1
|
Refaiy M, Tahir M, Jiao L, Zhang X, Zhang H, Chen Y, Xu Y, Song S, Pang X. Genome-Wide Identification of Xyloglucan Endotransglucosylase/Hydrolase Multigene Family in Chinese Jujube ( Ziziphus jujuba) and Their Expression Patterns Under Different Environmental Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3503. [PMID: 39771201 PMCID: PMC11677919 DOI: 10.3390/plants13243503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
The Xyloglucan endotransglucosylase/hydrolase (XTH) family, a group of cell wall-modifying enzymes, plays crucial roles in plant growth, development, and stress adaptation. The quality and yield of Chinese jujube (Ziziphus jujuba) fruit are significantly impacted by environmental stresses, including excessive salinity, drought, freezing, and disease. However, there has been no report of the XTH encoding genes present in the Chinese jujube genome and their response transcription level under various stresses. This study provides an in-depth analysis of ZjXTH genes in the genome of Chinese jujube and elucidates their structural motifs, regulatory networks, and expression patterns under various stresses. A total of 29 ZjXTH genes were identified from the Ziziphus jujuba genome. Phylogenetic analysis classifies ZjXTH genes into four distinct groups, while conserved motifs and domain analyses reveal coordinated xyloglucan modifications, highlighting key shared motifs and domains. Interaction network predictions suggest that ZjXTHs may interact with proteins such as Expansin-B1 (EXPB1) and Pectin Methylesterase 22 (PME22). Additionally, cis-regulatory element analysis enhances our understanding of Chinese jujube plant's defensive systems, where TCA- and TGACG-motifs process environmental cues and orchestrate stress responses. Expression profiling revealed that ZjXTH1 and ZjXTH5 were significantly upregulated under salt, drought, freezing, and phytoplasma infection, indicating their involvement in biotic and abiotic stress responses. Collectively, these findings deepen our understanding of the functional roles of Chinese jujube XTHs, emphasizing their regulatory function in adaptive responses in Chinese jujube plants.
Collapse
Affiliation(s)
- Mohamed Refaiy
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Muhammad Tahir
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Lijun Jiao
- Shuangjing Forest Farm, Aohan Banner, Chifeng 028000, China;
| | - Xiuli Zhang
- Xinhui Forest Farm, Aohan Banner, Chifeng 028000, China;
| | - Huicheng Zhang
- Agricultural and Animal Husbandry Technology Promotion Service Center, Aohan Banner, Chifeng 028000, China;
| | - Yuhan Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Yaru Xu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Shuang Song
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| | - Xiaoming Pang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; (M.R.); (M.T.); (Y.C.); (Y.X.); (S.S.)
| |
Collapse
|
2
|
Peng FC, Yuan M, Zhou L, Zheng BQ, Wang Y. Identification and Analysis of Aluminum-Activated Malate Transporter Gene Family Reveals Functional Diversification in Orchidaceae and the Expression Patterns of Dendrobium catenatum Aluminum-Activated Malate Transporters. Int J Mol Sci 2024; 25:9662. [PMID: 39273609 PMCID: PMC11394931 DOI: 10.3390/ijms25179662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum-activated malate transporter (ALMT) genes play an important role in aluminum ion (Al3+) tolerance, fruit acidity, and stomatal movement. Although decades of research have been carried out in many plants, there is little knowledge about the roles of ALMT in Orchidaceae. In this study, 34 ALMT genes were identified in the genomes of four orchid species. Specifically, ten ALMT genes were found in Dendrobium chrysotoxum and D. catenatum, and seven were found in Apostasia shenzhenica and Phalaenopsis equestris. These ALMT genes were further categorized into four clades (clades 1-4) based on phylogenetic relationships. Sequence alignment and conserved motif analysis revealed that most orchid ALMT proteins contain conserved regions (TM1, GABA binding motif, and WEP motif). We also discovered a unique motif (19) belonging to clade 1, which can serve as a specifically identified characteristic. Comparison with the gene structure of AtALMT genes (Arabidopsis thaliana) showed that the gene structure of ALMT was conserved across species, but the introns were longer in orchids. The promoters of orchid ALMT genes contain many light-responsive and hormone-responsive elements, suggesting that their expression may be regulated by light and phytohormones. Chromosomal localization and collinear analysis of D. chrysotoxum indicated that tandem duplication (TD) is the main reason for the difference in the number of ALMT genes in these orchids. D. catenatum was chosen for the RT-qPCR experiment, and the results showed that the DcaALMT gene expression pattern varied in different tissues. The expression of DcaALMT1-9 was significantly changed after ABA treatment. Combining the circadian CO2 uptake rate, titratable total acid, and RT-qPCR data analysis, most DcaALMT genes were highly expressed at night and around dawn. The result revealed that DcaALMT genes might be involved in photosynthate accumulation. The above study provides more comprehensive information for the ALMT gene family in Orchidaceae and a basis for subsequent functional analysis.
Collapse
Affiliation(s)
| | | | | | | | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China; (F.-C.P.); (M.Y.); (L.Z.); (B.-Q.Z.)
| |
Collapse
|
3
|
Vyas KD, Singh A. Juncus rigidus high biomass and cellulose productivity under wastewater salinity stress - A paradigm shift to the valorization of RO reject water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173076. [PMID: 38734100 DOI: 10.1016/j.scitotenv.2024.173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/27/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
The use of water purifiers is intensively catching up and disposing of reverse osmosis reject water is of great concern. Reject water management using conventional methods is costly and harmful to the environment. To address this issue, the present study aims to utilize reverse osmosis reject wastewater using an eco-friendly approach. Juncus rigidus was treated with reject wastewater containing different salinity levels. Wastewater-treated plant dry biomass increased with increasing reject water salinity, and 625.3 g dry biomass recovered in treatment-B (~18,520 ppm). However, ~23,220 ppm wastewater salinity was lethal to the plants. The cellulose was extracted by alkali hydrolysis. The cellulose content in the wastewater-treated biomass was significantly higher in Treatment-B compared to both the control and Treatment-A (~12,744 ppm). The water salinity enhanced the cellulose (26.49 %) production in J. rigidus. Cellulose purity was confirmed using spectroscopic and thermogravimetric means. XRD shows highest crystallinity Index (77.29) with a d-spacing of 4.7 Å and 5.7 nm crystallite size in treatment-B. FTIR results reveal well-defined relevant peaks for OH, CH, CO, CH2, C-O-C, CO groups in treatment-B cellulose. Salinity impacts carboxyl groups in treatment B cellulose with a sharper and intense peak at 1644 cm-1 responsible for water absorption. Treatment-B exhibits higher thermal stability due to increased crystallinity. DSC shows endothermic depolymerization of cellulose with distinct peaks for different treatments. Morphological traits got better with increasing salinity with no adverse effect on cellulose. Salinity moderately affected the water absorption capacity of cellulose. All cellulose samples were devoid of gram-negative bacteria known by microbial test. This pioneering work underscores the plant's remarkable capacity not only to accomplish the circular economy by the valorization of wastewater obtained from various water purifiers for Juncus cultivation for cellulose production for diverse applications but also to generate income from wastewater.
Collapse
Affiliation(s)
- Krupali Dipakbhai Vyas
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aneesha Singh
- Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
4
|
Bi H, Liu Z, Liu S, Qiao W, Zhang K, Zhao M, Wang D. Genome-wide analysis of wheat xyloglucan endotransglucosylase/hydrolase (XTH) gene family revealed TaXTH17 involved in abiotic stress responses. BMC PLANT BIOLOGY 2024; 24:640. [PMID: 38971763 PMCID: PMC11227136 DOI: 10.1186/s12870-024-05370-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Environmental stresses, including high salinity and drought, severely diminish wheat yield and quality globally. The xyloglucan endotransglucosylase/hydrolase (XTH) family represents a class of cell wall-modifying enzymes and plays important roles in plants growth, development and stress adaptation. However, systematic analyses of XTH family genes and their functions under salt and drought stresses have not been undertaken in wheat. RESULTS In this study, we identified a total of 135 XTH genes in wheat, which were clustered into three evolutionary groups. These TaXTHs were unevenly distributed on 21 chromosomes of wheat with a majority of TaXTHs located on homelogous groups 2, 3 and 7. Gene duplication analysis revealed that segmental and tandem duplication were the main reasons for the expansion of XTH family in wheat. Interaction network predictions indicated that TaXTHs could interact with multiple proteins, including three kinases, one methyltransferase and one gibberellin-regulated protein. The promoters of the TaXTH genes harbored various cis-acting elements related to stress and hormone responses. RNA-seq data analyses showed that some TaXTH genes were induced by salt and drought stresses. Furthermore, we verified that TaXTH17 was induced by abiotic stresses and phytohormone treatments, and demonstrated that TaXTH17 was localized in the secretory pathway and cell wall. Functional analyses conducted in heterologous expression systems and in wheat established that TaXTH17 plays a negative role in plant resistance to salt and drought. CONCLUSIONS We identified 135 XTH genes in wheat and conducted comprehensive analyses of their phylogenetic relationships, gene structures, conserved motifs, gene duplication events, chromosome locations, interaction networks, cis-acting elements and gene expression patterns. Furthermore, we provided solid evidence supporting the notion that TaXTH17 plays a negative role in plant resistance to salt and drought stresses. Collectively, our results provide valuable insights into understanding wheat XTHs, particularly their involvement in plant stress responses, and establish a foundation for further functional and mechanistic studies of TaXTHs.
Collapse
Affiliation(s)
- Huihui Bi
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Zeliang Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shanshan Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wenchen Qiao
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China
| | - Kunpu Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Minghui Zhao
- Key Laboratory of Crop Drought Resistance Research of Hebei Province, Dry Farming Institute, Hebei Academy of Agriculture and Forestry Sciences, Hengshui, 053000, China.
| | - Daowen Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
5
|
de Lima TM, Silva SF, Ribeiro RV, Sánchez-Vilas J, Pinheiro F. Salt tolerance in a neotropical orchid in the absence of local adaptation to salt spray. AMERICAN JOURNAL OF BOTANY 2024; 111:e16373. [PMID: 39010314 DOI: 10.1002/ajb2.16373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
PREMISE Salt tolerance has rarely been investigated regionally in the neotropics and even more rarely in Orchidaceae, one of the largest families. Therefore, investigating local adaptation to salt spray and its physiological basis in Epidendrum fulgens, a neotropical orchid species, brings important new insights. METHODS We assessed the degree of salt tolerance in E. fulgens by testing whether coastal populations are more tolerant to salt, which could point to local adaptation. To understand the physiological basis of such salt tolerance, we exposed wild-collected individuals to salt spray for 60 days, then measured leaf expansion, osmotic potential, sodium leaf concentration, chlorophyll leaf index, chlorophyll fluorescence, relative growth rate, and pressure-volume curves. RESULTS There is no local adaptation to salt spray since both inland and coastal plants have a high tolerance to salt stress. This tolerance is explained by the ability to tolerate high concentrations of salt in leaf tissues, which is related to the high succulence displayed by this species. CONCLUSIONS We showed an unprecedented salt tolerance level for an orchid species, highlighting our limited knowledge of that trait beyond the traditional studied groups. Another interesting finding is that salt tolerance in E. fulgens is linked to succulence, is widespread, and is not the result of local adaptation. We suggest that E. fulgens and its allied species could be an interesting group to explore the evolution of important traits related to tolerance to salt stress, like succulence.
Collapse
Affiliation(s)
- Thales M de Lima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratório de Ecologia Evolutiva e Genômica de Plantas, Campinas, 13083-862, SP, Brazil
| | - Simone F Silva
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratory of Crop Physiology (LCroP), Campinas, 13083-862, SP, Brazil
| | - Rafael V Ribeiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratory of Crop Physiology (LCroP), Campinas, 13083-862, SP, Brazil
| | - Julia Sánchez-Vilas
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff University, Sir Martin Evans Building, Cardiff, CF10 3AX, UK
- Departamento de Bioloxía Funcional, Facultade de Bioloxía, Universidade de Santiago de Compostela, Lope Gomez de Marzoa s/n, Santiago de Compostela, 15782, Spain
| | - Fabio Pinheiro
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Laboratório de Ecologia Evolutiva e Genômica de Plantas, Campinas, 13083-862, SP, Brazil
| |
Collapse
|
6
|
Lou T, Lv S, Wang J, Wang D, Lin K, Zhang X, Zhang B, Guo Z, Yi Z, Li Y. Cell size and xylem differentiation regulating genes from Salicornia europaea contribute to plant salt tolerance. PLANT, CELL & ENVIRONMENT 2024; 47:2640-2659. [PMID: 38558078 DOI: 10.1111/pce.14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.
Collapse
Affiliation(s)
- Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of In Vitro Diagnostic Reagent, National Institutes for Food and Drug Control, Beijing, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kangqi Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bo Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zijing Guo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze Yi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
7
|
Chen J, Wan H, Zhao H, Dai X, Wu W, Liu J, Xu J, Yang R, Xu B, Zeng C, Zhang X. Identification and expression analysis of the Xyloglucan transglycosylase/hydrolase (XTH) gene family under abiotic stress in oilseed (Brassica napus L.). BMC PLANT BIOLOGY 2024; 24:400. [PMID: 38745278 PMCID: PMC11095021 DOI: 10.1186/s12870-024-05121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
XTH genes are key genes that regulate the hydrolysis and recombination of XG components and plays role in the structure and composition of plant cell walls. Therefore, clarifying the changes that occur in XTHs during plant defense against abiotic stresses is informative for the study of the plant stress regulatory mechanism mediated by plant cell wall signals. XTH proteins in Arabidopsis thaliana was selected as the seed sequences in combination with its protein structural domains, 80 members of the BnXTH gene family were jointly identified from the whole genome of the Brassica napus ZS11, and analyzed for their encoded protein physicochemical properties, phylogenetic relationships, covariance relationships, and interoperating miRNAs. Based on the transcriptome data, the expression patterns of BnXTHs were analyzed in response to different abiotic stress treatments. The relative expression levels of some BnXTH genes under Al, alkali, salt, and drought treatments after 0, 6, 12 and 24 h were analyzed by using qRT-PCR to explore their roles in abiotic stress tolerance in B. napus. BnXTHs showed different expression patterns in response to different abiotic stress signals, indicating that the response mechanisms of oilseed rape against different abiotic stresses are also different. This paper provides a theoretical basis for clarifying the function and molecular genetic mechanism of the BnXTH gene family in abiotic stress tolerance in rapeseed.
Collapse
Affiliation(s)
- Jingdong Chen
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Heping Wan
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Huixia Zhao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Xigang Dai
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Wanjin Wu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China
| | - Jin Liu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinsong Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Rui Yang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Benbo Xu
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Changli Zeng
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, College of Life Science, Jianghan University, Wuhan, 430056, Hubei, China.
| | - Xuekun Zhang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
8
|
Zhang Y, Zhao Z, Liu Z, Yao J, Yin K, Yan C, Zhang Y, Liu J, Li J, Zhao N, Zhao R, Zhou X, Chen S. Populus euphratica PeNADP-ME interacts with PePLDδ to mediate sodium and ROS homeostasis under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108600. [PMID: 38593488 DOI: 10.1016/j.plaphy.2024.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Zhang D, Tian C, Mai W. Exogenous Sodium and Calcium Alleviate Drought Stress by Promoting the Succulence of Suaeda salsa. PLANTS (BASEL, SWITZERLAND) 2024; 13:721. [PMID: 38475566 DOI: 10.3390/plants13050721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024]
Abstract
Succulence is a key trait involved in the response of Suaeda salsa to salt stress. However, few studies have investigated the effects of the interaction between salt and drought stress on S. salsa growth and succulence. In this study, the morphology and physiology of S. salsa were examined under different salt ions (Na+, Ca2+, Mg2+, Cl-, and SO42-) and simulated drought conditions using different polyethylene glycol concentrations (PEG; 0%, 5%, 10%, and 15%). The results demonstrate that Na+ and Ca2+ significantly increased leaf succulence by increasing leaf water content and enlarging epidermal cell size compared to Mg2+, Cl-, and SO42-. Under drought (PEG) stress, with an increase in drought stress, the biomass, degree of leaf succulence, and water content of S. salsa decreased significantly in the non-salt treatment. However, with salt treatment, the results indicated that Na+ and Ca2+ could reduce water stress due to drought by stimulating the succulence of S. salsa. In addition, Na+ and Ca2+ promoted the activity of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which could reduce oxidative stress. In conclusion, Na+ and Ca2+ are the main factors promoting succulence and can effectively alleviate drought stress in S. salsa.
Collapse
Affiliation(s)
- Dong Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyan Tian
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Wenxuan Mai
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
10
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Ndayambaza B, Si J, Deng Y, Jia B, He X, Zhou D, Wang C, Zhu X, Liu Z, Qin J, Wang B, Bai X. The Euphrates Poplar Responses to Abiotic Stress and Its Unique Traits in Dry Regions of China (Xinjiang and Inner Mongolia): What Should We Know? Genes (Basel) 2023; 14:2213. [PMID: 38137039 PMCID: PMC10743205 DOI: 10.3390/genes14122213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
At the moment, drought, salinity, and low-temperature stress are ubiquitous environmental issues. In arid regions including Xinjiang and Inner Mongolia and other areas worldwide, the area of tree plantations appears to be rising, triggering tree growth. Water is a vital resource in the agricultural systems of countries impacted by aridity and salinity. Worldwide efforts to reduce quantitative yield losses on Populus euphratica by adapting tree plant production to unfavorable environmental conditions have been made in response to the responsiveness of the increasing control of water stress. Although there has been much advancement in identifying the genes that resist abiotic stresses, little is known about how plants such as P. euphratica deal with numerous abiotic stresses. P. euphratica is a varied riparian plant that can tolerate drought, salinity, low temperatures, and climate change, and has a variety of water stress adaptability abilities. To conduct this review, we gathered all available information throughout the Web of Science, the Chinese National Knowledge Infrastructure, and the National Center for Biotechnology Information on the impact of abiotic stress on the molecular mechanism and evolution of gene families at the transcription level. The data demonstrated that P. euphratica might gradually adapt its stomatal aperture, photosynthesis, antioxidant activities, xylem architecture, and hydraulic conductivity to endure extreme drought and salt stress. Our analyses will give readers an understanding of how to manage a gene family in desert trees and the influence of abiotic stresses on the productivity of tree plants. They will also give readers the knowledge necessary to improve biotechnology-based tree plant stress tolerance for sustaining yield and quality trees in China's arid regions.
Collapse
Affiliation(s)
- Boniface Ndayambaza
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Si
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
| | - Yanfang Deng
- Qilian Mountain National Park Qinghai Provincial Administration, Xining 810000, China;
| | - Bing Jia
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohui He
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Faculty of Resources and Environment, Baotou Teachers’ College, Inner Mongolia University of Science and Technology, Baotou 014030, China
| | - Dongmeng Zhou
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlin Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglin Zhu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zijin Liu
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Qin
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyang Wang
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Bai
- Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; (B.N.); (B.J.); (X.H.); (D.Z.); (C.W.); (X.Z.); (Z.L.); (J.Q.); (B.W.); (X.B.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Pérez-López AV, Lim SD, Cushman JC. Tissue succulence in plants: Carrying water for climate change. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154081. [PMID: 37703768 DOI: 10.1016/j.jplph.2023.154081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/01/2023] [Indexed: 09/15/2023]
Abstract
Tissue succulence in plants involves the storage of water in one or more organs or tissues to assist in maintaining water potentials on daily or seasonal time scales. This drought-avoidance or drought-resistance strategy allows plants to occupy diverse environments including arid regions, regions with rocky soils, epiphytic habitats, and saline soils. Climate-resilient strategies are of increasing interest in the context of the global climate crisis, which is leading to hotter and drier conditions in many regions throughout the globe. Here, we describe a short history of succulent plants, the basic concepts of tissue succulence, the anatomical diversity of succulent morphologies and associated adaptive traits, the evolutionary, phylogenetic, and biogeographical diversity of succulent plants, extinction risks to succulents due to poaching from their natural environments, and the myriad uses and applications of economically important succulent species and the products derived from them. Lastly, we discuss current prospects for engineering tissue succulence to improve salinity and drought tolerance in crops.
Collapse
Affiliation(s)
- Arely V Pérez-López
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| | - Sung Don Lim
- Department of Plant Life and Resource Science, Sangji University, Gangwon-do, 26339, South Korea.
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA.
| |
Collapse
|
13
|
Dabravolski SA, Isayenkov SV. The regulation of plant cell wall organisation under salt stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1118313. [PMID: 36968390 PMCID: PMC10036381 DOI: 10.3389/fpls.2023.1118313] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Plant cell wall biosynthesis is a complex and tightly regulated process. The composition and the structure of the cell wall should have a certain level of plasticity to ensure dynamic changes upon encountering environmental stresses or to fulfil the demand of the rapidly growing cells. The status of the cell wall is constantly monitored to facilitate optimal growth through the activation of appropriate stress response mechanisms. Salt stress can severely damage plant cell walls and disrupt the normal growth and development of plants, greatly reducing productivity and yield. Plants respond to salt stress and cope with the resulting damage by altering the synthesis and deposition of the main cell wall components to prevent water loss and decrease the transport of surplus ions into the plant. Such cell wall modifications affect biosynthesis and deposition of the main cell wall components: cellulose, pectins, hemicelluloses, lignin, and suberin. In this review, we highlight the roles of cell wall components in salt stress tolerance and the regulatory mechanisms underlying their maintenance under salt stress conditions.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Karmiel, Israel
| | - Stanislav V. Isayenkov
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, National Academy of Science (NAS) of Ukraine, Kyiv, Ukraine
| |
Collapse
|
14
|
BREVIPEDICELLUS Positively Regulates Salt-Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24021054. [PMID: 36674568 PMCID: PMC9866879 DOI: 10.3390/ijms24021054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Salt stress is one of the major environmental threats to plant growth and development. However, the mechanisms of plants responding to salt stress are not fully understood. Through genetic screening, we identified and characterized a salt-sensitive mutant, ses5 (sensitive to salt 5), in Arabidopsis thaliana. Positional cloning revealed that the decreased salt-tolerance of ses5 was caused by a mutation in the transcription factor BP (BREVIPEDICELLUS). BP regulates various developmental processes in plants. However, the biological function of BP in abiotic stress-signaling and tolerance are still not clear. Compared with wild-type plants, the bp mutant exhibited a much shorter primary-root and lower survival rate under salt treatment, while the BP overexpressors were more tolerant. Further analysis showed that BP could directly bind to the promoter of XTH7 (xyloglucan endotransglucosylase/hydrolase 7) and activate its expression. Resembling the bp mutant, the disruption of XTH7 gave rise to salt sensitivity. These results uncovered novel roles of BP in positively modulating salt-stress tolerance, and illustrated a putative working mechanism.
Collapse
|
15
|
Rosado-Souza L, Yokoyama R, Sonnewald U, Fernie AR. Understanding source-sink interactions: Progress in model plants and translational research to crops. MOLECULAR PLANT 2023; 16:96-121. [PMID: 36447435 DOI: 10.1016/j.molp.2022.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/25/2022] [Indexed: 06/16/2023]
Abstract
Agriculture is facing a massive increase in demand per hectare as a result of an ever-expanding population and environmental deterioration. While we have learned much about how environmental conditions and diseases impact crop yield, until recently considerably less was known concerning endogenous factors, including within-plant nutrient allocation. In this review, we discuss studies of source-sink interactions covering both fundamental research in model systems under controlled growth conditions and how the findings are being translated to crop plants in the field. In this respect we detail efforts aimed at improving and/or combining C3, C4, and CAM modes of photosynthesis, altering the chloroplastic electron transport chain, modulating photorespiration, adopting bacterial/algal carbon-concentrating mechanisms, and enhancing nitrogen- and water-use efficiencies. Moreover, we discuss how modulating TCA cycle activities and primary metabolism can result in increased rates of photosynthesis and outline the opportunities that evaluating natural variation in photosynthesis may afford. Although source, transport, and sink functions are all covered in this review, we focus on discussing source functions because the majority of research has been conducted in this field. Nevertheless, considerable recent evidence, alongside the evidence from classical studies, demonstrates that both transport and sink functions are also incredibly important determinants of yield. We thus describe recent evidence supporting this notion and suggest that future strategies for yield improvement should focus on combining improvements in each of these steps to approach yield optimization.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | - Ryo Yokoyama
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
16
|
Li C, Sun Y, Li J, Zhang T, Zhou F, Song Q, Liu Y, Brestic M, Chen TH, Yang X. ScCBF1 plays a stronger role in cold, salt and drought tolerance than StCBF1 in potato (Solanum tuberosum). JOURNAL OF PLANT PHYSIOLOGY 2022; 278:153806. [PMID: 36115270 DOI: 10.1016/j.jplph.2022.153806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Solanum tuberosum (St) and Solanum commersonii (Sc) are two potato varieties with different freezing tolerance. Among them, St is a freezing-sensitive variety and. Sc is a cold-resistant wild potato. CBF/DREB family members mainly function in response to freezing stress. In order to explore the different roles of St C-Repeat Binding Factor1 (StCBF1) and Sc C-Repeat Binding Factor1 (ScCBF1) in potato plants (Solanum tuberosum) under stress conditions, two kinds of potato lines were obtained with ScCBF1 and StCBF1 overexpressing respectively. Phenotypes analysis showed that both overexpressing ScCBF1 and StCBF1 caused smaller leaves, and reduced tuber yield. While the limited phenotypes of StCBF1 lines were more severe than that of ScCBF lines. After freezing treatment, StCBF1 over expression plants grown better than WT plants and worse than ScCBF1 over expression plants. Specifically, compared with wild-type lines, overexpressing ScCBF1 could up-regulate fatty acid desaturase genes, key enzyme of Calvin cycle genes, and antioxidant enzyme genes. Both ScCBF1 and StCBF1 lines showed higher PSII activity, thus maintaining a higher photosynthetic rate under cold stress. In addition, we also found that overexpression ScCBF1 and StCBF1 could also enhance the drought and salt tolerance in potato. In summary, ScCBF1 plays a stronger role in cold, salt, and drought tolerance than StCBF1 in potato (Solanum tuberosum).
Collapse
Affiliation(s)
- Chongyang Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yalu Sun
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Jian Li
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Tianpeng Zhang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Fengli Zhou
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Qiping Song
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Yang Liu
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, A. Hlinku 2, Nitra, 94976, Slovak Republic
| | - Tony Hh Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR, 97331, USA
| | - Xinghong Yang
- College of Life Science, State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
17
|
PsnWRKY70 Negatively Regulates NaHCO3 Tolerance in Populus. Int J Mol Sci 2022; 23:ijms232113086. [DOI: 10.3390/ijms232113086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Poplar is an important afforestation and ornamental tree species in Northeast China. The distribution area of saline-alkali land is approximately 765 hm2 in Northeast China. The breeding of saline-alkali-resistant transgenic trees could be an effective method of afforestation in saline-alkali land. WRKY transcription factors play a crucial role in abiotic stress. In this study, we analyzed the genetic stability of the two-year-old PsnWRKY70 transgenic poplars. The results showed that PsnWRKY70 of transgenic poplars had been expressed stably and normally at the mRNA level. The gene interference expression (RE) lines had no significant effect on the growth of PsnWRKY70 under NaHCO3 stress, and the alkali damage index of RE lines was significantly lower than that of WT and overexpression (OE) lines at day 15 under NaHCO3 stress. POD activity was significantly higher in RE lines than in WT. The MDA content of the RE line was lower than that of the WT line. Transcriptome analysis showed that RE lines up-regulated genes enriched in cell wall organization or biogenesis pathway-related genes such as EXPA8, EXPA4, EXPA3, EXPA1, EXPB3, EXP10, PME53, PME34, PME36, XTH9, XTH6, XTH23, CESA1, CESA3, CES9; FLA11, FLA16 and FLA7 genes. These genes play an important role in NaHCO3 stress. Our study showed that the interference expression of the PsnWRKY70 gene can enhance the tolerance of NaHCO3 in poplar.
Collapse
|
18
|
Qiao T, Zhang L, Yu Y, Pang Y, Tang X, Wang X, Li L, Li B, Sun Q. Identification and expression analysis of xyloglucan endotransglucosylase/hydrolase (XTH) family in grapevine ( Vitis vinifera L.). PeerJ 2022; 10:e13546. [PMID: 35722264 PMCID: PMC9202548 DOI: 10.7717/peerj.13546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/16/2022] [Indexed: 01/17/2023] Open
Abstract
Xyloglucan endotransglucosylases/hydrolases (XTH) are key enzymes in cell wall reformulation. They have the dual functions of catalyzing xyloglucan endotransglucosylase (XET) and xyloglucan endonuclease (XEH) activity and play a crucial role in the responses against abiotic stresses, such as drought, salinity, and freezing. However, a comprehensive analysis of the XTH family and its functions in grapevine (Vitis vinifera L.) has not yet been completed. In this study, 34 XTHs were identified in the whole grapevine genome and then named according to their distribution on chromosomes. Based on a phylogenetic analysis including Arabidopsis XTHs, the VvXTHs were classified into three groups. Cis-element analysis indicated that these family members are related to most abiotic stresses. We further selected 14 VvXTHs from different groups and then examined their transcription levels under drought and salt stress. The results indicated that the transcription levels of selected VvXTHs in the leaves and roots presented the largest changes, suggesting that VvXTHs are likely to take part in the responses to drought and salt stress in grapevines. These results provide useful evidence for the further investigation of VvXTHs function in response to abiotic stresses in grapevine.
Collapse
Affiliation(s)
- Tian Qiao
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yanyan Yu
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Yunning Pang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xinjie Tang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Xiao Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Lijian Li
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| | - Bo Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
19
|
Tian C, Zhang Z, Huang Y, Xu J, Liu Z, Xiang Z, Zhao F, Xue J, Xue T, Duan Y. Functional characterization of the Pinellia ternata cytoplasmic class II small heat shock protein gene PtsHSP17.2 via promoter analysis and overexpression in tobacco. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 177:1-9. [PMID: 35219190 DOI: 10.1016/j.plaphy.2022.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/18/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
High temperature is one of the main abiotic factors limiting agricultural production, particularly for heat-sensitive plant species. Small heat-shock proteins contribute substantially to alleviating damage to plants caused by heat stress. In the present study, the heat shock protein gene PtsHSP17.2 from Pinellia ternata was functionally characterized through promoter analysis and its overexpression in tobacco. Respectively, relative expression using real-time RT-PCR and ex situ promoter activity assay indicated that PtsHSP17.2 is strongly inducible under heat stress, and in silico promoter analysis discovered multiple stress-related cis elements including heat shock element. When overexpressing PtsHSP17.2 in tobacco, the thermotolerance of transgenic plants was markedly enhanced. Furthermore, the transgenic tobacco plants exhibited less variation in chlorophyll content, relative electrolyte leakage, and malondialdehyde content under heat stress compared with wild-type (WT) plants. The activities of antioxidant enzymes and content of proline were significantly enhanced under heat stress in transgenic plants relative to WT plants. Transgenic plants also had enhanced water retention and increased antioxidative capacity. Further, the expression levels of genes encoding antioxidant enzymes were more highly induced by heat stress in transgenic lines than WT. These results enrich the current understanding of thermal adaptation of heat-sensitive plant species and encourage further genetic improvement.
Collapse
Affiliation(s)
- Chen Tian
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Zeyu Zhang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Yue Huang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Juanjuan Xu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Zhu Liu
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Ziman Xiang
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Fenglan Zhao
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Jianping Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Tao Xue
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| | - Yongbo Duan
- Anhui Provincial Engineering Laboratory for Efficient Utilization of Featured Resource Plants, College of Life Sciences, Huaibei Normal University, Huaibei, Anhui, 235000, PR China.
| |
Collapse
|
20
|
Abideen Z, Hanif M, Munir N, Nielsen BL. Impact of Nanomaterials on the Regulation of Gene Expression and Metabolomics of Plants under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11050691. [PMID: 35270161 PMCID: PMC8912827 DOI: 10.3390/plants11050691] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 05/14/2023]
Abstract
Plant salinity resistance results from a combination of responses at the physiological, molecular, cellular, and metabolic levels. This article focuses on plant stress tolerance mechanisms for controlling ion homeostasis, stress signaling, hormone metabolism, anti-oxidative enzymes, and osmotic balance after nanoparticle applications. Nanoparticles are used as an emerging tool to stimulate specific biochemical reactions related to plant ecophysiological output because of their small size, increased surface area and absorption rate, efficient catalysis of reactions, and adequate reactive sites. Regulated ecophysiological control in saline environments could play a crucial role in plant growth promotion and survival of plants under suboptimal conditions. Plant biologists are seeking to develop a broad profile of genes and proteins that contribute to plant salt resistance. These plant metabolic profiles can be developed due to advancements in genomic, proteomic, metabolomic, and transcriptomic techniques. In order to quantify plant stress responses, transmembrane ion transport, sensors and receptors in signaling transduction, and metabolites involved in the energy supply require thorough study. In addition, more research is needed on the plant salinity stress response based on molecular interactions in response to nanoparticle treatment. The application of nanoparticles as an aspect of genetic engineering for the generation of salt-tolerant plants is a promising area of research. This review article addresses the use of nanoparticles in plant breeding and genetic engineering techniques to develop salt-tolerant crops.
Collapse
Affiliation(s)
- Zainul Abideen
- Dr. Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan;
| | - Maria Hanif
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
| | - Neelma Munir
- Department of Biotechnology, Lahore College for Women University, Lahore 54000, Pakistan;
- Correspondence: (N.M.); (B.L.N.)
| | - Brent L. Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
- Correspondence: (N.M.); (B.L.N.)
| |
Collapse
|
21
|
Ishida K, Yokoyama R. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. JOURNAL OF PLANT RESEARCH 2022; 135:145-156. [PMID: 35000024 DOI: 10.1007/s10265-021-01361-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/21/2021] [Indexed: 05/21/2023]
Abstract
Plants possess an outer cell layer called the cell wall. This matrix comprises various molecules, such as polysaccharides and proteins, and serves a wide array of physiologically important functions. This structure is not static but rather flexible in response to the environment. One of the factors responsible for this plasticity is the xyloglucan endotransglucosylase/hydrolase (XTH) family, which cleaves and reconnects xyloglucan molecules. Since xyloglucan molecules have been hypothesised to tether cellulose microfibrils forming the main load-bearing network in the primary cell wall, XTHs have been thought to play a central role in cell wall loosening for plant cell expansion. However, multiple lines of recent evidence have questioned this classic model. Nevertheless, reverse genetic analyses have proven the biological importance of XTHs; therefore, a major challenge at present is to reconsider the role of XTHs in planta. Recent advances in analytical techniques have allowed for gathering rich information on the structure of the primary cell wall. Thus, the integration of accumulated knowledge in current XTH studies may offer a turning point for unveiling the precise functions of XTHs. In the present review, we redefine the biological function of the XTH family based on the recent architectural model of the cell wall. We highlight three key findings regarding this enzyme family: (1) XTHs are not strictly required for cell wall loosening during plant cell expansion but play vital roles in response to specific biotic or abiotic stresses; (2) in addition to their transglycosylase activity, the hydrolase activity of XTHs is involved in physiological benefits; and (3) XTHs can recognise a wide range of polysaccharides other than xyloglucans.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QE, UK
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
22
|
Rawat N, Wungrampha S, Singla-Pareek SL, Yu M, Shabala S, Pareek A. Rewilding staple crops for the lost halophytism: Toward sustainability and profitability of agricultural production systems. MOLECULAR PLANT 2022; 15:45-64. [PMID: 34915209 DOI: 10.1016/j.molp.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Abiotic stress tolerance has been weakened during the domestication of all major staple crops. Soil salinity is a major environmental constraint that impacts over half of the world population; however, given the increasing reliance on irrigation and the lack of available freshwater, agriculture in the 21st century will increasingly become saline. Therefore, global food security is critically dependent on the ability of plant breeders to create high-yielding staple crop varieties that will incorporate salinity tolerance traits and account for future climate scenarios. Previously, we have argued that the current agricultural practices and reliance on crops that exclude salt from uptake is counterproductive and environmentally unsustainable, and thus called for a need for a major shift in a breeding paradigm to incorporate some halophytic traits that were present in wild relatives but were lost in modern crops during domestication. In this review, we provide a comprehensive physiological and molecular analysis of the key traits conferring crop halophytism, such as vacuolar Na+ sequestration, ROS desensitization, succulence, metabolic photosynthetic switch, and salt deposition in trichomes, and discuss the strategies for incorporating them into elite germplasm, to address a pressing issue of boosting plant salinity tolerance.
Collapse
Affiliation(s)
- Nishtha Rawat
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Silas Wungrampha
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Min Yu
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Sergey Shabala
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China; Tasmanian Institute for Agriculture, University of Tasmania, Hobart Tas 7001, Australia.
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; National Agri-Food Biotechnology Institute, Mohali 140306, India.
| |
Collapse
|
23
|
Yang Z, Zhang R, Zhou Z. The XTH Gene Family in Schima superba: Genome-Wide Identification, Expression Profiles, and Functional Interaction Network Analysis. FRONTIERS IN PLANT SCIENCE 2022; 13:911761. [PMID: 35783982 PMCID: PMC9243642 DOI: 10.3389/fpls.2022.911761] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/31/2022] [Indexed: 05/04/2023]
Abstract
Xyloglucan endotransglucosylase/hydrolase (XTH), belonging to glycoside hydrolase family 16, is one of the key enzymes in plant cell wall remodeling. Schima superba is an important timber and fireproof tree species in southern China. However, little is known about XTHs in S. superba. In the present study, a total of 34 SsuXTHs were obtained, which were classified into three subfamilies based on the phylogenetic relationship and unevenly distributed on 18 chromosomes. Furthermore, the intron-exon structure and conserved motif composition of them supported the classification and the members belonging to the same subfamily shared similar gene structures. Segmental and tandem duplication events did not lead to SsuXTH gene family expansion, and strong purifying selection pressures during evolution led to similar structure and function of SsuXTH gene family. The interaction network and cis-acting regulatory elements analysis revealed the SsuXTH expression might be regulated by multiple hormones, abiotic stresses and transcription factors. Finally, expression profiles and GO enrichment analysis showed most of the tandem repeat genes were mainly expressed in the phloem and xylem and they mainly participated in glycoside metabolic processes through the transfer and hydrolysis of xyloglucan in the cell wall and then regulated fiber elongation.
Collapse
Affiliation(s)
- Zhongyi Yang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
| | - Rui Zhang
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
- *Correspondence: Rui Zhang,
| | - Zhichun Zhou
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, China
- Zhichun Zhou,
| |
Collapse
|
24
|
Liang XD, Shalapy M, Zhao SF, Liu JH, Wang JY. A stress-responsive transcription factor PeNAC1 regulating beta-D-glucan biosynthetic genes enhances salt tolerance in oat. PLANTA 2021; 254:130. [PMID: 34817644 DOI: 10.1007/s00425-021-03770-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
A Populus euphratica NAC gene regulates (1,3; 1,4)-β-D-glucan content in oat developing seed and improves the spikelet number and grain number per spike in transgenic oat under salinity conditions Salinity is the major factor affecting the production and quality of oat, and improving oat salt tolerance to increase yield and quality is vital. (1,3;1,4)-β-D-glucan in Gramineae is the key component in response to various environmental signals, and it is the most important functional ingredient in oat grain. The NAC transcription factors are important candidate genes used in genetic engineering to improve plant abiotic stress tolerance. In this study, we introduced Populus euphratica PeNAC1, controlled by its own promoter, into hexaploid cultivated oat and produced six transgenic lines. Compared to the non-transgenic control, the expression of PeNAC1 significantly improved the seed germination rate, seedling survival rate, and leaf chlorophyll content in the transgenic plants under salt stress. These physiological changes increased the spikelet number and grain number per spike in the transgenic oat under salinity conditions and reduced the yield loss per plant. The results indicated that the heterologous expression of PeNAC1 plays an effective role in improving the salt tolerance in transgenic oat. In addition, overexpressing PeNAC1 significantly increased the (1,3;1,4)-β-D-glucan content as well as the expression level of the (1,3;1,4)-β-D-glucan biosynthetic genes AsCslF3, AsCslF6, and AsCslF9 in the transgenic lines under salt stress, which suggested that PeNAC1 regulates the synthesis of (1,3;1,4)-β-D-glucan. Our research should assist in the discovery of the diverse action modes of NAC proteins, while PeNAC1 will be useful for improving the salt tolerance and quality of oat through molecular breeding.
Collapse
Affiliation(s)
- Xiao-Dong Liang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
- Biotechnology Research Institute of Chinese Academy of Agricultural Sciences, No. 12 Zhong Guan Cun South Street, Beijing, 100081, China
| | - Mohamed Shalapy
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China
| | - Shi-Feng Zhao
- Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou, 075000, China
| | - Jing-Hui Liu
- Inner Mongolia Agriculture University, No. 275 Xue Yuan East Street, Hohhot, 010019, China.
| | - Jun-Ying Wang
- XinJiang Academy of Agricultural Sciences Grain Crops Institute, No. 403 Nanchang Road, Urumqi, 830091, China.
| |
Collapse
|
25
|
Cheng Z, Zhang X, Yao W, Gao Y, Zhao K, Guo Q, Zhou B, Jiang T. Genome-wide identification and expression analysis of the xyloglucan endotransglucosylase/hydrolase gene family in poplar. BMC Genomics 2021; 22:804. [PMID: 34749656 PMCID: PMC8576992 DOI: 10.1186/s12864-021-08134-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Xyloglucan endotransglucosylase/hydrolase (XTH) family plays an important role in cell wall reconstruction and stress resistance in plants. However, the detailed characteristics of XTH family genes and their expression pattern under salt stress have not been reported in poplar. RESULTS In this study, a total of 43 PtrXTH genes were identified from Populus simonii × Populus nigra, and most of them contain two conserved structures (Glyco_hydro_16 and XET_C domain). The promoters of the PtrXTH genes contain mutiple cis-acting elements related to growth and development and stress responses. Collinearity analysis revealed that the XTH genes from poplar has an evolutionary relationship with other six species, including Eucalyptus robusta, Solanum lycopersicum, Glycine max, Arabidopsis, Zea mays and Oryza sativa. Based on RNA-Seq analysis, the PtrXTH genes have different expression patterns in the roots, stems and leaves, and many of them are highly expressed in the roots. In addition, there are11 differentially expressed PtrXTH genes in the roots, 9 in the stems, and 7 in the leaves under salt stress. In addition, the accuracy of RNA-Seq results was verified by RT-qPCR. CONCLUSION All the results indicated that XTH family genes may play an important role in tissue specificity and salt stress response. This study will lay a theoretical foundation for further study on molecular function of XTH genes in poplar.
Collapse
Affiliation(s)
- Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yuan Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China.
| |
Collapse
|
26
|
Du H, Hu X, Yang W, Hu W, Yan W, Li Y, He W, Cao M, Zhang X, Luo B, Gao S, Zhang S. ZmXTH, a xyloglucan endotransglucosylase/hydrolase gene of maize, conferred aluminum tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153520. [PMID: 34536904 DOI: 10.1016/j.jplph.2021.153520] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Aluminum (Al) toxicity is one of the primary factors limiting crop production in acid soils worldwide. The cell wall is the major target of Al toxicity owing to the presence of many Al binding sites. Previous studies have found that XTH, encoding xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET), could participate in cell wall extension and affect the binding ability of the cell wall to Al by impeding the activities of these two enzymes. In this study, we found that ZmXTH, an XTH gene in maize, was involved in Al detoxification. The Al-induced up-regulation of ZmXTH occurred in the roots, prominently in the root tips. Additionally, the expression of ZmXTH was specifically induced by Al3+ but no other divalent or trivalent cations. Compared with the wild-type Arabidopsis, ZmXTH overexpressing plants grew more healthy and had decreased Al content in their root and root cell wall after Al stress. Overall, the results suggest that ZmXTH could confer the Al tolerance of transgenic Arabidopsis plants by reducing the Al accumulation in their roots and cell walls.
Collapse
Affiliation(s)
- Hanmei Du
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaoqi Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Yang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wanpeng Hu
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Weina Yan
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yushan Li
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenzhu He
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Moju Cao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bowen Luo
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shibin Gao
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Suzhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
27
|
Zhang Y, Sun Y, Liu X, Deng J, Yao J, Zhang Y, Deng S, Zhang H, Zhao N, Li J, Zhou X, Zhao R, Chen S. Populus euphratica Apyrases Increase Drought Tolerance by Modulating Stomatal Aperture in Arabidopsis. Int J Mol Sci 2021; 22:ijms22189892. [PMID: 34576057 PMCID: PMC8468604 DOI: 10.3390/ijms22189892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Stomatal regulation is crucial to reduce water consumption under drought conditions. Extracellular ATP (eATP) serves as a signaling agent in stomatal regulation; however, it is less known whether the eATP mediation of stomatal aperture is linked to apyrases (APYs), the principal enzymes that control the concentration of eATP. To clarify the role of APYs in stomatal control, PeAPY1 and PeAPY2 were isolated from Populus euphratica and transferred into Arabidopsis. Compared with the wild-type Arabidopsis and loss-of-function mutants (Atapy1 and Atapy2), PeAPY1- and PeAPY2-transgenic plants decreased stomatal aperture under mannitol treatment (200 mM, 2 h) and reduced water loss during air exposure (90 min). The role of apyrase in stomatal regulation resulted from its control in eATP-regulated stomatal movements and increased stomatal sensitivity to ABA. The bi-phasic dose-responses to applied nucleotides, i.e., the low ATP (0.3-1.0 mM)-promoted opening and high ATP (>2.0 mM)-promoted closure, were both restricted by P. euphratica apyrases. It is noteworthy that eATP at a low concentration (0.3 mM) counteracted ABA action in the regulation of stomatal aperture, while overexpression of PeAPY1 or PeAPY2 effectively diminished eATP promotion in opening, and consequently enhanced ABA action in closure. We postulate a speculative model of apyrase signaling in eATP- and ABA-regulated stomatal movements under drought.
Collapse
Affiliation(s)
- Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Yuanling Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Xiaojing Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Yinan Zhang
- Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China;
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Huilong Zhang
- Research Center of Saline and Alkali Land of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China;
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Jinke Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Xiaoyang Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.Z.); (Y.S.); (X.L.); (J.D.); (J.Y.); (N.Z.); (J.L.); (X.Z.); (R.Z.)
- Correspondence: ; Tel.: +86-10-6233-8129
| |
Collapse
|
28
|
Natarajan P, Murugesan AK, Govindan G, Gopalakrishnan A, Kumar R, Duraisamy P, Balaji R, Tanuja, Shyamli PS, Parida AK, Parani M. A reference-grade genome identifies salt-tolerance genes from the salt-secreting mangrove species Avicennia marina. Commun Biol 2021; 4:851. [PMID: 34239036 PMCID: PMC8266904 DOI: 10.1038/s42003-021-02384-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Water scarcity and salinity are major challenges facing agriculture today, which can be addressed by engineering plants to grow in the boundless seawater. Understanding the mangrove plants at the molecular level will be necessary for developing such highly salt-tolerant agricultural crops. With this objective, we sequenced the genome of a salt-secreting and extraordinarily salt-tolerant mangrove species, Avicennia marina, that grows optimally in 75% seawater and tolerates >250% seawater. Our reference-grade ~457 Mb genome contains 31 scaffolds corresponding to its chromosomes. We identified 31,477 protein-coding genes and a salinome consisting of 3246 salinity-responsive genes and homologs of 614 experimentally validated salinity tolerance genes. The salinome provides a strong foundation to understand the molecular mechanisms of salinity tolerance in plants and breeding crops suitable for seawater farming.
Collapse
Affiliation(s)
- Purushothaman Natarajan
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ashok Kumar Murugesan
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ganesan Govindan
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Ayyaru Gopalakrishnan
- grid.411408.80000 0001 2369 7742Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu India
| | - Ravichandiran Kumar
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Purushothaman Duraisamy
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Raju Balaji
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Tanuja
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| | - Puhan Sushree Shyamli
- grid.418782.00000 0004 0504 0781Institute of Life Sciences, NALCO Square, Bhubaneswar, India
| | - Ajay K. Parida
- grid.418782.00000 0004 0504 0781Institute of Life Sciences, NALCO Square, Bhubaneswar, India
| | - Madasamy Parani
- grid.412742.60000 0004 0635 5080Genomics Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu India
| |
Collapse
|
29
|
De Caroli M, Manno E, Piro G, Lenucci MS. Ride to cell wall: Arabidopsis XTH11, XTH29 and XTH33 exhibit different secretion pathways and responses to heat and drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:448-466. [PMID: 33932060 PMCID: PMC8453972 DOI: 10.1111/tpj.15301] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 05/09/2023]
Abstract
The xyloglucan endotransglucosylase/hydrolases (XTHs) are enzymes involved in cell wall assembly and growth regulation, cleaving and re-joining hemicellulose chains in the xyloglucan-cellulose network. Here, in a homologous system, we compare the secretion patterns of XTH11, XTH33 and XTH29, three members of the Arabidopsis thaliana XTH family, selected for the presence (XTH11 and XTH33) or absence (XTH29) of a signal peptide, and the presence of a transmembrane domain (XTH33). We show that XTH11 and XTH33 reached, respectively, the cell wall and plasma membrane through a conventional protein secretion (CPS) pathway, whereas XTH29 moves towards the apoplast following an unconventional protein secretion (UPS) mediated by exocyst-positive organelles (EXPOs). All XTHs share a common C-terminal functional domain (XET-C) that, for XTH29 and a restricted number of other XTHs (27, 28 and 30), continues with an extraterminal region (ETR) of 45 amino acids. We suggest that this region is necessary for the correct cell wall targeting of XTH29, as the ETR-truncated protein never reaches its final destination and is not recruited by EXPOs. Furthermore, quantitative real-time polymerase chain reaction analyses performed on 4-week-old Arabidopsis seedlings exposed to drought and heat stress suggest a different involvement of the three XTHs in cell wall remodeling under abiotic stress, evidencing stress-, organ- and time-dependent variations in the expression levels. Significantly, XTH29, codifying the only XTH that follows a UPS pathway, is highly upregulated with respect to XTH11 and XTH33, which code for CPS-secreted proteins.
Collapse
Affiliation(s)
- Monica De Caroli
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| | - Elisa Manno
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| | - Gabriella Piro
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| | - Marcello S. Lenucci
- Dipartimento di Scienze e Tecnologie Biologiche e AmbientaliUniversità del SalentoLecce73100Italy
| |
Collapse
|
30
|
Kazerooni EA, Maharachchikumbura SSN, Al-Sadi AM, Kang SM, Yun BW, Lee IJ. Biocontrol Potential of Bacillus amyloliquefaciens against Botrytis pelargonii and Alternaria alternata on Capsicum annuum. J Fungi (Basel) 2021; 7:jof7060472. [PMID: 34200967 PMCID: PMC8230671 DOI: 10.3390/jof7060472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to assess the ability of Bacillus amyloliquefaciens, to augment plant growth and suppress gray mold and leaf spot in pepper plants. Morphological modifications in fungal pathogen hyphae that expanded toward the PGPR colonies were detected via scanning electron microscope. Furthermore, preliminary screening showed that PGPR could produce various hydrolytic enzymes in its media. Treatments with B. amyloliquefaciens suppressed Botrytis gray mold and Alternaria leaf spot diseases on pepper caused by Botrytis pelargonii and Alternaria alternata, respectively. The PGPR strain modulated plant physio-biochemical processes. The inoculation of pepper with PGPR decreased protein, amino acid, antioxidant, hydrogen peroxide, lipid peroxidation, and abscisic acid levels but increased salicylic acid and sugar levels compared to those of uninoculated plants, indicating a mitigation of the adverse effects of biotic stress. Moreover, gene expression studies confirmed physio-biochemical findings. PGPR inoculation led to increased expression of the CaXTH genes and decreased expression of CaAMP1, CaPR1, CaDEF1, CaWRKY2, CaBI-1, CaASRF1, CaSBP11, and CaBiP genes. Considering its beneficial effects, the inoculation of B. amyloliquefaciens can be proposed as an eco-friendly alternative to synthetic chemical fungicides.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| | | | - Abdullah Mohammed Al-Sadi
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman;
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (S.-M.K.); (B.-W.Y.)
- Correspondence: (E.A.K.); (I.-J.L.)
| |
Collapse
|
31
|
Kazerooni EA, Maharachchikumbura SSN, Adhikari A, Al-Sadi AM, Kang SM, Kim LR, Lee IJ. Rhizospheric Bacillus amyloliquefaciens Protects Capsicum annuum cv. Geumsugangsan From Multiple Abiotic Stresses via Multifarious Plant Growth-Promoting Attributes. FRONTIERS IN PLANT SCIENCE 2021; 12:669693. [PMID: 34113368 PMCID: PMC8185346 DOI: 10.3389/fpls.2021.669693] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are beneficial microorganisms that can be utilized to improve plant responses against biotic and abiotic stresses. In this study, we investigated whether PGPR (Bacillus amyloliquefaciens) isolated from the endorhizosphere of Sasamorpha borealis have the potential to sustain pepper growth under drought, salinity, and heavy metal stresses. The bacterial strain was determined based on 16S rDNA and gyrB gene sequencing and characterized based on the following biochemical traits: nitrogen fixation; 1-aminocyclopropane-1-carboxylate deaminase activity; indole acetic acid production; inorganic phosphate, potassium, zinc, and silicon solubilization; and siderophore production. Various abiotic stresses were applied to 28-day-old pepper seedlings, and the influence of the PGPR strain on pepper seedling growth under these stress conditions was evaluated. The application of PGPR improved survival of the inoculated pepper plants under stress conditions, which was reflected by higher seedling growth rate and improved physiochemical traits. The PGPR-treated plants maintained high chlorophyll, salicylic acid, sugar, amino acid, and proline contents and showed low lipid metabolism, abscisic acid, protein, hydrogen peroxide contents, and antioxidant activities under stress conditions. Gene expression studies confirmed our physiological and biochemical findings. PGPR inoculation led to enhanced expression of XTH genes and reduced expression of WRKY2, BI-1, PTI1, and binding immunoglobulin protein (BiP) genes. We conclude that the PGPR strain described in this study has great potential for use in the phytoremediation of heavy metals and for enhancing pepper plant productivity under stress conditions, particularly those involving salinity and drought.
Collapse
Affiliation(s)
- Elham Ahmed Kazerooni
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | | | - Arjun Adhikari
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Abdullah Mohammed Al-Sadi
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod, Oman
| | - Sang-Mo Kang
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Lee-Rang Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
32
|
Liu J, Zhang W, Long S, Zhao C. Maintenance of Cell Wall Integrity under High Salinity. Int J Mol Sci 2021; 22:3260. [PMID: 33806816 PMCID: PMC8004791 DOI: 10.3390/ijms22063260] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
Cell wall biosynthesis is a complex biological process in plants. In the rapidly growing cells or in the plants that encounter a variety of environmental stresses, the compositions and the structure of cell wall can be dynamically changed. To constantly monitor cell wall status, plants have evolved cell wall integrity (CWI) maintenance system, which allows rapid cell growth and improved adaptation of plants to adverse environmental conditions without the perturbation of cell wall organization. Salt stress is one of the abiotic stresses that can severely disrupt CWI, and studies have shown that the ability of plants to sense and maintain CWI is important for salt tolerance. In this review, we highlight the roles of CWI in salt tolerance and the mechanisms underlying the maintenance of CWI under salt stress. The unsolved questions regarding the association between the CWI and salt tolerance are discussed.
Collapse
Affiliation(s)
- Jianwei Liu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| | - Wei Zhang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Shujie Long
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunzhao Zhao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; (J.L.); (W.Z.); (S.L.)
| |
Collapse
|
33
|
Levei L, Cadar O, Babalau-Fuss V, Kovacs E, Torok AI, Levei EA, Ozunu A. Use of Black Poplar Leaves for the Biomonitoring of Air Pollution in an Urban Agglomeration. PLANTS 2021; 10:plants10030548. [PMID: 33799386 PMCID: PMC7999536 DOI: 10.3390/plants10030548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022]
Abstract
Trees are considered to be an effective tool for metal pollution biomonitoring. In the present study, the concentration of metals (Cu, Pb, Zn, Cd, Co, Ni, Fe, Mn, and Al) in black poplar leaves (Populus nigra L.), together with the concentration of PM10, PM2.5, PM1, and total suspended particles (TSP), was used for the air pollution biomonitoring in 12 sites from various areas of Cluj-Napoca city, Romania. The concentration of PM10 in the air was high, but their metal content was low. However, Cu, Pb, and Zn were moderately enriched, while Cd was highly enriched in PM10 due to anthropogenic sources. The average metal concentration in leaves decreased in the order Zn>>Fe>Mn>Al>Pb>Ni>Cu>Co>Cd and increased with the increase of PM10 concentration, indicating that poplar leaves are sensitive to air pollution. The principal component analysis indicated that traffic, waste burning, road dust resuspension, and soil contamination are the main anthropogenic sources of metals in poplar leaves. The results indicated that black poplar leaves are a suitable biomonitoring tool for metal pollution, in urban environments.
Collapse
Affiliation(s)
- Levente Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, RO-400296 Cluj-Napoca, Romania; (L.L.); (V.B.-F.); (E.K.); (A.I.T.); (E.A.L.)
- Faculty of Environmental Sciences and Engineering, Babes-Bolyai University, 30 Fantanele Street, RO-400294 Cluj-Napoca, Romania;
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, RO-400296 Cluj-Napoca, Romania; (L.L.); (V.B.-F.); (E.K.); (A.I.T.); (E.A.L.)
- Correspondence:
| | - Vanda Babalau-Fuss
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, RO-400296 Cluj-Napoca, Romania; (L.L.); (V.B.-F.); (E.K.); (A.I.T.); (E.A.L.)
- Faculty of Food Science and Technology, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur Street, RO-400372 Cluj-Napoca, Romania
| | - Eniko Kovacs
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, RO-400296 Cluj-Napoca, Romania; (L.L.); (V.B.-F.); (E.K.); (A.I.T.); (E.A.L.)
- Faculty of Horticulture, University of Agricultural Science and Veterinary Medicine, 3-5 Calea Manastur Street, RO-400372 Cluj-Napoca, Romania
| | - Anamaria Iulia Torok
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, RO-400296 Cluj-Napoca, Romania; (L.L.); (V.B.-F.); (E.K.); (A.I.T.); (E.A.L.)
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, RO-400296 Cluj-Napoca, Romania; (L.L.); (V.B.-F.); (E.K.); (A.I.T.); (E.A.L.)
| | - Alexandru Ozunu
- Faculty of Environmental Sciences and Engineering, Babes-Bolyai University, 30 Fantanele Street, RO-400294 Cluj-Napoca, Romania;
- DIMTEC, University of the Free State, Nelson Mandela Street, Bloemfontein SA-9300, South Africa
| |
Collapse
|
34
|
Zhang Y, Sa G, Zhang Y, Hou S, Wu X, Zhao N, Zhang Y, Deng S, Deng C, Deng J, Zhang H, Yao J, Zhang Y, Zhao R, Chen S. Populus euphratica annexin1 facilitates cadmium enrichment in transgenic Arabidopsis. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124063. [PMID: 33092878 DOI: 10.1016/j.jhazmat.2020.124063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation offers a great potential for affordable remediation of heavy metal (HM)-polluted soil and water. Screening and identifying candidate genes related to HM uptake and transport is prerequisite for improvement of phytoremediation by genetic engineering. Using the cadmium (Cd)-hypersensitive Populus euphratica, an annexin encoding gene facilitating Cd enrichment was identified in this study. With a 12 h exposure to CdCl2 (50-100 μM), P. euphratica cells down-regulated transcripts of annexin1 (PeANN1). PeANN1 was homologue to Arabidopsis annexin1 (AtANN1) and localized mainly to the plasma membrane (PM) and cytosol. Compared with wild type and Atann1 mutant, PeANN1 overexpression in Arabidopsis resulted in a more pronounced decline in survival rate and root length after a long-term Cd stress (10 d, 50 μM), due to a higher cadmium accumulation in roots. PeANN1-transgenic roots exhibited enhanced influx conductance of Cd2+ under cadmium shock (30 min, 50 μM) and short-term stress (12 h, 50 μM). Noteworthy, the PeANN1-facilitated Cd2+ influx was significantly inhibited by a calcium-permeable channel (CaPC) inhibitor (GdCl3) but was promoted by 1 mM H2O2, indicating that Cd2+ entered root cells via radical-activated CaPCs in the PM. Therefore, PeANN1 can serve as a candidate gene for improvement of phytoremediation by genetic engineering.
Collapse
Affiliation(s)
- Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; Forestry Institute of New Technology, Chinese Academy of Forestry, Beijing 100091, China
| | - Gang Sa
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Siyuan Hou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Xia Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Nan Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yuhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Silviculture of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jiayin Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
35
|
Heyduk K. The genetic control of succulent leaf development. CURRENT OPINION IN PLANT BIOLOGY 2021; 59:101978. [PMID: 33454545 DOI: 10.1016/j.pbi.2020.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/09/2020] [Accepted: 11/14/2020] [Indexed: 05/25/2023]
Abstract
Succulent leaves have long intrigued biologists; much research has been done to define succulence, understand the evolutionary trajectory and implications of leaf succulence, and contextualize the ecological importance of water storage for plants inhabiting dry habitats, particularly those using CAM photosynthesis. Surprisingly little is understood about the molecular regulation of leaf succulence, despite advances in our understanding of the molecular foundation of leaf architecture in model systems. Moreover, leaf succulence is a drought avoidance trait, one that has yet to be fully used for crop improvement. Here, connections between disparate literatures are highlighted: research on the regulation of cell size, the determination of vascular patterning, and water transport between cells have direct implications for our understanding of leaf succulence. Connecting functional genomics of leaf patterning with knowledge of the evolution and ecology of succulent species will guide future research on the determination and maintenance of leaf succulence.
Collapse
Affiliation(s)
- Karolina Heyduk
- University of Hawai'i at Mānoa, 1800 East West Rd., Honolulu, HI 96822, USA.
| |
Collapse
|
36
|
Wu D, Liu A, Qu X, Liang J, Song M. Genome-wide identification, and phylogenetic and expression profiling analyses, of XTH gene families in Brassica rapa L. and Brassica oleracea L. BMC Genomics 2020; 21:782. [PMID: 33176678 PMCID: PMC7656703 DOI: 10.1186/s12864-020-07153-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Xyloglucan endotransglucosylase/hydrolase genes (XTHs) are a multigene family and play key roles in regulating cell wall extensibility in plant growth and development. Brassica rapa and Brassica oleracea contain XTHs, but detailed identification and characterization of the XTH family in these species, and analysis of their tissue expression profiles, have not previously been carried out. RESULTS In this study, 53 and 38 XTH genes were identified in B. rapa and B. oleracea respectively, which contained some novel members not observed in previous studies. All XTHs of B. rapa, B. oleracea and Arabidopsis thaliana could be classified into three groups, Group I/II, III and the Early diverging group, based on phylogenetic relationships. Gene structures and motif patterns were similar within each group. All XTHs in this study contained two characteristic conserved domains (Glyco_hydro and XET_C). XTHs are located mainly in the cell wall but some are also located in the cytoplasm. Analyses of the mechanisms of gene family expansion revealed that whole-genome triplication (WGT) events and tandem duplication (TD) may have been the major mechanisms accounting for the expansion of the XTH gene family. Interestingly, TD genes all belonged to Group I/II, suggesting that TD was the main reason for the largest number of genes being in these groups. B. oleracea had lost more of the XTH genes, the conserved domain XET_C and the conserved active-site motif EXDXE compared with B. rapa, consistent with asymmetrical evolution between the two Brassica genomes. A majority of XTH genes exhibited different tissue-specific expression patterns based on RNA-seq data analyses. Moreover, there was differential expression of duplicated XTH genes in the two species, indicating that their functional differentiation occurred after B. rapa and B. oleracea diverged from a common ancestor. CONCLUSIONS We carried out the first systematic analysis of XTH gene families in B. rapa and B. oleracea. The results of this investigation can be used for reference in further studies on the functions of XTH genes and the evolution of this multigene family.
Collapse
Affiliation(s)
- Di Wu
- Qufu Normal University, College of Life Science, Qufu, 273165, P.R. China
| | - Anqi Liu
- Qufu Normal University, College of Life Science, Qufu, 273165, P.R. China
| | - Xiaoyu Qu
- Qufu Normal University, College of Life Science, Qufu, 273165, P.R. China
| | - Jiayi Liang
- Qufu Normal University, College of Life Science, Qufu, 273165, P.R. China
| | - Min Song
- Qufu Normal University, College of Life Science, Qufu, 273165, P.R. China.
| |
Collapse
|
37
|
Yuan G, Hassan MM, Liu D, Lim SD, Yim WC, Cushman JC, Markel K, Shih PM, Lu H, Weston DJ, Chen JG, Tschaplinski TJ, Tuskan GA, Yang X. Biosystems Design to Accelerate C 3-to-CAM Progression. BIODESIGN RESEARCH 2020; 2020:3686791. [PMID: 37849902 PMCID: PMC10521703 DOI: 10.34133/2020/3686791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/21/2020] [Indexed: 10/19/2023] Open
Abstract
Global demand for food and bioenergy production has increased rapidly, while the area of arable land has been declining for decades due to damage caused by erosion, pollution, sea level rise, urban development, soil salinization, and water scarcity driven by global climate change. In order to overcome this conflict, there is an urgent need to adapt conventional agriculture to water-limited and hotter conditions with plant crop systems that display higher water-use efficiency (WUE). Crassulacean acid metabolism (CAM) species have substantially higher WUE than species performing C3 or C4 photosynthesis. CAM plants are derived from C3 photosynthesis ancestors. However, it is extremely unlikely that the C3 or C4 crop plants would evolve rapidly into CAM photosynthesis without human intervention. Currently, there is growing interest in improving WUE through transferring CAM into C3 crops. However, engineering a major metabolic plant pathway, like CAM, is challenging and requires a comprehensive deep understanding of the enzymatic reactions and regulatory networks in both C3 and CAM photosynthesis, as well as overcoming physiometabolic limitations such as diurnal stomatal regulation. Recent advances in CAM evolutionary genomics research, genome editing, and synthetic biology have increased the likelihood of successful acceleration of C3-to-CAM progression. Here, we first summarize the systems biology-level understanding of the molecular processes in the CAM pathway. Then, we review the principles of CAM engineering in an evolutionary context. Lastly, we discuss the technical approaches to accelerate the C3-to-CAM transition in plants using synthetic biology toolboxes.
Collapse
Affiliation(s)
- Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Md. Mahmudul Hassan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Department of Genetics and Plant Breeding, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Degao Liu
- Department of Genetics, Cell Biology and Development, Center for Precision Plant Genomics, and Center for Genome Engineering, University of Minnesota, Saint Paul, MN 55108, USA
| | - Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - John C. Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Kasey Markel
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
| | - Patrick M. Shih
- Department of Plant Biology, University of California, Davis, Davis, CA, USA
- Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA, USA
| | - Haiwei Lu
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - David J. Weston
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gerald A. Tuskan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Xiaohan Yang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
38
|
Xu P, Fang S, Chen H, Cai W. The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:59-75. [PMID: 32656780 DOI: 10.1111/tpj.14905] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 05/14/2023]
Abstract
Lateral roots (LRs) are the main component of the root system architecture in Arabidopsis. The plasticity of LR development has an important role in improving plant survival in response to the external environment. Previous studies have revealed a number of genetic pathways that control plant growth in response to environmental stimuli. Here, we find that the xyloglucan endotransglucosylase 19 (XTH19) and XTH23 genes are involved in LR development under salt stress. The density of LRs was decreased in the xth23 single mutant, which was also more sensitive to salt than the wild type, and the xth19xth23 double mutant exhibited additive downregulated LR initiation and salt sensitivity compared with the single mutant. On the contrary, constitutive overexpression of XTH19 or XTH23 caused increased LR densities. Furthermore, XTH19 and XTH23 were induced by salt via the key brassinosteroid signaling pathway transcription factor BES1. In addition, we found that 35S::BES1 increased salt tolerance and the phenotype of xth19xth23 & 35S::BES1 was partially complementary to the wild-type level. In vivo and in vitro assays demonstrated that BES1 acts directly upstream of XTH19 and XTH23 to control their expression. Overall, our results revealed that XTH19 and XTH23 are involved in LR development via the BES1-dependent pathway, and contribute to LR adaptation to salt.
Collapse
Affiliation(s)
- Peipei Xu
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Shan Fang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, Tongji University School of Medicine, No. 1278 BaoDe Road, Shanghai, 200443, China
| | - Haiying Chen
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, No. 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
39
|
Lim SD, Mayer JA, Yim WC, Cushman JC. Plant tissue succulence engineering improves water-use efficiency, water-deficit stress attenuation and salinity tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1049-1072. [PMID: 32338788 DOI: 10.1111/tpj.14783] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/01/2020] [Accepted: 04/14/2020] [Indexed: 05/25/2023]
Abstract
Tissue succulence (ratio of tissue water/leaf area or dry mass) or the ability to store water within living tissues is among the most successful adaptations to drought in the plant kingdom. This taxonomically widespread adaptation helps plants avoid the damaging effects of drought, and is often associated with the occupancy of epiphytic, epilithic, semi-arid and arid environments. Tissue succulence was engineered in Arabidopsis thaliana by overexpression of a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape involved in the cell expansion phase of berry development. VvCEB1opt -overexpressing lines displayed significant increases in cell size, succulence and decreased intercellular air space. VvCEB1opt -overexpressing lines showed increased instantaneous and integrated water-use efficiency (WUE) due to reduced stomatal conductance caused by reduced stomatal aperture and density resulting in increased attenuation of water-deficit stress. VvCEB1opt -overexpressing lines also showed increased salinity tolerance due to reduced salinity uptake and dilution of internal Na+ and Cl- as well as other ions. Alterations in transporter activities were further suggested by media and apoplastic acidification, hygromycin B tolerance and changes in relative transcript abundance patterns of various transporters with known functions in salinity tolerance. Engineered tissue succulence might provide an effective strategy for improving WUE, drought avoidance or attenuation, salinity tolerance, and for crassulacean acid metabolism biodesign.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Applied Plant Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | | | - Won Cheol Yim
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557-0330, USA
| |
Collapse
|
40
|
Jing X, Yao J, Ma X, Zhang Y, Sun Y, Xiang M, Hou P, Li N, Zhao R, Li J, Zhou X, Chen S. Kandelia candel Thioredoxin f Confers Osmotic Stress Tolerance in Transgenic Tobacco. Int J Mol Sci 2020; 21:E3335. [PMID: 32397215 PMCID: PMC7247566 DOI: 10.3390/ijms21093335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 11/26/2022] Open
Abstract
Water deficit caused by osmotic stress and drought limits crop yield and tree growth worldwide. Screening and identifying candidate genes from stress-resistant species are a genetic engineering strategy to increase drought resistance. In this study, an increased concentration of mannitol resulted in elevated expression of thioredoxin f (KcTrxf) in the nonsecretor mangrove species Kandelia candel. By means of amino acid sequence and phylogenetic analysis, the mangrove Trx was classified as an f-type thioredoxin. Subcellular localization showed that KcTrxf localizes to chloroplasts. Enzymatic activity characterization revealed that KcTrxf recombinant protein possesses the disulfide reductase function. KcTrxf overexpression contributes to osmotic and drought tolerance in tobacco in terms of fresh weight, root length, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) production. KcTrxf was shown to reduce the stomatal aperture by enhancing K+ efflux in guard cells, which increased the water-retaining capacity in leaves under drought conditions. Notably, the abscisic acid (ABA) sensitivity was increased in KcTrxf-transgenic tobacco, which benefits plants exposed to drought by reducing water loss by promoting stomatal closure. KcTrxf-transgenic plants limited drought-induced H2O2 in leaves, which could reduce lipid peroxidation and retain the membrane integrity. Additionally, glutathione (GSH) contributing to reactive oxygen species (ROS) scavenging and transgenic plants are more efficient at regenerating GSH from oxidized glutathione (GSSG) under conditions of drought stress. Notably, KcTrxf-transgenic plants had increased glucose and fructose contents under drought stress conditions, presumably resulting from KcTrxf-promoted starch degradation under water stress. We conclude that KcTrxf contributes to drought tolerance by increasing the water status, by enhancing osmotic adjustment, and by maintaining ROS homeostasis in transgene plants.
Collapse
Affiliation(s)
- Xiaoshu Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao 266237, China
| | - Jun Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Xujun Ma
- Urat Desert-Grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou 730000, China;
| | - Yanli Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Yuanling Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Min Xiang
- Department of Biology, College of Life Science, Hainan Normal University, Haikou 571158, China; (M.X.); (N.L.)
| | - Peichen Hou
- Beijing Research Center of Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Niya Li
- Department of Biology, College of Life Science, Hainan Normal University, Haikou 571158, China; (M.X.); (N.L.)
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Jinke Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Xiaoyang Zhou
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (X.J.); (J.Y.); (Y.Z.); (Y.S.); (R.Z.); (J.L.); (X.Z.)
| |
Collapse
|
41
|
Effect of Arbuscular Mycorrhizal Fungi (AMF) and Plant Growth-Promoting Bacteria (PGPR) Inoculations on Elaeagnus angustifolia L. in Saline Soil. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030945] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) are considered highly-efficient agents for conferring salt tolerance in host plants and improving soil fertility in rhizosphere. However, information about the inoculation of beneficial microbes on halophytes in arid and semi-arid regions remains inadequate. The objective of this study was to evaluate the influence of AMF (Glomus mosseae) inoculation, alone or in combination with PGPR (Bacillus amyloliquefaciens), on biomass accumulation, morphological characteristics, photosynthetic capacity, and rhizospheric soil enzyme activities of Elaeagnus angustifolia L., a typical halophyte in the northwest of China. The results indicate that, for one-year-old seedlings of Elaeagnus angustifolia L., AMF significantly promoted biomass accumulation in aboveground organs, increased the numbers of leaves and branches, and improved the leaf areas, stem diameters and plant height. AMF-mediated morphological characteristics of aboveground organs favored light interception and absorption and maximized the capacities for photosynthesis, transpiration, carbon dioxide assimilation and gas exchange of Elaeagnus angustifolia L. seedlings in saline soil. AMF also promoted root growth, modified root architecture, and enhanced soil enzyme activities. Elaeagnus angustifolia L. was more responsive to specific inoculation by AMF than by a combination of AMF and PGPR or by solely PGPR in saline soils. Therefore, we suggest that G. mosseae can be used in saline soil to enhance Elaeagnus angustifolia L. seedlings growth and improve soil nutrient uptake. This represents a biological technique to aid in restoration of saline-degraded areas.
Collapse
|
42
|
Li M, Xie F, He Q, Li J, Liu J, Sun B, Luo Y, Zhang Y, Chen Q, Zhang F, Gong R, Wang Y, Wang X, Tang H. Expression Analysis of XTH in Stem Swelling of Stem Mustard and Selection of Reference Genes. Genes (Basel) 2020; 11:genes11010113. [PMID: 31968559 PMCID: PMC7016721 DOI: 10.3390/genes11010113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023] Open
Abstract
Accurate analysis of gene expression requires selection of appropriate reference genes. In this study, we report analysis of eight candidate reference genes (ACTIN, UBQ, EF-1α, UBC, IF-4α, TUB, PP2A, and HIS), which were screened from the genome and transcriptome data in Brassica juncea. Four statistical analysis softwares geNorm, NormFinder, BestKeeper, and RefFinder were used to test the reliability and stability of gene expression of the reference genes. To further validate the stability of reference genes, the expression levels of two CYCD3 genes (BjuB045330 and BjuA003219) were studied. In addition, all genes in the xyloglucan endotransglucosylase/hydrolase (XTH) family were identified in B. juncea and their patterns at different periods of stem enlargement were analyzed. Results indicated that UBC and TUB genes showed stable levels of expression and are recommended for future research. In addition, XTH genes were involved in regulation of stem enlargement expression. These results provide new insights for future research aiming at exploring important functional genes, their expression patterns and regulatory mechanisms for mustard development.
Collapse
Affiliation(s)
- Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Fangjie Xie
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Qi He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Jie Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Jiali Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China; (M.L.); (F.X.); (J.L.); (B.S.); (Y.L.); (Y.Z.); (Q.C.); (F.Z.); (Y.W.); (X.W.)
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: ; Tel.: +86-288-629-1949
| |
Collapse
|
43
|
Pailles Y, Awlia M, Julkowska M, Passone L, Zemmouri K, Negrão S, Schmöckel SM, Tester M. Diverse Traits Contribute to Salinity Tolerance of Wild Tomato Seedlings from the Galapagos Islands. PLANT PHYSIOLOGY 2020; 182:534-546. [PMID: 31653717 PMCID: PMC6945843 DOI: 10.1104/pp.19.00700] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/10/2019] [Indexed: 05/03/2023]
Abstract
Traits of modern crops have been heavily selected in agriculture, leaving commercial lines often more susceptible to harsh conditions compared with their wild relatives. Understanding the mechanisms of stress tolerance in wild relatives can enhance crop performance under stress conditions such as high salinity. In this study, we investigated salinity tolerance of two species of wild tomato endemic to the Galapagos Islands, Solanum cheesmaniae and Solanum galapagense Since these tomatoes grow well despite being constantly splashed with seawater, they represent a valuable genetic resource for improving salinity tolerance in commercial tomatoes. To explore their potential, we recorded over 20 traits reflecting plant growth, physiology, and ion content in 67 accessions and two commercial tomato lines of Solanum lycopersicum. Salt treatments were applied for 10 d using supported hydroponics. The Galapagos tomatoes displayed greater tolerance to salt stress than the commercial lines and showed substantial natural variation in their responses. The accessions LA0317, LA1449, and LA1403 showed particularly high salinity tolerance based on growth under salinity stress. Therefore, Galapagos tomatoes should be further explored to identify the genes underlying their high tolerance and be used as a resource for increasing the salinity tolerance of commercial tomatoes. The generated data, along with useful analysis tools, have been packaged and made publicly available via an interactive online application (https://mmjulkowska.shinyapps.io/La_isla_de_tomato/) to facilitate trait selection and the use of Galapagos tomatoes for the development of salt-tolerant commercial tomatoes.
Collapse
Affiliation(s)
- Yveline Pailles
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Mariam Awlia
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Magdalena Julkowska
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Luca Passone
- King Abdullah University of Science and Technology (KAUST), Division of Physical Sciences and Engineering (PSE), Thuwal, 23955-6900, Saudi Arabia
| | - Khadija Zemmouri
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Sandra M Schmöckel
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering (BESE), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
44
|
Yan J, Huang Y, He H, Han T, Di P, Sechet J, Fang L, Liang Y, Scheller HV, Mortimer JC, Ni L, Jiang M, Hou X, Zhang A. Xyloglucan endotransglucosylase-hydrolase30 negatively affects salt tolerance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5495-5506. [PMID: 31257449 PMCID: PMC6793456 DOI: 10.1093/jxb/erz311] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/20/2019] [Indexed: 05/06/2023]
Abstract
Plants have evolved various strategies to sense and respond to saline environments, which severely reduce plant growth and limit agricultural productivity. Alteration to the cell wall is one strategy that helps plants adapt to salt stress. However, the physiological mechanism of how the cell wall components respond to salt stress is not fully understood. Here, we show that expression of XTH30, encoding xyloglucan endotransglucosylase-hydrolase30, is strongly up-regulated in response to salt stress in Arabidopsis. Loss-of-function of XTH30 leads to increased salt tolerance and overexpression of XTH30 results in salt hypersensitivity. XTH30 is located in the plasma membrane and is highly expressed in the root, flower, stem, and etiolated hypocotyl. The NaCl-induced increase in xyloglucan (XyG)-derived oligosaccharide (XLFG) of the wild type is partly blocked in xth30 mutants. Loss-of-function of XTH30 slows down the decrease of crystalline cellulose content and the depolymerization of microtubules caused by salt stress. Moreover, lower Na+ accumulation in shoot and lower H2O2 content are found in xth30 mutants in response to salt stress. Taken together, these results indicate that XTH30 modulates XyG side chains, altered abundance of XLFG, cellulose synthesis, and cortical microtubule stability, and negatively affecting salt tolerance.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tong Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pengcheng Di
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Julien Sechet
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Liang
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Henrik Vibe Scheller
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenny C Mortimer
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
- Correspondence:
| |
Collapse
|
45
|
Lema M, Ali MY, Retuerto R. Domestication influences morphological and physiological responses to salinity in Brassica oleracea seedlings. AOB PLANTS 2019; 11:plz046. [PMID: 31579110 PMCID: PMC6757351 DOI: 10.1093/aobpla/plz046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
Brassica oleracea cultivars include important vegetable and forage crops grown worldwide, whereas the wild counterpart occurs naturally on European sea cliffs. Domestication and selection processes have led to phenotypic and genetic divergence between domesticated plants and their wild ancestors that inhabit coastal areas and are exposed to saline conditions. Salinity is one of the most limiting factors for crop production. However, little is known about how salinity affects plants in relation to domestication of B. oleracea. The objective of this study was to determine the influence of domestication status (wild, landrace or cultivar) on the response of different B. oleracea crops to salinity, as measured by seed germination, plant growth, water content and mineral concentration parameters at the seedling stage. For this purpose, two independent pot experiments were conducted with six accessions of B. oleracea, including cabbage (group capitata) and kale (group acephala), in a growth chamber under controlled environmental conditions. In both taxonomic groups, differences in domestication status and salt stress significantly affected all major process such as germination, changes in dry matter, water relations and mineral uptake. In the acephala experiment, the domestication × salinity interaction significantly affected water content parameters and shoot Na+ allocation. At early stages of development, wild plants are more succulent than cultivated plants and have a higher capacity to maintain lower Na+ concentrations in their shoots in response to increasing levels of salinity. Different responses of domesticated and cultivated accessions in relation to these traits indicated a high level of natural variation in wild B. oleracea. Exclusion of Na+ from shoots and increasing succulence may enhance salt tolerance in B. oleracea exposed to extreme salinity in the long term. The wild germplasm can potentially be used to improve the salt tolerance of crops by the identification of useful genes and incorporation of these into salinity-sensitive cultivars.
Collapse
Affiliation(s)
- M Lema
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Md Y Ali
- Agrotechnology Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - R Retuerto
- Department of Functional Biology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
46
|
Niechayev NA, Pereira PN, Cushman JC. Understanding trait diversity associated with crassulacean acid metabolism (CAM). CURRENT OPINION IN PLANT BIOLOGY 2019; 49:74-85. [PMID: 31284077 DOI: 10.1016/j.pbi.2019.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Crassulacean acid metabolism (CAM) is a specialized mode of photosynthesis that exploits a temporal CO2 pump with nocturnal CO2 uptake and concentration to reduce photorespiration, improve water-use efficiency (WUE), and optimize the adaptability of plants to climates with seasonal or intermittent water limitations. CAM plants display a plastic continuum in the extent to which species engage in net nocturnal CO2 uptake that ranges from 0 to 100%. CAM plants also display diverse enzyme and organic acid and carbohydrate storage systems, which likely reflect the multiple, independent evolutionary origins of CAM. CAM is often accompanied by a diverse set of anatomical traits, such as tissue succulence and water-storage and water-capture strategies to attenuate drought. Other co-adaptive traits, such as thick cuticles, epicuticular wax, low stomatal density, high stomatal responsiveness, and shallow rectifier-like roots limit water loss under conditions of water deficit. Recommendations for future research efforts to better explore and understand the diversity of traits associated with CAM and CAM Biodesign efforts are presented.
Collapse
Affiliation(s)
- Nicholas A Niechayev
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - Paula N Pereira
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States
| | - John C Cushman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557-0330, United States.
| |
Collapse
|
47
|
Populus euphratica JRL Mediates ABA Response, Ionic and ROS Homeostasis in Arabidopsis under Salt Stress. Int J Mol Sci 2019; 20:ijms20040815. [PMID: 30769802 PMCID: PMC6412788 DOI: 10.3390/ijms20040815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/10/2019] [Accepted: 02/11/2019] [Indexed: 11/23/2022] Open
Abstract
Sodium chloride (NaCl) induced expression of a jacalin-related mannose-binding lectin (JRL) gene in leaves, roots, and callus cultures of Populus euphratica (salt-resistant poplar). To explore the mechanism of the PeJRL in salinity tolerance, the full length of PeJRL was cloned from P. euphratica and was transformed into Arabidopsis. PeJRL was localized to the cytoplasm in mesophyll cells. Overexpression of PeJRL in Arabidopsis significantly improved the salt tolerance of transgenic plants, in terms of seed germination, root growth, and electrolyte leakage during seedling establishment. Under NaCl stress, transgenic plants retained K+ and limited the accumulation of Na+. PeJRL-transgenic lines increased Na+ extrusion, which was associated with the upward regulation of SOS1, AHA1, and AHA2 genes encoding plasma membrane Na+/proton (H+) antiporter and H+-pumps. The activated H+-ATPases in PeJRL-overexpressed plants restricted the channel-mediated loss of K+ that was activated by NaCl-induced depolarization. Under salt stress, PeJRL–transgenic Arabidopsis maintained reactive oxygen species (ROS) homeostasis by activating the antioxidant enzymes and reducing the production of O2− through downregulation of NADPH oxidases. Of note, the PeJRL-transgenic Arabidopsis repressed abscisic acid (ABA) biosynthesis, thus reducing the ABA-elicited ROS production and the oxidative damage during the period of salt stress. A schematic model was proposed to show the mediation of PeJRL on ABA response, and ionic and ROS homeostasis under NaCl stress.
Collapse
|
48
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 DOI: 10.3389/fpls.2018.0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/27/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
49
|
Polle A, Chen SL, Eckert C, Harfouche A. Engineering Drought Resistance in Forest Trees. FRONTIERS IN PLANT SCIENCE 2019; 9:1875. [PMID: 30671067 PMCID: PMC6331418 DOI: 10.3389/fpls.2018.01875] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/04/2018] [Indexed: 05/03/2023]
Abstract
Climatic stresses limit plant growth and productivity. In the past decade, tree improvement programs were mainly focused on yield but it is obvious that enhanced stress resistance is also required. In this review we highlight important drought avoidance and tolerance mechanisms in forest trees. Genomes of economically important trees species with divergent resistance mechanisms can now be exploited to uncover the mechanistic basis of long-term drought adaptation at the whole plant level. Molecular tree physiology indicates that osmotic adjustment, antioxidative defense and increased water use efficiency are important targets for enhanced drought tolerance at the cellular and tissue level. Recent biotechnological approaches focused on overexpression of genes involved in stress sensing and signaling, such as the abscisic acid core pathway, and down-stream transcription factors. By this strategy, a suite of defense systems was recruited, generally enhancing drought and salt stress tolerance under laboratory conditions. However, field studies are still scarce. Under field conditions trees are exposed to combinations of stresses that vary in duration and magnitude. Variable stresses may overrule the positive effect achieved by engineering an individual defense pathway. To assess the usability of distinct modifications, large-scale experimental field studies in different environments are necessary. To optimize the balance between growth and defense, the use of stress-inducible promoters may be useful. Future improvement programs for drought resistance will benefit from a better understanding of the intricate networks that ameliorate molecular and ecological traits of forest trees.
Collapse
Affiliation(s)
- Andrea Polle
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Goettingen, Göttingen, Germany
| | - Shao Liang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Christian Eckert
- Forest Botany and Tree Physiology, University of Goettingen, Göttingen, Germany
| | - Antoine Harfouche
- Department for Innovation in Biological, Agrofood and Forest systems, University of Tuscia, Viterbo, Italy
| |
Collapse
|
50
|
Zhang H, Zhang Y, Deng C, Deng S, Li N, Zhao C, Zhao R, Liang S, Chen S. The Arabidopsis Ca 2+-Dependent Protein Kinase CPK12 Is Involved in Plant Response to Salt Stress. Int J Mol Sci 2018; 19:ijms19124062. [PMID: 30558245 PMCID: PMC6321221 DOI: 10.3390/ijms19124062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 11/22/2022] Open
Abstract
CDPKs (Ca2+-Dependent Protein Kinases) are very important regulators in plant response to abiotic stress. The molecular regulatory mechanism of CDPKs involved in salt stress tolerance remains unclear, although some CDPKs have been identified in salt-stress signaling. Here, we investigated the function of an Arabidopsis CDPK, CPK12, in salt-stress signaling. The CPK12-RNA interference (RNAi) mutant was much more sensitive to salt stress than the wild-type plant GL1 in terms of seedling growth. Under NaCl treatment, Na+ levels in the roots of CPK12-RNAi plants increased and were higher than levels in GL1 plants. In addition, the level of salt-elicited H2O2 production was higher in CPK12-RNAi mutants than in wild-type GL1 plants after NaCl treatment. Collectively, our results suggest that CPK12 is required for plant adaptation to salt stress.
Collapse
Affiliation(s)
- Huilong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Yinan Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chen Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shurong Deng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Nianfei Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Chenjing Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Rui Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Shan Liang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shaoliang Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|