expression. Int J Biochem Cell Biol 2017; 91:145-155. [PMID: 28673892 DOI: 10.1016/j.biocel.2017.06.016] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 01/18/2023]
Abstract
In many eukaryotes, including mammals, plants, yeast, and insects, introns can increase gene expression without functioning as a binding site for transcription factors. This phenomenon was termed 'intron-mediated enhancement'. Introns can increase transcript levels by affecting the rate of transcription, nuclear export, and transcript stability. Moreover, introns can also increase the efficiency of mRNA translation. This review discusses the current knowledge about these processes. The role of splicing in IME and the significance of intron position relative to the sites of transcription and translation initiation are elaborated. Particular emphasis is placed on the question why different introns, present at the same location of the same genes and spliced at a similar high efficiency, can have very different impacts on expression - from almost no effect to considerable stimulation. This situation can be at least partly accounted for by the identification of splicing-unrelated intronic elements with a special ability to enhance mRNA accumulation or translational efficiency. The many factors that could lead to the large variation observed between the impact of introns in different genes and experimental systems are highlighted. It is suggested that there is no sole, definite answer to the question "how do introns enhance gene expression". Rather, each intron-gene combination might undergo its own unique mixture of processes that lead to the perceptible outcome.
Collapse
Affiliation(s)
- Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
9
|
Mishra BS, Jamsheer K M, Singh D, Sharma M, Laxmi A. Genome-Wide Identification and Expression, Protein-Protein Interaction and Evolutionary Analysis of the Seed Plant-Specific BIG GRAIN and BIG GRAIN LIKE Gene Family. FRONTIERS IN PLANT SCIENCE 2017; 8:1812. [PMID: 29118774 PMCID: PMC5660992 DOI: 10.3389/fpls.2017.01812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/05/2017] [Indexed: 05/10/2023]
Abstract
BIG GRAIN1 (BG1) is an auxin-regulated gene which functions in auxin pathway and positively regulates biomass, grain size and yield in rice. However, the evolutionary origin and divergence of these genes are still unknown. In this study, we found that BG genes are probably originated in seed plants. We also identified that seed plants evolved a class of BIG GRAIN LIKE (BGL) genes which share conserved middle and C-terminal motifs with BG. The BG genes were present in all monocot and eudicot species analyzed; however, the BGL genes were absent in few monocot lineages. Both BG and BGL were found to be serine-rich proteins; however, differences in expansion and rates of retention after whole genome duplication events were observed. Promoters of BG and BGL genes were found to be enriched with auxin-responsive elements and the Arabidopsis thaliana BG and BGL genes were found to be auxin-regulated. The auxin-induced expression of AthBG2 was found to be dependent on the conserved ARF17/19 module. Protein-protein interaction analysis identified that AthBG2 interact with regulators of splicing, transcription and chromatin remodeling. Taken together, this study provides interesting insights about BG and BGL genes and incentivizes future work in this gene family which has the potential to be used for crop manipulation.
Collapse
|
10
|
Huang CK, Sie YS, Chen YF, Huang TS, Lu CA. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. BMC PLANT BIOLOGY 2016; 16:84. [PMID: 27071313 PMCID: PMC4830029 DOI: 10.1186/s12870-016-0769-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. RESULTS This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. CONCLUSIONS Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC, and participate in regulating of plant height, pollen, and seed development in rice.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Yi-Syuan Sie
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| |
Collapse
|
11
|
Yang ZP, Li HL, Guo D, Peng SQ. Identification and characterization of MAGO and Y14 genes in Hevea brasiliensis. Genet Mol Biol 2016; 39:73-85. [PMID: 27007901 PMCID: PMC4807384 DOI: 10.1590/1678-4685-gmb-2014-0387] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 06/08/2015] [Indexed: 11/30/2022] Open
Abstract
Mago nashi (MAGO) and Y14 proteins are highly conserved among eukaryotes. In this study, we identified two MAGO (designated as HbMAGO1 andHbMAGO2) and two Y14 (designated as HbY14aand HbY14b) genes in the rubber tree (Hevea brasiliensis) genome annotation. Multiple amino acid sequence alignments predicted that HbMAGO and HbY14 proteins are structurally similar to homologous proteins from other species. Tissue-specific expression profiles showed that HbMAGO and HbY14 genes were expressed in at least one of the tissues (bark, flower, latex, leaf and root) examined. HbMAGOs and HbY14s were predominately located in the nucleus and were found to interact in yeast two-hybrid analysis (YTH) and bimolecular fluorescence complementation (BiFC) assays. HbMAGOs and HbY14s showed the highest transcription in latex and were regulated by ethylene and jasmonate. Interaction between HbMAGO2 and gp91phox (a large subunit of nicotinamide adenine dinucleotide phosphate) was identified using YTH and BiFC assays. These findings suggested that HbMAGO may be involved in the aggregation of rubber particles in H. brasiliensis.
Collapse
Affiliation(s)
- Zi-Ping Yang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hui-Liang Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dong Guo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Shi-Qing Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
12
|
Dai Y, Li W, An L. NMD mechanism and the functions of Upf proteins in plant. PLANT CELL REPORTS 2016; 35:5-15. [PMID: 26400685 DOI: 10.1007/s00299-015-1867-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/01/2015] [Accepted: 09/05/2015] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated decay (NMD) mechanism, also called mRNA surveillance, is a universal mRNA degradation pathway in eukaryotes. Hundreds of genes can be regulated by NMD whether in single-celled or higher organisms. There have been many studies on NMD and NMD factors (Upf proteins) with regard to their crucial roles in mRNA decay, especially in mammals and yeast. However, research focusing on NMD in plant is still lacking compared to the research that has been dedicated to NMD in mammals and yeast. Even so, recent study has shown that NMD factors in Arabidopsis can provide resistance against biotic and abiotic stresses. This discovery and its associated developments have given plant NMD mechanism a new outlook and since then, more and more research has focused on this area. In this review, we focused mainly on the distinctive NMD micromechanism and functions of Upf proteins in plant with references to the role of mRNA surveillance in mammals and yeast. We also highlighted recent insights into the roles of premature termination codon location, trans-elements and functions of other NMD factors to emphasize the particularity of plant NMD. Furthermore, we also discussed conventional approaches and neoteric methods used in plant NMD researches.
Collapse
Affiliation(s)
- Yiming Dai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Wenli Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| | - Lijia An
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China.
| |
Collapse
|
13
|
Abstract
Most of the reported dominant disease-resistance genes in plants, R genes, encode NB-LRR immune receptors. Plant genomes carry many NB-LRR type R genes that recognize specific pathogens and induce resistance against them. Thus, this immune system in plants is thought to perform similar functions as the adaptive immune system in animals. In this review, we provide an overview of the resistance mechanisms, evolution, and agricultural applications of R genes against plant viruses. We also introduce recent advances in research into the regulatory mechanisms of R gene expression, focusing on regulation by microRNAs and introns. One of the most intriguing phenomena that occur following R gene-mediated recognition of viruses is programmed cell death around the initial infection site, although its significance in the survival strategies of plants remains to be elucidated. We discuss the possible benefits for plants of inducing such programmed cell death based on our empirical observations and some hypotheses from an ecological point of view.
Collapse
|
14
|
Gong P, Quan H, He C. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:905-14. [PMID: 25230811 DOI: 10.1111/tpj.12672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/14/2014] [Indexed: 05/16/2023]
Abstract
Peptide aptamers are artificial short peptides that potentially interfere with the biological roles of their target proteins; however, this technology has not yet been applied to plant functional genomics. MAGO and Y14, the two core subunits of the exon junction complex (EJC), form obligate heterodimers in eukaryotes. In Oryza sativa L. (rice), each of the two genes has two homologs, designated OsMAGO1 and OsMAGO2, and OsY14a and OsY14b, respectively. Here, we characterized a 16-amino acida peptide aptamer (PAP) for the rice MAGO proteins. PAP and rice Y14 bound competitively to rice MAGO proteins. Specifically targeting the MAGO proteins by expressing the aptamer in transgenic rice plants did not affect the endogenous synthesis and accumulation of MAGO proteins; however, the phenotypic variations observed in multiple organs phenocopied those of transgenic rice plants harboring RNA interference (RNAi) constructs in which the accumulation of MAGO and/or OsY14a transcripts and MAGO proteins was downregulated severely. Morphologically, the aptamer transgenic plants were short with abnormally developed flowers, and the stamens exhibited reduced degradation and absorption of both the endothecium and tapetum, thus confirming that EJC core heterodimers play essential roles in rice development, growth and reproduction. This study reveals that as a complementary approach of RNAi, peptide aptamers are powerful tools for interfering with the function of proteins in higher plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
| | | | | |
Collapse
|
15
|
Sato Y, Ando S, Takahashi H. Role of intron-mediated enhancement on accumulation of an Arabidopsis NB-LRR class R-protein that confers resistance to Cucumber mosaic virus. PLoS One 2014; 9:e99041. [PMID: 24915153 PMCID: PMC4051679 DOI: 10.1371/journal.pone.0099041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 05/04/2014] [Indexed: 11/19/2022] Open
Abstract
The accumulation of RCY1 protein, which is encoded by RESISTANCE TO CMV(Y) (RCY1), a CC-NB-LRR class R-gene, is tightly correlated with the strength of the resistance to a yellow strain of Cucumber mosaic virus [CMV(Y)] in Arabidopsis thaliana. In order to enhance resistance to CMV by overexpression of RCY1, A. thaliana was transformed with intron-less RCY1 cDNA construct under the control of strong CaMV35S promoter. Remarkably, a relative amount of RCY1 protein accumulation in the transformants was much lower than that in plants expressing genomic RCY1 under the control of its native promoter. To identify a regulatory element of RCY1 that could cause such differential levels of RCY1 accumulation, a series of RCY1 cDNA and genomic RCY1 constructs were transiently expressed in Nicotiana benthamiana leaves by the Agrobacterium-mediated infiltration method. Comparative analysis of the level of RCY1 accumulation in the leaf tissues transiently expressing each construct indicated that the intron located in the RCY1-coding region of genomic RCY1, but not the native RCY1 genomic promoter or the 5'-and 3'-untranslated regions of RCY1, was indispensable for high level RCY1 accumulation. The increased levels of RCY1 accelerated plant disease defense reactions. Interestingly, such intron-mediated enhancement of RCY1 accumulation depended neither on the abundance of the RCY1 transcript nor on the RCY1 specific-intron sequence. Taken together, intron-mediated RCY1 expression seems to play a key role in the expression of complete resistance to CMV(Y) by maintaining RCY1 accumulation at high levels.
Collapse
Affiliation(s)
- Yukiyo Sato
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Sugihiro Ando
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Hideki Takahashi
- Department of Applied Plant Science, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Mufarrege EF, Antuña S, Etcheverrigaray M, Kratje R, Prieto C. Development of lentiviral vectors for transient and stable protein overexpression in mammalian cells. A new strategy for recombinant human FVIII (rhFVIII) production. Protein Expr Purif 2014; 95:50-6. [DOI: 10.1016/j.pep.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/17/2013] [Accepted: 11/14/2013] [Indexed: 10/26/2022]
|
17
|
Gong P, Zhao M, He C. Slow co-evolution of the MAGO and Y14 protein families is required for the maintenance of their obligate heterodimerization mode. PLoS One 2014; 9:e84842. [PMID: 24416299 PMCID: PMC3885619 DOI: 10.1371/journal.pone.0084842] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/19/2013] [Indexed: 11/18/2022] Open
Abstract
The exon junction complex (EJC) plays important roles in RNA metabolisms and the development of eukaryotic organisms. MAGO (short form of MAGO NASHI) and Y14 (also Tsunagi or RBM8) are the EJC core components. Their biological roles have been well investigated in various species, but the evolutionary patterns of the two gene families and their protein-protein interactions are poorly known. Genome-wide survey suggested that the MAGO and Y14 two gene families originated in eukaryotic organisms with the maintenance of a low copy. We found that the two protein families evolved slowly; however, the MAGO family under stringent purifying selection evolved more slowly than the Y14 family that was under relative relaxed purifying selection. MAGO and Y14 were obliged to form heterodimer in a eukaryotic organism, and this obligate mode was plesiomorphic. Lack of binding of MAGO to Y14 as functional barrier was observed only among distantly species, suggesting that a slow co-evolution of the two protein families. Inter-protein co-evolutionary signal was further quantified in analyses of the Tol-MirroTree and co-evolution analysis using protein sequences. About 20% of the 41 significantly correlated mutation groups (involving 97 residues) predicted between the two families was clade-specific. Moreover, around half of the predicted co-evolved groups and nearly all clade-specific residues fell into the minimal interaction domains of the two protein families. The mutagenesis effects of the clade-specific residues strengthened that the co-evolution is required for obligate MAGO-Y14 heterodimerization mode. In turn, the obliged heterodimerization in an organism serves as a strong functional constraint for the co-evolution of the MAGO and Y14 families. Such a co-evolution allows maintaining the interaction between the proteins through large evolutionary time scales. Our work shed a light on functional evolution of the EJC genes in eukaryotes, and facilitates to understand the co-evolutionary processes among protein families.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | - Man Zhao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China ; University of Chinese Academy of Sciences, Beijing, China
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
18
|
Akua T, Shaul O. The Arabidopsis thaliana MHX gene includes an intronic element that boosts translation when localized in a 5' UTR intron. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4255-70. [PMID: 24006416 PMCID: PMC3808313 DOI: 10.1093/jxb/ert235] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The mechanisms that underlie the ability of some introns to increase gene expression, a phenomenon called intron-mediated enhancement (IME), are not fully understood. It is also not known why introns localized in the 5'-untranslated region (5' UTR) are considerably longer than downstream eukaryotic introns. It was hypothesized that this extra length results from the presence of some functional intronic elements. However, deletion analyses studies carried out thus far were unable to identify specific intronic regions necessary for IME. Using deletion analysis and a gain-of-function approach, an internal element that considerably increases translational efficiency, without affecting splicing, was identified in the 5' UTR intron of the Arabidopsis thaliana MHX gene. Moreover, the ability of this element to enhance translation was diminished by a minor downstream shift in the position of introns containing it from the 5' UTR into the coding sequence. These data suggest that some of the extra length of 5' UTR introns results from the presence of elements that enhance translation, and, moreover, from the ability of 5' UTR introns to provide preferable platforms for such elements over downstream introns. The impact of the identified intronic element on translational efficiency was augmented upon removal of neighbouring intronic elements. Interference between different intronic elements had not been reported thus far. This interference may support the bioinformatics-based idea that some of the extra sequence of 5' UTR introns is also necessary for separating different functional intronic elements.
Collapse
Affiliation(s)
- Tsofit Akua
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
19
|
Nyikó T, Kerényi F, Szabadkai L, Benkovics AH, Major P, Sonkoly B, Mérai Z, Barta E, Niemiec E, Kufel J, Silhavy D. Plant nonsense-mediated mRNA decay is controlled by different autoregulatory circuits and can be induced by an EJC-like complex. Nucleic Acids Res 2013; 41:6715-28. [PMID: 23666629 PMCID: PMC3711448 DOI: 10.1093/nar/gkt366] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic quality control system that recognizes and degrades transcripts containing NMD cis elements in their 3′untranslated region (UTR). In yeasts, unusually long 3′UTRs act as NMD cis elements, whereas in vertebrates, NMD is induced by introns located >50 nt downstream from the stop codon. In vertebrates, splicing leads to deposition of exon junction complex (EJC) onto the mRNA, and then 3′UTR-bound EJCs trigger NMD. It is proposed that this intron-based NMD is vertebrate specific, and it evolved to eliminate the misproducts of alternative splicing. Here, we provide evidence that similar EJC-mediated intron-based NMD functions in plants, suggesting that this type of NMD is evolutionary conserved. We demonstrate that in plants, like in vertebrates, introns located >50 nt from the stop induces NMD. We show that orthologs of all core EJC components are essential for intron-based plant NMD and that plant Partner of Y14 and mago (PYM) also acts as EJC disassembly factor. Moreover, we found that complex autoregulatory circuits control the activity of plant NMD. We demonstrate that expression of suppressor with morphogenic effect on genitalia (SMG)7, which is essential for long 3′UTR- and intron-based NMD, is regulated by both types of NMD, whereas expression of Barentsz EJC component is downregulated by intron-based NMD.
Collapse
Affiliation(s)
- Tünde Nyikó
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Farkas Kerényi
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Levente Szabadkai
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna H. Benkovics
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Péter Major
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Boglárka Sonkoly
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Zsuzsanna Mérai
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Endre Barta
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Emilia Niemiec
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Kufel
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Dániel Silhavy
- Agricultural Biotechnology Center, Institute for Genetics, Szent-Györgyi 4, H-2100, Gödöllő, Hungary, Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohr-Gasse 3, 1030 Vienna, Austria, Albert-Ludwigs-Universitat Freiburg, Institut fur Biologie II/Botanik, Schanzlestrasse 1, D-79104 Freiburg, Germany and Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
- *To whom correspondence should be addressed. Tel: +36 28 526 194; Fax: +36 28 526 145;
| |
Collapse
|
20
|
Comelli RN, Welchen E, Kim HJ, Hong JC, Gonzalez DH. Delta subclass HD-Zip proteins and a B-3 AP2/ERF transcription factor interact with promoter elements required for expression of the Arabidopsis cytochrome c oxidase 5b-1 gene. PLANT MOLECULAR BIOLOGY 2012; 80:157-167. [PMID: 22669746 DOI: 10.1007/s11103-012-9935-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/20/2012] [Indexed: 06/01/2023]
Abstract
We have identified transcription factors that interact with a promoter region involved in expression of the Arabidopsis thaliana COX5b-1 gene, which encodes an isoform of the cytochrome c oxidase zinc binding subunit. Elements with the core sequence ATCATT, involved in induction by sugars, are recognized both in vitro and in one-hybrid assays in yeast by HD-Zip proteins from the delta subclass and, though less efficiently, by the trihelix transcription factor GT-3b. DistalB-like elements (CCACTTG), required for induction by abscisic acid (ABA), interact with ESE1, a member of the B-3 subgroup of AP2/ERF transcription factors. The HD-Zip protein Athb-21 and ESE1 are able to interact in yeast two-hybrid assays with the ABA responsive element binding factor AREB2/ABF4, which binds to a G-box absolutely required for expression of the COX5b-1 gene. Overexpression of the identified transcription factors in plants produces an increase in COX5b-1 transcript levels. Moreover, these factors are able to induce the expression of a reporter gene located in plants under the control of the relevant COX5b-1 promoter regions required for expression. Analysis of promoter regions of COX5b genes from different plant species suggests that the identified transcription factors were recruited for the regulation of COX5b gene expression at different stages during the evolution of dicot plants.
Collapse
Affiliation(s)
- Raúl N Comelli
- Instituto de Agrobiotecnología del Litoral, Cátedra de Biología Celular y Molecular, Universidad Nacional del Litoral, CC 242 Paraje El Pozo, 3000 Santa Fe, Argentina
| | | | | | | | | |
Collapse
|