1
|
Wang Y, Li Y, Duan T. Arbuscular mycorrhizal fungus changes alfalfa response to pathogen infection activated by pea aphid infestation. Front Microbiol 2023; 13:1074592. [PMID: 36845970 PMCID: PMC9945236 DOI: 10.3389/fmicb.2022.1074592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 02/10/2023] Open
Abstract
Introduction Arbuscular mycorrhizal (AM) fungi are important for the resistance of plants to insect infestation and diseases. However, the effect of AM fungal colonization of plants response to pathogen infection activated by pea aphid infestation is unknown. Pea aphid (Acyrthosiphon pisum) and the fungal pathogen Phoma medicaginis severely limit alfalfa production worldwide. Methods This study established an alfalfa (Medicago sativa)-AM fungus (Rhizophagus intraradices)-pea aphid-P. medicaginis experimental system to clarify the effects of an AM fungus on the host plant response to insect infestation and subsequent fungal pathogen infection. Results Pea aphid increased the disease incidence of P. medicaginis by 24.94%. The AM fungus decreased the disease index by 22.37% and enhanced alfalfa growth by increasing the uptake of total nitrogen and total phosphorus. The aphid induced polyphenol oxidase activity of alfalfa, and the AM fungus enhanced plant-defense enzyme activity against aphid infestation and subsequent P. medicaginis infection. In addition, the AM fungus increased the contents of jasmonic acid and abscisic acid in plants exposed to aphid infestation or pathogen infection. Abscisic acid and genes associated with the gene ontology term "hormone binding" were upregulated in aphid-infested or pathogen-infected alfalfa. Discussion The results demonstrate that an AM fungus enhances plant defense and signaling components induced by aphid infestation, which may contribute to improved defense against subsequent pathogen infection.
Collapse
Affiliation(s)
- Yajie Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yingde Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tingyu Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, China,Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, China,College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China,*Correspondence: Tingyu Duan,
| |
Collapse
|
2
|
Leybourne DJ, Aradottir GI. Common resistance mechanisms are deployed by plants against sap-feeding herbivorous insects: insights from a meta-analysis and systematic review. Sci Rep 2022; 12:17836. [PMID: 36284143 PMCID: PMC9596439 DOI: 10.1038/s41598-022-20741-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/19/2022] [Indexed: 01/20/2023] Open
Abstract
Despite their abundance and economic importance, the mechanism of plant resistance to sap-feeding insects remains poorly understood. Here we deploy meta-analysis and data synthesis methods to evaluate the results from electrophysiological studies describing feeding behaviour experiments where resistance mechanisms were identified, focussing on studies describing host-plant resistance and non-host resistance mechanisms. Data were extracted from 108 studies, comprising 41 insect species across eight insect taxa and 12 host-plant families representing over 30 species. Results demonstrate that mechanisms deployed by resistant plants have common consequences on the feeding behaviour of diverse insect groups. We show that insects feeding on resistant plants take longer to establish a feeding site and have their feeding duration suppressed two-fold compared with insects feeding on susceptible plants. Our results reveal that traits contributing towards resistant phenotypes are conserved across plant families, deployed against taxonomically diverse insect groups, and that the underlying resistance mechanisms are conserved. These findings provide a new insight into plant-insect interaction and highlight the need for further mechanistic studies across diverse taxa.
Collapse
Affiliation(s)
- D. J. Leybourne
- grid.9122.80000 0001 2163 2777Zoological Biodiversity, Institute of Geobotany, Leibniz University of Hannover, 30167 Hannover, Germany
| | - G. I. Aradottir
- grid.17595.3f0000 0004 0383 6532Department of Plant Pathology and Entomology, NIAB, Cambridge, CB3 0LE UK
| |
Collapse
|
3
|
Yang B, Zhao Y, Guo Z. Research Progress and Prospect of Alfalfa Resistance to Pathogens and Pests. PLANTS (BASEL, SWITZERLAND) 2022; 11:2008. [PMID: 35956485 PMCID: PMC9370300 DOI: 10.3390/plants11152008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022]
Abstract
Alfalfa is one of the most important legume forages in the world and contributes greatly to the improvement of ecosystems, nutrition, and food security. Diseases caused by pathogens and pests severely restrict the production of alfalfa. Breeding resistant varieties is the most economical and effective strategy for the control of alfalfa diseases and pests, and the key to breeding resistant varieties is to identify important resistance genes. Plant innate immunity is the theoretical basis for identifying resistant genes and breeding resistant varieties. In recent years, the framework of plant immunity theory has been gradually formed and improved, and considerable progress has been made in the identification of alfalfa resistance genes and the revelation of the related mechanisms. In this review, we summarize the basic theory of plant immunity and identify alfalfa resistance genes to different pathogens and insects and resistance mechanisms. The current situation, problems, and future prospects of alfalfa resistance research are also discussed. Breeding resistant cultivars with effective resistance genes, together with other novel plant protection technologies, will greatly improve alfalfa production.
Collapse
Affiliation(s)
- Bo Yang
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yao Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhenfei Guo
- College of Grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| |
Collapse
|
4
|
Wu Q, Zhang X, Weng X, Gao L, Chang X, Wang X, Lu Z. Identification and Characterization of Resistance of Three Aphid Species on Contrasting Alfalfa Cultivars. INSECTS 2022; 13:insects13060530. [PMID: 35735867 PMCID: PMC9225031 DOI: 10.3390/insects13060530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/01/2023]
Abstract
Simple Summary Aphis craccivora Koch (cowpea aphid, CPA), Acyrthosiphon pisum Harris (pea aphid, PA) and Therioaphis trifolii Buckton (spotted alfalfa aphid, SAA) are the three species of devastating pests on alfalfa in China. A study was conducted in the laboratory for identification and characterization of resistance to these three aphids among 16 of the main alfalfa cultivars planted in China. Resistance was indicated by antibiosis, antixenosis, and measuring feeding behavior using EPG (electrical penetration graph). The results indicated that different alfalfa cultivars have significantly different resistance levels to a particular species of aphid, and the same alfalfa variety also has different resistance to the three aphid species. Specifically, we evaluated the resistance of different alfalfa cultivars to CPA, which can help us for further study on the defense mechanism against CPA and for better management of this pest. Abstract Aphids on alfalfa (Medicago sativa) including Aphis craccivora Koch (cowpea aphid, CPA), Acyrthosiphon pisum Harris (pea aphid, PA) and Therioaphis trifolii Buckton (spotted alfalfa aphid, SAA) cause significant yield losses worldwide. In this experiment, the development of these three species of aphids on 16 alfalfa cultivars was compared. The results showed that the plant cultivar had a significant influence on the development of aphids as there are significant differences in the body weight of aphids reared on different alfalfa cultivars. In addition, antibiosis between the alfalfa cultivars Pegasis and Gannong NO.9 and the three species of aphids was evaluated by measuring aphid body weight and fecundity. Antixenosis was measured using choice tests, and feeding behavior was quantified using electrical penetration graphs (EPG). The Pegasis cultivar was observed to have both antibiosis and antixenosis effects with CPA, but was susceptible to PA and SAA compared with the Gannong NO.9 cultivar. CPA had less mean body weight, less fecundity, and shorter feeding time on the Pegasis cultivar, and preferred to settle on Gannong NO.9 cultivar. In contrast, Gannong NO.9 exhibits antibiosis and antixenosis to PA and SAA compared with Pegasis, as shown by lower body weight, lower fecundity and chose to settle less often, but EPG data showed that PA and SAA showed no different significance in feeding behavior between Pegasis and Gannong NO.9.
Collapse
Affiliation(s)
- Qiong Wu
- The First-Class Discipline of Prataculture Science of Ningxia University (No. NXYLXK2017A01), College of Agriculture, Ningxia University, Yinchuan 750021, China; (Q.W.); (X.Z.)
| | - Xiang Zhang
- The First-Class Discipline of Prataculture Science of Ningxia University (No. NXYLXK2017A01), College of Agriculture, Ningxia University, Yinchuan 750021, China; (Q.W.); (X.Z.)
| | - Xianghao Weng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.C.); (X.W.)
| | - Lingling Gao
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia;
| | - Xuefei Chang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.C.); (X.W.)
| | - Xingxing Wang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.C.); (X.W.)
| | - Zhaozhi Lu
- The First-Class Discipline of Prataculture Science of Ningxia University (No. NXYLXK2017A01), College of Agriculture, Ningxia University, Yinchuan 750021, China; (Q.W.); (X.Z.)
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China; (X.W.); (X.C.); (X.W.)
- Correspondence: ; Tel.: +86-991-788-5408
| |
Collapse
|
5
|
Lin R, Yang M, Yao B. The phylogenetic and evolutionary analyses of detoxification gene families in Aphidinae species. PLoS One 2022; 17:e0263462. [PMID: 35143545 PMCID: PMC8830634 DOI: 10.1371/journal.pone.0263462] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Detoxification enzymes play significant roles in the interactions between insects and host plants, wherein detoxification-related genes make great contributions. As herbivorous pests, aphids reproduce rapidly due to parthenogenesis. They are good biological materials for studying the mechanisms that allow insect adaptation to host plants. Insect detoxification gene families are associated with insect adaptation to host plants. The Aphidinae is the largest subfamily in the Aphididae with at least 2483 species in 256 genera in 2 tribes: the Macrosiphini (with 3/4 of the species) and the Aphidini. Most aphid pests on crops and ornamental plants are Aphidinae. Members of the Aphidinae occur in nearly every region of the world. The body shape and colour vary significantly. To research the role that detoxification gene families played in the process of aphid adaptation to host evolution, we analyzed the phylogeny and evolution of these detoxification gene families in Aphidinae. In general, the P450/GST/CCE gene families contract, whereas the ABC/UGT families are conserved in Aphidinae species compared to these families in other herbivorous insects. Genus-specific expansions of P450 CYP4, and GST Delta have occurred in the genus Acyrthosiphon. In addition, the evolutionary rates of five detoxification gene families in the evolution process of Aphidinae are different. The comparison of five detoxification gene families among nine Aphidinae species and the estimated relative evolutionary rates provided herein support an understanding of the interaction between and the co-evolution of Aphidinae and plants.
Collapse
Affiliation(s)
- Rongmei Lin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, China
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (RL); (BY)
| | - Mengquan Yang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Bowen Yao
- School of Science, Beijing University of Chemical Technology, Chaoyang District, Beijing, China
- * E-mail: (RL); (BY)
| |
Collapse
|
6
|
Jacques S, Sperschneider J, Garg G, Thatcher LF, Gao LL, Kamphuis LG, Singh KB. A functional genomics approach to dissect spotted alfalfa aphid resistance in Medicago truncatula. Sci Rep 2020; 10:22159. [PMID: 33335168 PMCID: PMC7746763 DOI: 10.1038/s41598-020-78904-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/01/2020] [Indexed: 12/03/2022] Open
Abstract
Aphids are virus-spreading insect pests affecting crops worldwide and their fast population build-up and insecticide resistance make them problematic to control. Here, we aim to understand the molecular basis of spotted alfalfa aphid (SAA) or Therioaphis trifolii f. maculata resistance in Medicago truncatula, a model organism for legume species. We compared susceptible and resistant near isogenic Medicago lines upon SAA feeding via transcriptome sequencing. Expression of genes involved in defense and stress responses, protein kinase activity and DNA binding were enriched in the resistant line. Potentially underlying some of these changes in gene expression was the finding that members of the MYB, NAC, AP2 domain and ERF transcription factor gene families were differentially expressed in the resistant versus susceptible lines. A TILLING population created in the resistant cultivar was screened using exome capture sequencing and served as a reverse genetics tool to functionally characterise genes involved in the aphid resistance response. This screening revealed three transcription factors (a NAC, AP2 domain and ERF) as important regulators in the defence response, as a premature stop-codon in the resistant background led to a delay in aphid mortality and enhanced plant susceptibility. This combined functional genomics approach will facilitate the future development of pest resistant crops by uncovering candidate target genes that can convey enhanced aphid resistance.
Collapse
Affiliation(s)
- Silke Jacques
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.,Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2600, Australia
| | - Gagan Garg
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | | | - Ling-Ling Gao
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | - Lars G Kamphuis
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.,Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia.,The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia
| | - Karam B Singh
- CSIRO Agriculture and Food, Floreat, WA, 6014, Australia. .,Centre for Crop and Disease Management, Curtin University, Bentley, WA, 6102, Australia. .,The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, 6009, Australia.
| |
Collapse
|
7
|
Zhang L, Kamphuis LG, Guo Y, Jacques S, Singh KB, Gao LL. Ethylene Is Not Essential for R-Gene Mediated Resistance but Negatively Regulates Moderate Resistance to Some Aphids in Medicago truncatula. Int J Mol Sci 2020; 21:ijms21134657. [PMID: 32629952 PMCID: PMC7369913 DOI: 10.3390/ijms21134657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 02/02/2023] Open
Abstract
Ethylene is important for plant responses to environmental factors. However, little is known about its role in aphid resistance. Several types of genetic resistance against multiple aphid species, including both moderate and strong resistance mediated by R genes, have been identified in Medicago truncatula. To investigate the potential role of ethylene, a M. truncatula ethylene- insensitive mutant, sickle, was analysed. The sickle mutant occurs in the accession A17 that has moderate resistance to Acyrthosiphon kondoi, A. pisum and Therioaphis trifolii. The sickle mutant resulted in increased antibiosis-mediated resistance against A. kondoi and T. trifolii but had no effect on A. pisum. When sickle was introduced into a genetic background carrying resistance genes, AKR (A. kondoi resistance), APR (A. pisum resistance) and TTR (T. trifolii resistance), it had no effect on the strong aphid resistance mediated by these genes, suggesting that ethylene signaling is not essential for their function. Interestingly, for the moderate aphid resistant accession, the sickle mutant delayed leaf senescence following aphid infestation and reduced the plant biomass losses caused by both A. kondoi and T. trifolii. These results suggest manipulation of the ethylene signaling pathway could provide aphid resistance and enhance plant tolerance against aphid feeding.
Collapse
Affiliation(s)
- Lijun Zhang
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Lars G. Kamphuis
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
| | - Yanqiong Guo
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Silke Jacques
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- College of Plant Protection, Shanxi Agricultural University, Taigu 030801, China
| | - Karam B. Singh
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA 6009, Australia
- Correspondence: (K.B.S.); (L.-L.G.); Tel.:+61-8-9333-6320 (K.B.S.); Fax: +61-8-9387-8991 (K.B.S.)
| | - Ling-Ling Gao
- CSIRO Agriculture and Food, Wembley, WA 6014, Australia; (L.Z.); (L.G.K.); (Y.G.); (S.J.)
- Correspondence: (K.B.S.); (L.-L.G.); Tel.:+61-8-9333-6320 (K.B.S.); Fax: +61-8-9387-8991 (K.B.S.)
| |
Collapse
|
8
|
Barilli E, Carrillo-Perdomo E, Cobos MJ, Kilian A, Carling J, Rubiales D. Identification of potential candidate genes controlling pea aphid tolerance in a Pisum fulvum high-density integrated DArTseq SNP-based genetic map. PEST MANAGEMENT SCIENCE 2020; 76:1731-1742. [PMID: 31758624 DOI: 10.1002/ps.5696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 11/08/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Pea (Pisum sativum) is one of the most important temperate grain legumes in the world, and its production is severely constrained by the pea aphid (Acyrthosiphon pisum). Wild relatives, such as P. fulvum, are valuable sources of allelic diversity to improve the genetic resistance of cultivated pea species against A. pisum attack. To unravel the genetic control underlying resistance to the pea aphid attack, a quantitative trait loci (QTL) analysis was performed using the previously developed high density integrated genetic linkage map originated from an intraspecific recombinant inbred line (RIL) population (P. fulvum: IFPI3260 × IFPI3251). RESULTS We accurately evaluated specific resistance responses to pea aphid that allowed the identification, for the first time, of genomic regions that control plant damage and aphid reproduction. Eight QTLs associated with tolerance to pea aphid were identified in LGs I, II, III, IV and V, which individually explained from 17.0% to 51.2% of the phenotypic variation depending on the trait scored, and as a whole from 17.0% to 88.6%. The high density integrated genetic linkage map also allowed the identification of potential candidate genes co-located with the QTLs identified. CONCLUSIONS Our work shows how the survival of P. fulvum after the pea aphid attack depends on the triggering of a multi-component protection strategy that implies a quantitative tolerance. The genomic regions associated with the tolerance responses of P. fulvum during A. pisum infestation have provided six potential candidate genes that could be useful in marker-assisted selection (MAS) and genomic assisted breeding (GAB) after functional validation in the future. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Estefanía Carrillo-Perdomo
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
- Current address: Agroécologie, AgroSup Dijon, INRAE, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | | | - Andrzej Kilian
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, Australia
| | - Jason Carling
- Diversity Arrays Technology Pty Ltd, University of Canberra, Canberra, Australia
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| |
Collapse
|
9
|
Jacques S, Reidy-Crofts J, Sperschneider J, Kamphuis LG, Gao LL, Edwards OR, Singh KB. An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes. Sci Rep 2020; 10:1604. [PMID: 32005880 PMCID: PMC6994723 DOI: 10.1038/s41598-020-58442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/14/2020] [Indexed: 11/25/2022] Open
Abstract
Aphids are important agricultural pests causing major yield losses worldwide. Since aphids can rapidly develop resistance to chemical insecticides there is an urgent need to find alternative aphid pest management strategies. Despite the economic importance of bluegreen aphid (Acyrthosiphon kondoi), very few genetic resources are available to expand our current understanding and help find viable control solutions. An artificial diet is a desirable non-invasive tool to enable the functional characterisation of genes in bluegreen aphid and discover candidate target genes for future use in RNA interference (RNAi) mediated crop protection against aphids. To date no artificial diet has been developed for bluegreen aphid, so we set out to develop a suitable diet by testing and optimising existing diets. Here, we describe an artificial diet for rearing bluegreen aphid and also provide a proof of concept for the supplementation of the diet with RNAi molecules targeting the salivary gland transcript C002 and gap gene hunchback, resulting in bluegreen aphid mortality which has not yet been documented in this species. Managing this pest, for example via RNAi delivery through artificial feeding will be a major improvement to test bluegreen aphid candidate target genes for future pest control and gain significant insights into bluegreen aphid gene function.
Collapse
Affiliation(s)
- Silke Jacques
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, WA, 6102, Australia
| | - Jenny Reidy-Crofts
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | - Jana Sperschneider
- Biological Data Science Institute, The Australian National University, Canberra, ACT, 2600, Australia
| | - Lars G Kamphuis
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, WA, 6102, Australia
| | - Ling-Ling Gao
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, 6014, Australia
| | - Owain R Edwards
- Centre for Environment and Life Sciences, CSIRO Land and Water, Floreat, WA, 6014, Australia
| | - Karam B Singh
- Centre for Environment and Life Sciences, CSIRO Agriculture and Food, Floreat, WA, 6014, Australia.
- Curtin University, Centre for Crop and Disease Management, Bentley, WA, 6102, Australia.
| |
Collapse
|
10
|
Kamphuis LG, Klingler JP, Jacques S, Gao LL, Edwards OR, Singh KB. Additive and epistatic interactions between AKR and AIN loci conferring bluegreen aphid resistance and hypersensitivity in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4887-4902. [PMID: 31087095 PMCID: PMC6760273 DOI: 10.1093/jxb/erz222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Aphids, including the bluegreen aphid (BGA; Acyrthosiphon kondoi), are important pests in agriculture. Two BGA resistance genes have been identified in the model legume Medicago truncatula, namely AKR (Acyrthosiphon kondoi resistance) and AIN (Acyrthosiphon induced necrosis). In this study, progeny derived from a cross between a resistant accession named Jester and a highly susceptible accession named A20 were used to study the interaction between the AKR and AIN loci with respect to BGA performance and plant response to BGA infestation. These studies demonstrated that AKR and AIN have additive effects on the BGA resistance phenotype. However, AKR exerts dominant suppression epistasis on AIN-controlled macroscopic necrotic lesions. Nevertheless, both AKR and AIN condition production of H2O2 at the BGA feeding site. Electrical penetration graph analysis demonstrated that AKR prevents phloem sap ingestion, irrespective of the presence of AIN. Similarly, the jasmonic acid defense signaling pathway is recruited by AKR, irrespective of AIN. This research identifies an enhancement of aphid resistance through gene stacking, and insights into the interaction of distinct resistance genes against insect pests.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Agriculture and Food, Floreat, Australia
- UWA Institute of Agriculture, Crawley, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, Australia
| | | | - Silke Jacques
- CSIRO Agriculture and Food, Floreat, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, Australia
| | | | | | - Karam B Singh
- CSIRO Agriculture and Food, Floreat, Australia
- UWA Institute of Agriculture, Crawley, Australia
- Curtin University, Centre for Crop and Disease Management, Bentley, Australia
| |
Collapse
|
11
|
Leybourne DJ, Valentine TA, Robertson JAH, Pérez-Fernández E, Main AM, Karley AJ, Bos JIB. Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4011-4026. [PMID: 31173098 DOI: 10.1093/jxb/erz163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.
Collapse
Affiliation(s)
- Daniel J Leybourne
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Tracy A Valentine
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Jean A H Robertson
- Environmental and Biochemical Sciences, the James Hutton Institute, Cragiebuckler, Aberdeen, UK
| | | | - Angela M Main
- Environmental and Biochemical Sciences, the James Hutton Institute, Cragiebuckler, Aberdeen, UK
| | - Alison J Karley
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
12
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
13
|
Cai F, Watson BS, Meek D, Huhman DV, Wherritt DJ, Ben C, Gentzbittel L, Driscoll BT, Sumner LW, Bede JC. Medicago truncatula Oleanolic-Derived Saponins Are Correlated with Caterpillar Deterrence. J Chem Ecol 2017; 43:712-724. [PMID: 28744732 DOI: 10.1007/s10886-017-0863-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/06/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
Plant resistance mechanisms to insect herbivory can potentially be bred into crops as an important strategy for integrated pest management. Medicago truncatula ecotypes inoculated with the rhizobium Ensifer medicae (Sinorhizobium medica) WSM419 were screened for resistance to herbivory by caterpillars of the beet armyworm, Spodoptera exigua, through leaf and whole plant choice studies; TN1.11 and F83005.5 are identified as the least and most deterrent ecotypes, respectively. In response to caterpillar herbivory, both ecotypes mount a robust burst of plant defensive jasmonate phytohormones. Restriction of caterpillars to either of these ecotypes does not adversely affect pest performance. This argues for an antixenosis (deterrence) resistance mechanism associated with the F83005.5 ecotype. Unbiased metabolomic profiling identified strong ecotype-specific differences in metabolite profile, particularly in the content of oleanolic-derived saponins that may act as antifeedants. Compared to the more susceptible ecotype, F83005.5 has higher levels of oleanolic-type zanhic acid- and medicagenic acid-derived compounds. Together, these data support saponin-mediated deterrence as a resistance mechanism of the F83005.5 ecotype and implicates these compounds as potential antifeedants that could be used in agricultural sustainable pest management strategies.
Collapse
Affiliation(s)
- Fanping Cai
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Bonnie S Watson
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - David Meek
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - David V Huhman
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Daniel J Wherritt
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Cecile Ben
- EcoLab, Université de Toulouse, Centre National de Recherche Scientifique, Institute National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de Recherche Scientifique, Institute National Polytechnique de Toulouse, Université Paul Sabatier, Toulouse, France
| | - Brian T Driscoll
- Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Lloyd W Sumner
- The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, 21,111 Lakeshore, Ste-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| |
Collapse
|
14
|
Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids. C R Biol 2016; 340:7-12. [PMID: 27938939 DOI: 10.1016/j.crvi.2016.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/22/2016] [Accepted: 10/23/2016] [Indexed: 11/22/2022]
Abstract
Aphids, the largest group of sap-sucking pests, cause significant yield losses in agricultural crops worldwide every year. The massive use of pesticides to combat this pest causes severe damage to the environment, putting in risk the human health. In this study, transgenic potato plants expressing Galanthus nivalis agglutinin (GNA) gene were developed using CaMV 35S and ST-LS1 promoters generating six transgenic lines (35S1-35S3 and ST1-ST3 corresponding to the first and second promoter, respectively). Quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the GNA gene was expressed in leaves, stems and roots of transgenic plants under the control of the CaMV 35S promoter, while it was only expressed in leaves and stems under the control of the ST-LS1 promoter. The levels of aphid mortality after 5 days of the inoculation in the assessed transgenic lines ranged from 20 to 53.3%. The range of the aphid population in transgenic plants 15 days after inoculation was between 17.0±1.43 (ST2) and 36.6±0.99 (35S3) aphids per plant, which corresponds to 24.9-53.5% of the aphid population in non-transformed plants. The results of our study suggest that GNA expressed in transgenic potato plants confers a potential tolerance to aphid attack, which appears to be an alternative against the use of pesticides in the future.
Collapse
|
15
|
Kamphuis LG, Guo SM, Gao LL, Singh KB. Genetic Mapping of a Major Resistance Gene to Pea Aphid (Acyrthosipon pisum) in the Model Legume Medicago truncatula. Int J Mol Sci 2016; 17:E1224. [PMID: 27483247 PMCID: PMC5000622 DOI: 10.3390/ijms17081224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 01/05/2023] Open
Abstract
Resistance to the Australian pea aphid (PA; Acyrthosiphon pisum) biotype in cultivar Jester of the model legume Medicago truncatula is mediated by a single dominant gene and is phloem-mediated. The genetic map position for this resistance gene, APR (Acyrthosiphon pisum resistance), is provided and shows that APR maps 39 centiMorgans (cM) distal of the A. kondoi resistance (AKR) locus, which mediates resistance to a closely related species of the same genus bluegreen aphid (A. kondoi). The APR region on chromosome 3 is dense in classical nucleotide binding site leucine-rich repeats (NLRs) and overlaps with the region harbouring the RAP1 gene which confers resistance to a European PA biotype in the accession Jemalong A17. Further screening of a core collection of M. truncatula accessions identified seven lines with strong resistance to PA. Allelism experiments showed that the single dominant resistance to PA in M. truncatula accessions SA10481 and SA1516 are allelic to SA10733, the donor of the APR locus in cultivar Jester. While it remains unclear whether there are multiple PA resistance genes in an R-gene cluster or the resistance loci identified in the other M. truncatula accessions are allelic to APR, the introgression of APR into current M. truncatula cultivars will provide more durable resistance to PA.
Collapse
Affiliation(s)
- Lars G Kamphuis
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
- University of Western Australia Insititute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Su-Min Guo
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, USA.
| | - Ling-Ling Gao
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
| | - Karam B Singh
- Commenwealth Scientific and Industrial Research Organisation, Agriculture and Food, 147 Underwood Avenue, Floreat, WA 6014, Australia.
- University of Western Australia Insititute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia.
| |
Collapse
|
16
|
Cao HH, Pan MZ, Liu HR, Wang SH, Liu TX. Antibiosis and tolerance but not antixenosis to the grain aphid, Sitobion avenae (Hemiptera: Aphididae), are essential mechanisms of resistance in a wheat cultivar. BULLETIN OF ENTOMOLOGICAL RESEARCH 2015; 105:448-55. [PMID: 25895741 DOI: 10.1017/s0007485315000322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Continuous ingestion of the phloem sap of plants by aphids can remove a significant amount of photoassimilates. Based on our earlier works, we hypothesized that due to the reduced aphid feeding time caused by antibiosis, wheat plants may achieve growth tolerance to aphids. We tested this hypothesis using three wheat cultivars, XY22 (Xiaoyan22), AK58 (Bainongaikang58) and XN979 (Xinong979) and the grain aphid, Sitobion avenae. In the choice test, S. avenae did not show any preference among the three wheat cultivars. However, S. avenae had a lower body weight and a lower intrinsic rate of increase when feeding on XY22 than on AK58 and XN979. The electrical penetration graph results indicated that S. avenae had significantly shorter mean and total phloem ingestion periods on XY22 than on AK58 or XN979. The aphids required a similar time to reach the phloem sap on the three wheat cultivars, but required more time to establish sustained phloem ingestion on XY22. These results suggest that the resistance factors of XY22 may be phloem based. Moreover, XY22 suffered less biomass loss in response to aphid infestation compared with XN979, suggesting that XY22 also had a better growth tolerance to S. avenae than XN979. Wheat resistance level to S. avenae was partially correlated with plant photosynthetic rates, and peroxidase activities. These results confirmed that the limitation in aphid feeding from plant phloem in wheat cultivar XY22 was related to antibiosis but not antixenosis, which caused XY22 tolerance to S. avenae.
Collapse
Affiliation(s)
- H-H Cao
- State Key Laboratory for Crop Stress Biology for Arid Areas,Northwest A&F University,Yangling,Shaanxi 712100,China
| | - M-Z Pan
- State Key Laboratory for Crop Stress Biology for Arid Areas,Northwest A&F University,Yangling,Shaanxi 712100,China
| | - H-R Liu
- Innovation Experimental College,Northwest A&F University,Yangling,Shaanxi,China
| | - S-H Wang
- State Key Laboratory for Crop Stress Biology for Arid Areas,Northwest A&F University,Yangling,Shaanxi 712100,China
| | - T-X Liu
- State Key Laboratory for Crop Stress Biology for Arid Areas,Northwest A&F University,Yangling,Shaanxi 712100,China
| |
Collapse
|
17
|
Kanvil S, Powell G, Turnbull C. Pea aphid biotype performance on diverse Medicago host genotypes indicates highly specific virulence and resistance functions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:689-701. [PMID: 25375216 DOI: 10.1017/s0007485314000443] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Aphid-plant interactions depend on genotypes of both organisms, which determine the two-way molecular exchange that leads to compatible or incompatible outcomes. The underlying genes are mostly unknown, making it difficult to predict likelihood of aphid success or host resistance, and hampering crop genetic improvement. Here we screened eight pea aphid clonal genotypes collected from diverse legume hosts, on a species-wide panel of Medicago truncatula (Mt) genotypes. Aphid virulence was measured by survival, fecundity and growth rate, together with scores for chlorosis and necrosis as host response indicators. Outcomes were highly dependent on the specific aphid-host genotype combinations. Only one Mt line was fully resistant against all clones. Aphid-induced host chlorosis and necrosis varied greatly, but correlated with resistance only in a few combinations. Bi-clustering analysis indicated that all aphid clones could be distinguished by their performance profiles across the host genotypes tested, with each clone being genetically differentiated and potentially representing a distinct biotype. Clones originating from Medicago sativa ranged from highly virulent to almost completely avirulent on both Medicago species, indicating that some were well adapted, whereas others were most likely migrants. Comparisons of closely related pairs of Australian Mt genotypes differing in aphid resistance revealed no enhanced resistance to European pea aphid clones. Based on the extensive variation in pea aphid adaptation even on unfamiliar hosts, most likely reflecting multiple biotype-specific gene-for-gene interactions, we conclude that robust defences require an arsenal of appropriate resistance genes.
Collapse
Affiliation(s)
- S Kanvil
- Department of Life Sciences,Imperial College London,London SW7 2AZ,UK
| | - G Powell
- Department of Life Sciences,Imperial College London,London SW7 2AZ,UK
| | - C Turnbull
- Department of Life Sciences,Imperial College London,London SW7 2AZ,UK
| |
Collapse
|
18
|
Smith CM, Chuang WP. Plant resistance to aphid feeding: behavioral, physiological, genetic and molecular cues regulate aphid host selection and feeding. PEST MANAGEMENT SCIENCE 2014; 70:528-40. [PMID: 24282145 DOI: 10.1002/ps.3689] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/05/2013] [Accepted: 11/26/2013] [Indexed: 05/06/2023]
Abstract
Aphids damage major world food and fiber crops through direct feeding and transmission of plant viruses. Fortunately, the development of many aphid-resistant crop plants has provided both ecological and economic benefits to food production. Plant characters governing aphid host selection often dictate eventual plant resistance or susceptibility to aphid herbivory, and these phenotypic characters have been successfully used to map aphid resistance genes. Aphid resistance is often inherited as a dominant trait, but is also polygenic and inherited as recessive or incompletely dominant traits. Most aphid-resistant cultivars exhibit constitutively expressed defenses, but some cultivars exhibit dramatic aphid-induced responses, resulting in the overexpression of large ensembles of putative aphid resistance genes. Two aphid resistance genes have been cloned. Mi-1.2, an NBS-LRR gene from wild tomato, confers resistance to potato aphid and three Meloidogyne root-knot nematode species, and Vat, an NBS-LRR gene from melon, controls resistance to the cotton/melon aphid and to some viruses. Virulence to aphid resistance genes of plants occurs in 17 aphid species--more than half of all arthropod biotypes demonstrating virulence. The continual appearance of aphid virulence underscores the need to identify new sources of resistance of diverse sequence and function in order to delay or prevent biotype development.
Collapse
Affiliation(s)
- C Michael Smith
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
19
|
Kamphuis LG, Zulak K, Gao LL, Anderson J, Singh KB. Plant-aphid interactions with a focus on legumes. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1271-1284. [PMID: 32481194 DOI: 10.1071/fp13090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 05/29/2013] [Indexed: 06/11/2023]
Abstract
Sap-sucking insects such as aphids cause substantial yield losses in agriculture by draining plant nutrients as well as vectoring viruses. The main method of control in agriculture is through the application of insecticides. However, aphids rapidly evolve mechanisms to detoxify these, so there is a need to develop durable plant resistance to these damaging insect pests. The focus of this review is on aphid interactions with legumes, but work on aphid interactions with other plants, particularly Arabidopsis and tomato is also discussed. This review covers advances on the plant side of the interaction, including the identification of major resistance genes and quantitative trait loci conferring aphid resistance in legumes, basal and resistance gene mediated defence signalling following aphid infestation and the role of specialised metabolites. On the aphid side of the interaction, this review covers what is known about aphid effector proteins and aphid detoxification enzymes. Recent advances in these areas have provided insight into mechanisms underlying resistance to aphids and the strategies used by aphids for successful infestations and have significant impacts for the delivery of durable resistance to aphids in legume crops.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Katherine Zulak
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | - Ling-Ling Gao
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | | | - Karam B Singh
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| |
Collapse
|
20
|
Kamphuis LG, Lichtenzveig J, Peng K, Guo SM, Klingler JP, Siddique KHM, Gao LL, Singh KB. Characterization and genetic dissection of resistance to spotted alfalfa aphid (Therioaphis trifolii) in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5157-72. [PMID: 24058162 PMCID: PMC3830491 DOI: 10.1093/jxb/ert305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aphids cause significant yield losses in agricultural crops worldwide. Medicago truncatula, a model legume, cultivated pasture species in Australia and close relative of alfalfa (Medicago sativa), was used to study the defence response against Therioaphis trifolii f. maculate [spotted alfalfa aphid (SAA)]. Aphid performance and plant damage were compared among three accessions. A20 is highly susceptible, A17 has moderate resistance, and Jester is strongly resistant. Subsequent analyses using A17 and A20, reciprocal F1s and an A17×A20 recombinant inbred line (RIL) population revealed that this moderate resistance is phloem mediated and involves antibiosis and tolerance but not antixenosis. Electrical penetration graph analysis also identified a novel waveform termed extended potential drop, which occurred following SAA infestation of M. truncatula. Genetic dissection using the RIL population revealed three quantitative trait loci on chromosomes 3, 6, and 7 involved in distinct modes of aphid defence including antibiosis and tolerance. An antibiosis locus resides on linkage group 3 (LG3) and is derived from A17, whereas a plant tolerance and antibiosis locus resides on LG6 and is derived from A20, which exhibits strong temporary tolerance. The loci identified reside in regions harbouring classical resistance genes, and introgression of these loci in current medic cultivars may help provide durable resistance to SAA, while elucidation of their molecular mechanisms may provide valuable insight into other aphid-plant interactions.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA 6913, Australia
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Kamphuis LG, Gao L, Singh KB. Identification and characterization of resistance to cowpea aphid (Aphis craccivora Koch) in Medicago truncatula. BMC PLANT BIOLOGY 2012; 12:101. [PMID: 22759788 PMCID: PMC3464659 DOI: 10.1186/1471-2229-12-101] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/25/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Cowpea aphid (CPA; Aphis craccivora) is the most important insect pest of cowpea and also causes significant yield losses in other legume crops including alfalfa, beans, chickpea, lentils, lupins and peanuts. In many of these crops there is no natural genetic resistance to this sap-sucking insect or resistance genes have been overcome by newly emerged CPA biotypes. RESULTS In this study, we screened a subset of the Medicago truncatula core collection of the South Australian Research and Development Institute (SARDI) and identified strong resistance to CPA in a M. truncatula accession SA30199, compared to all other M. truncatula accessions tested. The biology of resistance to CPA in SA30199 plants was characterised compared to the highly susceptible accession Borung and showed that resistance occurred at the level of the phloem, required an intact plant and involved a combination of antixenosis and antibiosis. Quantitative trait loci (QTL) analysis using a F2 population (n = 150) from a cross between SA30199 and Borung revealed that resistance to CPA is controlled in part by a major quantitative trait locus (QTL) on chromosome 2, explaining 39% of the antibiosis resistance. CONCLUSIONS The identification of strong CPA resistance in M. truncatula allows for the identification of key regulators and genes important in this model legume to give effective CPA resistance that may have relevance for other legume crops. The identified locus will also facilitate marker assisted breeding of M. truncatula for increased resistance to CPA and potentially other closely related Medicago species such as alfalfa.
Collapse
Affiliation(s)
- Lars G Kamphuis
- CSIRO Plant Industry, Private Bag 5, Wembley, WA, 6913, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| | - Lingling Gao
- CSIRO Plant Industry, Private Bag 5, Wembley, WA, 6913, Australia
| | - Karam B Singh
- CSIRO Plant Industry, Private Bag 5, Wembley, WA, 6913, Australia
- The UWA Institute of Agriculture, The University of Western Australia, Crawley, WA, 6009, Australia
| |
Collapse
|