1
|
Tian Z, Jia J, Yin B, Chen W. Constructing the metabolic network of wheat kernels based on structure-guided chemical modification and multi-omics data. J Genet Genomics 2024; 51:714-722. [PMID: 38458562 DOI: 10.1016/j.jgg.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
Metabolic network construction plays a pivotal role in unraveling the regulatory mechanism of biological activities, although it often proves to be challenging and labor-intensive, particularly with non-model organisms. In this study, we develop a computational approach that employs reaction models based on the structure-guided chemical modification and related compounds to construct a metabolic network in wheat. This construction results in a comprehensive structure-guided network, including 625 identified metabolites and additional 333 putative reactions compared with the Kyoto Encyclopedia of Genes and Genomes database. Using a combination of gene annotation, reaction classification, structure similarity, and correlations from transcriptome and metabolome analysis, a total of 229 potential genes related to these reactions are identified within this network. To validate the network, the functionality of a hydroxycinnamoyltransferase (TraesCS3D01G314900) for the synthesis of polyphenols and a rhamnosyltransferase (TraesCS2D01G078700) for the modification of flavonoids are verified through in vitro enzymatic studies and wheat mutant tests, respectively. Our research thus supports the utility of structure-guided chemical modification as an effective tool in identifying causal candidate genes for constructing metabolic networks and further in metabolomic genetic studies.
Collapse
Affiliation(s)
- Zhitao Tian
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Jingqi Jia
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Bo Yin
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, Hubei 430070, China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China.
| |
Collapse
|
2
|
Li X, Tang Y, Zhou C, Lv J. Contributions of glume and awn to photosynthesis, 14C assimilates and grain weight in wheat ears under drought stress. Heliyon 2023; 9:e21136. [PMID: 37886759 PMCID: PMC10597856 DOI: 10.1016/j.heliyon.2023.e21136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/09/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Ear photosynthesis plays a key role in wheat photosynthesis during the grain filling stage, particularly under drought stress. Thus, dissecting the responsibilities of the glume and awn in photosynthetic carbon fixation and assimilates transportation during the grain filling stage in spikes is imperative. In this study, the detachment of the glume (DG) and awn (DA) of a wheat variety (Pubing143) was used to estimate their influences on ear photosynthesis and dry matter distribution. Radioactive carbon-14 (14C) isotope was detected by a multifunctional liquid scintillation counting system. The accumulation of 14C assimilates and their contributions to grain weight were then calculated. Under well-watered conditions, ear photosynthesis was reduced by 16.8 % and 46.2 % 25 d after anthesis (DAA) in the de-glumed control (DGC) and de-awned control (DAC) treatments, respectively, compared with the intact ear control (IEC). Under drought stress, ear photosynthesis was reduced by 46 % and 74.2 % at 25 DAA after removing the glume and awn, respectively. Under normal conditions, the number of 14C assimilates of DGC, and DAC was reduced by 14.6 % and 20.9 % in grains at 25 DAA, respectively, compared with the IEC. Compared with IED, the 14C assimilates of DGD, and DAD declined by 17.2 % and 27 %, respectively, in grains at 25 DAA under drought conditions. Under well-watered conditions, the grain weight per pot was reduced by 11.2 % and 25.4 % in the de-glumed control (DGC) and de-awned control (DAC) treatments, respectively, compared with the intact ear control (IEC). The grain weight per pot was further reduced after removing the glume and awn (16 % and 32.2 %, respectively) under drought stress. Furthermore, the awn contribution to grain weight was twice that of the glume. Our results suggest that the glume and awn of ears play prominent roles during grain filling in wheat, especially under drought stress, and that the awn is more crucial than the glume.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Agronomy, Shanxi Agricultural University, Taigu, 030801, China
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Yan Tang
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Chunju Zhou
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A & F University, Yangling, 712100, China
| |
Collapse
|
3
|
Influence of Sink Size on 15N and 13C Allocation during Different Phenological Phases of Spring Wheat Cultivars. NITROGEN 2023. [DOI: 10.3390/nitrogen4010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The scientific objective of this study was to answer the question of whether sink limitation is also true for high quality wheat varieties. We examined the incorporation of 15N and 13C during phenological phases into vegetative parts and grains of Elite wheat Triso (E) and Quality wheat Naxos (A) when the spike is halved. Three splits of fertilizer were applied at EC 11, EC 30, EC 59, whereby 10% at EC 30 and EC 59 was 15N, and plants were also labelled with 13CO2. The application of only the third split as 15N, combined with spike-halving, resulted in a significantly higher 15N-content (+11%) of 0.486 mg 15N/g DM, compared to the control (0.437 mg15N/g DM). Labelling whole plants with 13CO2 at EC 59 resulted in a significantly higher 13C-content—40%—(0.223 mg 13C/g DM) of the grains of the control for Triso at the fully-ripe stage (EC 89), compared to Naxos (0.160 mg 13C/g DM). This superiority was reduced to 34%, and was also demonstrated by spike-halving (0.226 mg 13C/g DM, 0.169 mg 13C/g DM). Remobilization of 15N for control and spike-halving treatments were 68.2% and 61.1%, respectively. This clearly demonstrates that the reduction of the sink size by spike-halving leads to a 7% reduction in the remobilization of 15N from vegetative to reproductive tissues.
Collapse
|
4
|
Effect of Late 15N-Fertilization and Water Deficit on Allocation into the Gluten of German and Mediterranean Spring Wheat Cultivars. NITROGEN 2022. [DOI: 10.3390/nitrogen3040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In a split N-application system, the objective was to quantify N/15N in gluten and non-gluten proteins after the late application of 30 or 60 kg N, whereby 10% of the third split was applied as 15N. This fertilization was combined with a reduced water supply for 21 days (well-watered (ww); water deficit (wd)). German spring wheat cultivars, Elite wheat Taifun, Quality wheat Monsun and cultivars from the Mediterranean territory, Golia, Gönen, were examined. The protein content in gluten was for 30 kg N, ww, similar for Taifun, Golia, and Gönen, but markedly lower in Monsun (231, 245, 247, 194 mg protein/g DM). The water deficit increased the protein content in the gluten of Golia and Gönen and was higher than that of Taifun and Monsun (297, 257, 249, 202 mg protein/g DM). Fertilization of 60 kg N, ww, did not result in any change in the protein content in gluten and differences between the cultivars were not detectable. The 15N protein in gluten was for 30 kg N, ww, markedly higher in Gönen (2.32 mg 15N protein/g DM), compared to Golia and Monsun (1.93, 1.50 mg 15N protein/g DM), and similar in Taifun (1.64 mg 15N protein/g DM). 15N fertilizer uptake into gluten was stimulated by water deficit for 30 and 60 kg N, leading to significantly increased 15N protein in Golia and Gönen, (2.38, 2.99, 4.34, 5.87 mg 15N protein/g DM). Fertilization of 60 kg N led to a proportional two-time increase in the 15N gluten protein of the four cultivars, in ww and wd plants. Assessed on the basis of 15N fertilizer allocation under wd conditions into gluten proteins, Golia and Gönen have a stronger sink activity, compared to Taifun and Monsun.
Collapse
|
5
|
Ma C, Xie P, Yang J, Lin L, Zhang K, Zhang H. Evaluating the contributions of leaf organ to wheat grain cadmium at the filling stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155217. [PMID: 35429556 DOI: 10.1016/j.scitotenv.2022.155217] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) is an element of global concern in agricultural fields owing to its high bioavailability and its risk to human health via the consumption of wheat products. However, whether wheat leaves can directly absorb atmospheric Cd and transport them to the grains along with the contribution of leaves to Cd accumulation in the grains is not clear. We evaluated this mechanism through three comparative treatments: 1) exposure to atmospheric deposition (CK), 2) no exposure to atmospheric deposition (T1), and 3) exposure to atmospheric deposition with leaf cutting (T2). The Cd accumulation rate of grains in the CK, T1, and T2 groups all showed an increasing trend, followed by a decreasing trend, which was consistent with the trend of filling rate. Moreover, the critical period for leaf Cd accumulation in the grains was the early filling period, and its contribution decreased gradually as filling progressed. The contribution of the leaves to grain Cd reached 31.73% at maturity, with the reactivation of stored Cd in leaves pre-flowering and the newly absorbed atmospheric Cd by leaves post-flowering contributing 19.76% and 11.97% to Cd accumulation in grains, respectively, at maturity. Sub-microstructure analysis of the leaves further confirmed that the direct Cd absorption by leaves from atmospheric deposition through stomata contributed to Cd accumulation in wheat grains. Therefore, controlling the sources of atmospheric Cd pollution and reducing Cd absorption by leaves during grain filling can effectively control Cd pollution of wheat grains. This study provides significant insights on how to more effectively control the Cd content of edible part of wheat and ensure food security.
Collapse
Affiliation(s)
- Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Pan Xie
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Jun Yang
- Institute of Geographical Sciences and Natural Resource Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Lin Lin
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Ke Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Zhengzhou University of Light Industry, Zhengzhou 45000, China
| |
Collapse
|
6
|
Hajibarat Z, Saidi A. Senescence-associated proteins and nitrogen remobilization in grain filling under drought stress condition. J Genet Eng Biotechnol 2022; 20:101. [PMID: 35819732 PMCID: PMC9276853 DOI: 10.1186/s43141-022-00378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022]
Abstract
Background Plants use escape strategies including premature senescence and leaf reduction to cope in response to drought stress, which in turn reduces plant leaves and photosynthesis. This strategy allows the new generation (seeds) to survive under drought but, plants experience more yield loss during stress condition. The amount of damage caused by drought stress is compensated by the expression of genes involved in regulating leaf aging. Leaf senescence alters the expression of thousands of genes and ultimately affecting grain protein content, grain yield, and nitrogen utilization efficiency. Also, under drought stress, nitrogen in the soil will not become as much available and causes the beginning and acceleration of the senescence process of leaves. The main body of the abstract This review identified proteins signaling and functional proteins involved in senescence. Further, transcription factors and cell wall degradation enzymes (proteases) related to senescence during drought stress were surveyed. We discuss the regulatory pathways of genes as a result of the degradation of proteins during senescence process. Senescence is strongly influenced by plant hormones and environmental factors including the availability of nitrogen. During maturity or drought stress, reduced nitrogen uptake can cause nitrogen to be remobilized from leaves and stems to seeds, eventually leading to leaf senescence. Under these conditions, genes involved in chloroplast degradation and proteases show increased expression. The functional (proteases) and regulatory proteins such as protein kinases and phosphatases as well as transcription factors (AP2/ERF, NAC, WRKY, MYB, and bZIP) are involved in leaf senescence and drought stress. Short conclusion In this review, senescence-associated proteins involved in leaf senescence and regulatory and functional proteins in response to drought stress during grain filling were surveyed. The present study predicts on the role of nitrogen transporters, transcription factors and regulatory genes involved in the late stages of plant growth with the aim of understanding their mechanisms of action during grain filling stage. For a better understanding, the relevant evidence for the balance between grain filling and protein breakdown during grain filling in cereals is presented.
Collapse
Affiliation(s)
- Zohreh Hajibarat
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Abbas Saidi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
7
|
Kaya O, Kose C, Esitken A, Gecim T, Donderalp V, Taskin S, Turan M. Frost tolerance in apricot (Prunus armeniaca L.) receptacle and pistil organs: how is the relationship among amino acids, minerals, and cell death points? INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:2157-2170. [PMID: 34324064 DOI: 10.1007/s00484-021-02178-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
To the better management of spring frost problem in the apricot cultivars, evaluation of biochemical changes in flower and/or flower organs during bud break could be one of the key factors. In this study, the relationship between the biochemical metabolites such as amino acids and minerals in the receptacle and pistil organs of two different apricot cultivars (frost-sensitive and frost-tolerant) and their relative effects on the frost tolerance of the cultivars and their organs were investigated during full blooming stage. In both apricot cultivars, it was found that the cell death points (CDP) of flower receptacle (- 6.3 to - 8.4 °C) were at higher temperatures than the CDP of flower pistil organs (- 13.1 to - 14.5 °C). Receptacle organs in flower, therefore, had less tolerance to spring frost damage. In addition, significant differences in mineral and amino acid contents were detected both between apricot cultivars and between the receptacle and pistil organs of the cultivars. Amino acid and mineral contents were lower both in the freezing-sensitive apricot cultivar ("Mihralibey") and the freezing-sensitive organ (receptacle) in comparison with the freezing-tolerant apricot cultivar ("Iğdır Şalak") and the freezing-tolerant organ (pistil). A significant negative correlation was also observed between the mean CDP values and both amino acid and mineral contents in the receptacle and pistil organs of both apricot cultivars. A negative correlation was found between CDP values and glutamate from amino acids and N, K, and Mg from minerals, and also these were determined that they had positive effects on frost tolerance increase. An important finding from our work revealed that the amount of each mineral and amino acid allocated differently to the receptacle and pistil organs of the apricot cultivars. The understanding of the amino acids and the mineral dynamics may contribute to improving the tolerance of flowers of apricot or other deciduous species to frost damage during spring. In the future, we may conclude that protection strategies such as increasing amino acids and mineral content in the receptacle organ of flowers would be necessary to cope with the negative effects of spring frost.
Collapse
Affiliation(s)
- Ozkan Kaya
- Erzincan Horticultural Research Institute, 24060, Erzincan, Turkey.
| | - Cafer Kose
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240, Erzurum, Turkey
| | - Ahmet Esitken
- Department of Horticulture, Faculty of Agriculture, Selcuk University, 42031, Konya, Turkey
| | - Tevhit Gecim
- Erzincan Horticultural Research Institute, 24060, Erzincan, Turkey
| | - Veysel Donderalp
- Erzincan Horticultural Research Institute, 24060, Erzincan, Turkey
| | - Seval Taskin
- Erzincan Horticultural Research Institute, 24060, Erzincan, Turkey
| | - Metin Turan
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, 34755, Istanbul, Turkey
| |
Collapse
|
8
|
Grant KR, Brennan M, Hoad SP. The Structure of the Barley Husk Influences Its Resistance to Mechanical Stress. FRONTIERS IN PLANT SCIENCE 2021; 11:614334. [PMID: 33574825 PMCID: PMC7871009 DOI: 10.3389/fpls.2020.614334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
This paper explores the links between genotype, plant development, plant structure and plant material properties. The barley husk has two organs, the lemma and the palea, which protect the grain. When the husk is exposed to mechanical stress, such as during harvesting, it can be damaged or detached. This is known as grain skinning, which is detrimental to grain quality and has a significant economic impact on industry. This study focused on the lemma, the husk organ which is most susceptible to grain skinning. This study tested three hypotheses: (1) genotype and plant development determine lemma structure, (2) lemma structure influences the material properties of the lemma, and (3) the material properties of the lemma determine grain skinning risk. The effect of genotype was investigated by using plant material from four malting barley varieties: two with a high risk of grain skinning, two with a low risk. Plant material was assessed at two stages of plant development (anthesis, GS 65; grain filling, GS 77). Structure was assessed using light microscopy to measure three physiological features: thickness, vasculature and cell area. Material properties were approximated using a controlled impact assay and by analyzing fragmentation behavior. Genotype had a significant effect on lemma structure and material properties from anthesis. This indicates that differences between genotypes were established during floral development. The lemma was significantly thinner in high risk genotypes, compared to low risk genotypes. Consequently, in high risk genotypes, the lemma was significantly more likely to fragment. This indicates a relationship between reduced lemma thickness and increased fragmentation. Traditionally, a thin husk has been considered beneficial for malting quality, due to an association with malt extract. However, this study finds a thin lemma is less resistant to mechanical stress. This may explain the differences in grain skinning risk in the genotypes studied.
Collapse
Affiliation(s)
- Kathryn R. Grant
- School of Biological Sciences, College of Science and Engineering, Institute of Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Maree Brennan
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| | - Stephen P. Hoad
- Department of Agriculture, Horticulture and Engineering Sciences, Scotland's Rural College, Edinburgh, United Kingdom
| |
Collapse
|
9
|
Li X, Zhang X, Liu G, Tang Y, Zhou C, Zhang L, Lv J. The spike plays important roles in the drought tolerance as compared to the flag leaf through the phenylpropanoid pathway in wheat. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:100-111. [PMID: 32408177 DOI: 10.1016/j.plaphy.2020.05.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 05/27/2023]
Abstract
The spike photosynthesis plays a curial role in wheat photosynthesis under drought stress. However, the mechanism of drought tolerance in the spike is still unclear. Our study compared the gas exchange parameters, antioxidant system, and phenylpropanoid pathway between the wheat flag leaf and spike in response to drought stress. Compared with the flag leaf, the spike organs exhibited lower reductions in the net photosynthetic rate (Pn), relative water content (RWC), and chlorophyll content (Chl) under drought stress. The activities of phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), and 4-coumarate-coenzyme A ligase (4CL) enzymes, and the total contents of phenolics and flavonoids (TPC and TFC, respectively) were enhanced much more percentages in the spike organs than that in the flag leaf under drought stress. Drought also induced the expression of structural genes (TaPAL, TaC4H, Ta4CL, TaCHS, TaCHI, TaFNS, TaF3H, TaFLS, TaDFR, and TaANS) involved in the phenylpropanoid pathway of the spike organs during the middle and late grain filling periods. The spike organs also showed much smaller accumulations of O2.-, hydrogen peroxide (H2O2), and malondialdehyde (MDA) in treated wheat. Higher activities of antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; and catalase, CAT) and more proline content were observed in the spike organs as compared to the flag leaf under drought stress. All these results indicated that the enhanced tolerance to drought stress in spike organs was related to the elevated phenylpropanoid pathway. It could make the spike maintain a better water status and further lead to the relatively higher photosynthesis and lower membrane damage.
Collapse
Affiliation(s)
- Xiaorui Li
- College of Life Sciences, Northwest A & F University, 712100, Yangling, China
| | - Xu Zhang
- College of Life Sciences, Northwest A & F University, 712100, Yangling, China
| | - Guangping Liu
- College of Chemistry & Pharmacy, Northwest A & F University, 712100, Yangling, China
| | - Yan Tang
- College of Life Sciences, Northwest A & F University, 712100, Yangling, China
| | - Chunju Zhou
- College of Life Sciences, Northwest A & F University, 712100, Yangling, China
| | - Lixin Zhang
- College of Life Sciences, Northwest A & F University, 712100, Yangling, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A & F University, 712100, Yangling, China.
| |
Collapse
|
10
|
Taranto F, D'Agostino N, Rodriguez M, Pavan S, Minervini AP, Pecchioni N, Papa R, De Vita P. Whole Genome Scan Reveals Molecular Signatures of Divergence and Selection Related to Important Traits in Durum Wheat Germplasm. Front Genet 2020; 11:217. [PMID: 32373150 PMCID: PMC7187681 DOI: 10.3389/fgene.2020.00217] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/24/2020] [Indexed: 01/31/2023] Open
Abstract
The first breeding program in the world for durum wheat was conceived in Italy in the early 1900s. Over the decades, pressure exerted by natural and artificial selection could have progressively reduced the genetic diversity of the durum wheat germplasm. In the present study, a large panel of Italian durum wheat accessions that includes landraces, old and modern cultivars was subjected to genotyping using the Illumina iSelect 15K wheat SNP array. The aim was to assess the impact that selection has in shaping Italian durum wheat genetic diversity and to exploit the patterns of genetic diversity between populations to identify molecular signatures of divergence and selection. Relatively small differences in genetic diversity have been observed among accessions, which have been selected and cultivated in Italy over the past 150 years. Indeed, directional selection combined with that operated by farmers/breeders resulted in the increase of linkage disequilibrium (LD) and in changes of the allelic frequencies in DNA regions that control important agronomic traits. Results from this study also show that major well-known genes and/or QTLs affecting plant height (RHT), earliness (VRN, PPD) and grain quality (GLU, PSY, PSD, LYC, PPO, LOX3) co-localized with outlier SNP loci. Interestingly, many of these SNPs fall in genomic regions where genes involved in nitrogen metabolism are. This finding highlights the key role these genes have played in the transition from landraces to modern cultivars. Finally, our study remarks on the need to fully exploit the genetic diversity of Italian landraces by intense pre-breeding activities aimed at introducing a new source of adaptability and resistance in the genetic background of modern cultivars, to contrast the effect of climate change. The list of divergent loci and loci under selection associated with useful agronomic traits represents an invaluable resource to detect new allelic variants for target genes and for guiding new genomic selection programs in durum wheat.
Collapse
Affiliation(s)
- Francesca Taranto
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nunzio D'Agostino
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Sassari, Italy.,CBV - Interdepartmental Centre for Plant Biodiversity Conservation and Enhancement Sassari University, Alghero, Italy
| | - Stefano Pavan
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Anna P Minervini
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Nicola Pecchioni
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), Foggia, Italy
| |
Collapse
|
11
|
Zentgraf U, Doll J. Arabidopsis WRKY53, a Node of Multi-Layer Regulation in the Network of Senescence. PLANTS (BASEL, SWITZERLAND) 2019; 8:E578. [PMID: 31817659 PMCID: PMC6963213 DOI: 10.3390/plants8120578] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
Leaf senescence is an integral part of plant development aiming at the remobilization of nutrients and minerals out of the senescing tissue into developing parts of the plant. Sequential as well as monocarpic senescence maximize the usage of nitrogen, mineral, and carbon resources for plant growth and the sake of the next generation. However, stress-induced premature senescence functions as an exit strategy to guarantee offspring under long-lasting unfavorable conditions. In order to coordinate this complex developmental program with all kinds of environmental input signals, complex regulatory cues have to be in place. Major changes in the transcriptome imply important roles for transcription factors. Among all transcription factor families in plants, the NAC and WRKY factors appear to play central roles in senescence regulation. In this review, we summarize the current knowledge on the role of WRKY factors with a special focus on WRKY53. In contrast to a holistic multi-omics view we want to exemplify the complexity of the network structure by summarizing the multilayer regulation of WRKY53 of Arabidopsis.
Collapse
Affiliation(s)
- Ulrike Zentgraf
- Center for Plant Molecular Biology (ZMBP), University of Tuebingen, Auf der Morgenstelle 32, 72076 Tuebingen, Germany;
| | | |
Collapse
|
12
|
Bian J, Deng P, Zhan H, Wu X, Nishantha MDLC, Yan Z, Du X, Nie X, Song W. Transcriptional Dynamics of Grain Development in Barley ( Hordeum vulgare L.). Int J Mol Sci 2019; 20:E962. [PMID: 30813307 PMCID: PMC6412674 DOI: 10.3390/ijms20040962] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 11/29/2022] Open
Abstract
Grain development, as a vital process in the crop's life cycle, is crucial for determining crop quality and yield. However, the molecular basis and regulatory network of barley grain development is not well understood at present. Here, we investigated the transcriptional dynamics of barley grain development through RNA sequencing at four developmental phases, including early prestorage phase (3 days post anthesis (DPA)), late prestorage or transition phase (8 DPA), early storage phase (13 DPA), and levels off stages (18 DPA). Transcriptome profiling found that pronounced shifts occurred in the abundance of transcripts involved in both primary and secondary metabolism during grain development. The transcripts' activity was decreased during maturation while the largest divergence was observed between the transitions from prestorage phase to storage phase, which coincided with the physiological changes. Furthermore, the transcription factors, hormone signal transduction-related as well as sugar-metabolism-related genes, were found to play a crucial role in barley grain development. Finally, 4771 RNA editing events were identified in these four development stages, and most of the RNA editing genes were preferentially expressed at the prestore stage rather than in the store stage, which was significantly enriched in "essential" genes and plant hormone signal transduction pathway. These results suggested that RNA editing might act as a 'regulator' to control grain development. This study systematically dissected the gene expression atlas of barley grain development through transcriptome analysis, which not only provided the potential targets for further functional studies, but also provided insights into the dynamics of gene regulation underlying grain development in barley and beyond.
Collapse
Affiliation(s)
- Jianxin Bian
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Haoshuang Zhan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaotong Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Mutthanthirige D L C Nishantha
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhaogui Yan
- Huazhong Agricultural University, Wuhan 430070, China.
| | - Xianghong Du
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Weining Song
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, Shaanxi 712100, China.
- Joint Research Center for Agriculture Research in Arid Areas, Yangling, Shaanxi 712100, China.
| |
Collapse
|
13
|
Fataftah N, Mohr C, Hajirezaei MR, Wirén NV, Humbeck K. Changes in nitrogen availability lead to a reprogramming of pyruvate metabolism. BMC PLANT BIOLOGY 2018; 18:77. [PMID: 29728053 PMCID: PMC5935972 DOI: 10.1186/s12870-018-1301-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 04/30/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Low availability of nitrogen (N) severely affects plant growth at different levels, which can be reverted by the resupply of N. To unravel the critical steps in primary metabolism underlying the growth adjustment in response to changes in N availability, transcriptomic and comprehensive metabolite analyses were performed in barley using primary leaves at early and later stages of N deprivation, and after N resupply to N-deficient plants. RESULT N deficiency in leaves caused differential regulation of 1947 genes, mostly belonging to the functional classes photosynthesis, cell wall degradation, lipid degradation, amino acid degradation, transcription factors, phytohormone metabolism and receptor-like kinases. Interestingly, 62% of the genes responding to low N were regulated in the opposite direction after two days of N resupply. Reprogramming of gene transcription was linked to metabolic rearrangements and affected the metabolism of amino acids and sugars. The levels of major amino acids, including Glu, Asp, Ser, Gln, Gly, Thr, Ala, and Val, decreased during primary leaf age and, more pronounced, during low N-induced senescence, which was efficiently reverted after resupply of N. A significant decrease was observed for pyruvate and metabolites involved in the TCA cycle under low N, and this was reverted to initial levels after 5 days of N resupply. Correspondingly, transcript levels of genes coding for pyruvate kinase, pyruvate dehydrogenase, and pyruvate orthophosphate dikinase followed the same trend as related metabolites. CONCLUSION Our results show that upon N limitation a specific pathway for remobilization at the link between glycolysis and TCA cycle in barley is established that is at least partly regulated by a strict reprogramming of the gene coding for pyruvate orthophosphate dikinase. Further analysis of this pathway, its regulatory levels and biochemical changing of pyruvate metabolism enzymes in response to N availability is needed to determine the link between N status and primary metabolism.
Collapse
Affiliation(s)
- Nazeer Fataftah
- Institute of Biology/Plant Physiology department, Martin-Luther-University Halle-Wittenberg, Halle, (Saale) Germany
| | - Christina Mohr
- Institute of Biology/Plant Physiology department, Martin-Luther-University Halle-Wittenberg, Halle, (Saale) Germany
| | - Mohammad-Reza Hajirezaei
- Physiology and Cell Biology department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, OT Germany
| | - Nicolaus von Wirén
- Physiology and Cell Biology department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, OT Germany
| | - Klaus Humbeck
- Institute of Biology/Plant Physiology department, Martin-Luther-University Halle-Wittenberg, Halle, (Saale) Germany
| |
Collapse
|
14
|
Radchuk V, Tran V, Radchuk R, Diaz-Mendoza M, Weier D, Fuchs J, Riewe D, Hensel G, Kumlehn J, Munz E, Heinzel N, Rolletschek H, Martinez M, Borisjuk L. Vacuolar processing enzyme 4 contributes to maternal control of grain size in barley by executing programmed cell death in the pericarp. THE NEW PHYTOLOGIST 2018; 218:1127-1142. [PMID: 28836669 DOI: 10.1111/nph.14729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 06/25/2017] [Indexed: 05/12/2023]
Abstract
The angiosperm embryo and endosperm are limited in space because they grow inside maternal seed tissues. The elimination of cell layers of the maternal seed coat by programmed cell death (PCD) could provide space and nutrition to the filial organs. Using the barley (Hordeum vulgare L.) seed as a model, we elucidated the role of vacuolar processing enzyme 4 (VPE4) in cereals by using an RNAi approach and targeting the enzymatic properties of the recombinant protein. A comparative characterization of transgenic versus wild-type plants included transcriptional and metabolic profiling, flow cytometry, histology and nuclear magnetic imaging of grains. The recombinant VPE4 protein exhibited legumain and caspase-1 properties in vitro. Pericarp disintegration was delayed in the transgenic grains. Although the VPE4 gene and enzymatic activity was decreased in the early developing pericarp, storage capacity and the size of the endosperm and embryo were reduced in the mature VPE4-repressed grains. The persistence of the pericarp in the VPE4-affected grains constrains endosperm and embryo growth and leads to transcriptional reprogramming, perturbations in signalling and adjustments in metabolism. We conclude that VPE4 expression executes PCD in the pericarp, which is required for later endosperm filling, and argue for a role of PCD in maternal control of seed size in cereals.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Van Tran
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Mercedes Diaz-Mendoza
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid, 28223, Spain
| | - Diana Weier
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Joerg Fuchs
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - David Riewe
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Goetz Hensel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Eberhard Munz
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Nicolas Heinzel
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| | - Manuel Martinez
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politecnica de Madrid (UPM), Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Campus Montegancedo, Pozuelo de Alarcon, Madrid, 28223, Spain
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466, Gatersleben, Germany
| |
Collapse
|
15
|
Lou L, Li X, Chen J, Li Y, Tang Y, Lv J. Photosynthetic and ascorbate-glutathione metabolism in the flag leaves as compared to spikes under drought stress of winter wheat (Triticum aestivum L.). PLoS One 2018; 13:e0194625. [PMID: 29566049 PMCID: PMC5864061 DOI: 10.1371/journal.pone.0194625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 03/06/2018] [Indexed: 11/18/2022] Open
Abstract
Ascorbate-glutathione (ASA-GSH) cycle is a major pathway of H2O2 scavenging and an effective mechanism of detoxification in plants. The differences in photosynthesis, chlorophyll content (Chl), relative water content (RWC), antioxidants and antioxidative enzyme activities involved in ASA-GSH metabolism were measured between the flag leaves and spike bracts (glumes and lemmas) during grain filling under drought stress. The expression of APX1, GRC1, DHAR, MDHAR, GPX1, and GS3 in ASA-GSH cycle was also measured. Compared with the flag leaves, the spike bracts exhibited stable net photosynthetic rate (PN) and chlorophyll content (Chl), a lower accumulation of reactive oxygen species (ROS), and more enhanced percentages of antioxidant enzyme activities and key enzymes gene transcription levels involved in ASA-GSH metabolism during the grain-filling stage under drought conditions. This could be the reasonable explanation for the more stable photosynthetic capacity in spikes, and the glumes and lemmas senesced later than the flag leaves at the late grain-filling stage. Also, the function of ASA-GSH cycle could not be ignored in alleviating oxidative damage by scavenging more excess ROS in spikes under drought stress.
Collapse
Affiliation(s)
- Lili Lou
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorui Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Junxiu Chen
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yue Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Tang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinyin Lv
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| |
Collapse
|
16
|
Weichert H, Högy P, Mora-Ramirez I, Fuchs J, Eggert K, Koehler P, Weschke W, Fangmeier A, Weber H. Grain yield and quality responses of wheat expressing a barley sucrose transporter to combined climate change factors. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5511-5525. [PMID: 29069444 PMCID: PMC5853912 DOI: 10.1093/jxb/erx366] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 09/28/2017] [Indexed: 05/18/2023]
Abstract
Crop yield stability must be ensured under future climate conditions such as elevated CO2 and high temperatures. We tested 'HOSUT', a winter wheat line expressing a grain-targeted sucrose transporter of barley in response to combinations of CO2 enrichment, a heat wave, and high nitrogen fertilization. Compared with wild-type Certo, HOSUT had a superior performance for grain yield, aboveground biomass, and ears per plant, obviously due to transgene activity in developing grains and young vegetative sinks. HOSUT grains were larger and contained more endosperm cells. HOSUT and high CO2 effects similarly improved phenological and yield-related traits. Significant HOSUT-CO2 interactions for biomass of stems, ears, grain yield, nitrogen yield, and grain number revealed that Certo was promoted by CO2 enrichment, whereas HOSUT responded weakly. CO2 enrichment strongly reduced and HOSUT effects weakly reduced grain nitrogen, storage proteins, and free amino acids. In contrast to CO2 enrichment, HOSUT effects did not impair grain micronutrient concentrations. Significant HOSUT-nitrogen fertilization interactions for ear biomass, grain yield, grain number per plant, and harvest index indicated that HOSUT benefited more from additional nitrogen. The heat wave decreased aboveground and ear biomass, grain yield, harvest index, grain size, and starch and water use, but increased grain sucrose concentration.
Collapse
Affiliation(s)
- Heiko Weichert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Petra Högy
- University of Hohenheim, Institute of Landscape and Plant Ecology, Department of Plant Ecology and Ecotoxicology, D-70599 Stuttgart, Germany
| | - Isabel Mora-Ramirez
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Jörg Fuchs
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Kai Eggert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Peter Koehler
- Deutsche Forschungsanstalt für Lebensmittelchemie; Leibniz Institut, Lise-Meitner-Straße 34, D-85353 Freising, Germany
| | - Winfriede Weschke
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Andreas Fangmeier
- University of Hohenheim, Institute of Landscape and Plant Ecology, Department of Plant Ecology and Ecotoxicology, D-70599 Stuttgart, Germany
| | - Hans Weber
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| |
Collapse
|
17
|
Huang J, Deng J, Shi T, Chen Q, Liang C, Meng Z, Zhu L, Wang Y, Zhao F, Yu S, Chen Q. Global transcriptome analysis and identification of genes involved in nutrients accumulation during seed development of rice tartary buckwheat (Fagopyrum Tararicum). Sci Rep 2017; 7:11792. [PMID: 28924217 PMCID: PMC5603606 DOI: 10.1038/s41598-017-11929-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/31/2017] [Indexed: 12/20/2022] Open
Abstract
Tartary buckwheat seeds are rich in various nutrients, such as storage proteins, starch, and flavonoids. To get a good knowledge of the transcriptome dynamics and gene regulatory mechanism during the process of seed development and nutrients accumulation, we performed a comprehensive global transcriptome analysis using rice tartary buckwheat seeds at different development stages, namely pre-filling stage, filling stage, and mature stage. 24 819 expressed genes, including 108 specifically expressed genes, and 11 676 differentially expressed genes (DEGs) were identified. qRT-PCR analysis was performed on 34 DEGs to validate the transcriptome data, and a good consistence was obtained. Based on their expression patterns, the identified DEGs were classified to eight clusters, and the enriched GO items in each cluster were analyzed. In addition, 633 DEGs related to plant hormones were identified. Furthermore, genes in the biosynthesis pathway of nutrients accumulation were analyzed, including 10, 20, and 23 DEGs corresponding to the biosynthesis of seed storage proteins, flavonoids, and starch, respectively. This is the first transcriptome analysis during seed development of tartary buckwheat. It would provide us a comprehensive understanding of the complex transcriptome dynamics during seed development and gene regulatory mechanism of nutrients accumulation.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Jiao Deng
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Taoxiong Shi
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Qijiao Chen
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Chenggang Liang
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Ziye Meng
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Liwei Zhu
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Yan Wang
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China
| | - Fengli Zhao
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Pengfei Road No. 7, Dapeng New District, Shenzhen, 518120, Guangdong, P.R. China
| | - Shizhou Yu
- Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang, 550081, Guizhou, P.R. China
| | - Qingfu Chen
- Research Center of Guizhou Buckwheat Engineering and Technology, Research Center of Buckwheat Industry Technology, Guizhou Normal University, Baoshan Beilu 116, Guiyang, 550001, Guizhou, P.R. China.
| |
Collapse
|
18
|
Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiß HH, Sreenivasulu N, Weschke W, Weber H. Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4595-4612. [PMID: 28981782 PMCID: PMC5853522 DOI: 10.1093/jxb/erx266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/03/2017] [Indexed: 05/05/2023]
Abstract
Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions.
Collapse
Affiliation(s)
- Volodymyr Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - David Riewe
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Manuela Peukert
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Marc Strickert
- Computational Intelligence—FB12 Informatik, Philipps University, Marburg, Germany
| | - Ruslana Radchuk
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Diana Weier
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | | | - Nese Sreenivasulu
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| | - Hans Weber
- Leibniz Institut für Pflanzengenetik und Kulturpflanzenforschung, Stadt Seeland OT Gatersleben, Germany
| |
Collapse
|
19
|
Transcriptomic response of durum wheat to nitrogen starvation. Sci Rep 2017; 7:1176. [PMID: 28446759 PMCID: PMC5430780 DOI: 10.1038/s41598-017-01377-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/27/2017] [Indexed: 11/29/2022] Open
Abstract
Nitrogen (N) is a key macronutrient representing a limiting factor for plant growth and development and affects productivity in wheat. In this study, durum wheat response to N chronic starvation during grain filling was investigated through a transcriptomic approach in roots, leaves/stems, flag leaf and spikes of cv. Svevo. Nitrogen stress negatively influenced plant height, tillering, flag leaf area, spike and seed traits, and total N content. RNA-seq data revealed 4,626 differentially expressed genes (DEGs). Most transcriptomic changes were observed in roots, with 3,270 DEGs, while 963 were found in leaves/stems, 470 in flag leaf, and 355 in spike tissues. A total of 799 gene ontology (GO) terms were identified, 180 and 619 among the upregulated and downregulated genes, respectively. Among the most addressed GO categories, N compound metabolism, carbon metabolism, and photosynthesis were mostly represented. Interesting DEGs, such as N transporters, genes involved in N assimilation, along with transcription factors, protein kinases and other genes related to stress were highlighted. These results provide valuable information about the transcriptomic response to chronic N stress in durum wheat, which could be useful for future improvement of N use efficiency.
Collapse
|
20
|
Christiansen MW, Matthewman C, Podzimska-Sroka D, O'Shea C, Lindemose S, Møllegaard NE, Holme IB, Hebelstrup K, Skriver K, Gregersen PL. Barley plants over-expressing the NAC transcription factor gene HvNAC005 show stunting and delay in development combined with early senescence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5259-73. [PMID: 27436280 PMCID: PMC5014165 DOI: 10.1093/jxb/erw286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC transcription factors have attracted particular attention because of their involvement in stress responses, senescence, and nutrient remobilization. The HvNAC005 gene of barley encodes a protein belonging to subgroup NAC-a6 of the NAC family. This study shows that HvNAC005 is associated with developmental senescence. It was significantly up-regulated following ABA treatment, supported by ABA-responsive elements in its promoter, but it was not up-regulated during dark-induced senescence. The C-termini of proteins closely related to HvNAC005 showed overall high divergence but also contained conserved short motifs. A serine- and leucine-containing central motif was essential for transcriptional activity of the HvNAC005 C-terminus in yeast. Over-expression of HvNAC005 in barley resulted in a strong phenotype with delayed development combined with precocious senescence. The over-expressing plants showed up-regulation of genes involved with secondary metabolism, hormone metabolism, stress, signalling, development, and transport. Up-regulation of senescence markers and hormone metabolism and signalling genes supports a role of HvNAC005 in the cross field of different hormone and signalling pathways. Binding of HvNAC005 to promoter sequences of putative target genes containing the T[G/A]CGT core motif was shown by direct protein-DNA interactions of HvNAC005 with promoters for two of the up-regulated genes. In conclusion, HvNAC005 was shown to be a strong positive regulator of senescence and so is an obvious target for the fine-tuning of gene expression in future attempts to improve nutrient remobilization related to the senescence process in barley.
Collapse
Affiliation(s)
- Michael W Christiansen
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Colette Matthewman
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Dagmara Podzimska-Sroka
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Charlotte O'Shea
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-Copenhagen N, Denmark
| | - Søren Lindemose
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-Copenhagen N, Denmark
| | - Niels Erik Møllegaard
- Department of Cellular and Molecular Medicin, University of Copenhagen, Blegdamsvej 3B, DK-Copenhagen N, Denmark
| | - Inger B Holme
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Kim Hebelstrup
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| | - Karen Skriver
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-Copenhagen N, Denmark
| | - Per L Gregersen
- Department of Genetics and Biotechnology, Aarhus University, Forsøgsvej 1, Slagelse DK-4200, Denmark
| |
Collapse
|
21
|
Staroske N, Conrad U, Kumlehn J, Hensel G, Radchuk R, Erban A, Kopka J, Weschke W, Weber H. Increasing abscisic acid levels by immunomodulation in barley grains induces precocious maturation without changing grain composition. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2675-87. [PMID: 26951372 PMCID: PMC4861016 DOI: 10.1093/jxb/erw102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Abscisic acid (ABA) accumulates in seeds during the transition to the seed filling phase. ABA triggers seed maturation, storage activity, and stress signalling and tolerance. Immunomodulation was used to alter the ABA status in barley grains, with the resulting transgenic caryopses responding to the anti-ABA antibody gene expression with increased accumulation of ABA. Calculation of free versus antibody-bound ABA reveals large excess of free ABA, increasing signficantly in caryopses from 10 days after fertilization. Metabolite and transcript profiling in anti-ABA grains expose triggered and enhanced ABA-functions such as transcriptional up-regulation of sucrose-to-starch metabolism, storage protein synthesis and ABA-related signal transduction. Thus, enhanced ABA during transition phases induces precocious maturation but negatively interferes with growth and development. Anti-ABA grains display broad constitutive gene induction related to biotic and abiotic stresses. Most of these genes are ABA- and/or stress-inducible, including alcohol and aldehyde dehydrogenases, peroxidases, chaperones, glutathione-S-transferase, drought- and salt-inducible proteins. Conclusively, ABA immunomodulation results in precocious ABA accumulation that generates an integrated response of stress and maturation. Repression of ABA signalling, occurring in anti-ABA grains, potentially antagonizes effects caused by overshooting production. Finally, mature grain weight and composition are unchanged in anti-ABA plants, although germination is somewhat delayed. This indicates that anti-ABA caryopses induce specific mechanisms to desensitize ABA signalling efficiently, which finally yields mature grains with nearly unchanged dry weight and composition. Such compensation implicates the enormous physiological and metabolic flexibilities of barley grains to adjust effects of unnaturally high ABA amounts in order to ensure and maintain proper grain development.
Collapse
Affiliation(s)
- Nicole Staroske
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Udo Conrad
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Jochen Kumlehn
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Götz Hensel
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Ruslana Radchuk
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Winfriede Weschke
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| |
Collapse
|
22
|
Jagadish KSV, Kavi Kishor PB, Bahuguna RN, von Wirén N, Sreenivasulu N. Staying Alive or Going to Die During Terminal Senescence-An Enigma Surrounding Yield Stability. FRONTIERS IN PLANT SCIENCE 2015; 6:1070. [PMID: 26648957 PMCID: PMC4663250 DOI: 10.3389/fpls.2015.01070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/16/2015] [Indexed: 05/02/2023]
Abstract
Breeding programs with the aim to enhance yield productivity under abiotic stress conditions during the reproductive stage of crops is a top priority in the era of climate change. However, the choice of exploring stay-green or senescence phenotypes, which represent an opposing physiological bearing, are explored in cereal breeding programs for enhanced yield stability to a different extent. Thus, the consideration of stay-green or senescence phenotypes is still an ongoing debate and has not been comprehensively addressed. In this review, we provide arguments for designing a target phenotype to mitigate abiotic stresses during pre- and post-anthesis in cereals with a focus on hormonal balances regulating stay-green phenotype versus remobilization. The two major hypothesis for grain yield improvement are (i) the importance of the stay-green trait to elevate grain number under pre-anthesis and anthesis stress and (ii) fine tuning the regulatory and molecular physiological mechanisms to accelerate nutrient remobilization to optimize grain quality and seed weight under post-anthesis stress. We highlight why a cautious balance in the phenotype design is essential. While stay-green phenotypes promise to be ideal for developing stress-tolerant lines during pre-anthesis and fertilization to enhance grain number and yield per se, fine-tuning efficient remobilizing behavior during seed filling might optimize grain weight, grain quality and nutrient efficiency. The proposed model provides novel and focused directions for cereal stress breeding programs to ensure better seed-set and efficient grain-filling in cereals under terminal drought and heat stress exposure.
Collapse
Affiliation(s)
| | | | | | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Nese Sreenivasulu
- International Rice Research Institute, Metro Manila, Philippines
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| |
Collapse
|
23
|
Pielot R, Kohl S, Manz B, Rutten T, Weier D, Tarkowská D, Rolčík J, Strnad M, Volke F, Weber H, Weschke W. Hormone-mediated growth dynamics of the barley pericarp as revealed by magnetic resonance imaging and transcript profiling. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6927-43. [PMID: 26276866 PMCID: PMC4623697 DOI: 10.1093/jxb/erv397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The shape of the maternal pericarp affects cereal grain mass and yield. Pericarp growth was analysed by magnetic resonance imaging (MRI), revealing topological maps of mobile water in developing pericarp of barley (Hordeum vulgare) and displaying tissue regions actively elongating in specific temporal-spatial patterns. Correlation analysis of MRI signals and growth rates reveals that growth in length is mediated by dorsal and also lateral rather than ventral regions. Growth in thickness is related to ventral regions. Switching from dorsal to ventral growth is associated with differential expression of axial regulators of the HD-ZipIII and Kanadi/Ettin types, and NPH3 photoreceptors, suggesting light-mediated auxin re-distribution. Auxin increases with the highest levels in the basal pericarp at 6 days after fertilization (DAF), together with transcriptionally up-regulated auxin transport and signalling. Gibberellin biosynthesis is transcriptionally up-regulated only later, and levels of bioactive gibberellins increase from 7 to 13 DAF, with higher levels in ventral than dorsal regions. Differential gene expression related to cell expansion indicates genes related to apoplast acidification, wall relaxation, sugar cleavage, water transport, and cell wall biosynthesis. Candidate genes potentially involved in pericarp extension are distinguished by their temporal expression, representing potential isoforms responsible for dorsal-mediated early growth in length or ventral-mediated late growth in thickness.
Collapse
Affiliation(s)
- Rainer Pielot
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Stefan Kohl
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Bertram Manz
- Fraunhofer Institut für Biomedizinische Technik (IBMT) Simulation, Visualization & Magnetic Resonance, Ensheimer Str. 48, D-66386 St. Ingbert, Germany
| | - Twan Rutten
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Diana Weier
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic
| | - Jakub Rolčík
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR and Palacký University, Šlechtitelů 11, CZ-78371, Olomouc, Czech Republic
| | - Frank Volke
- Fraunhofer Institut für Biomedizinische Technik (IBMT) Simulation, Visualization & Magnetic Resonance, Ensheimer Str. 48, D-66386 St. Ingbert, Germany
| | - Hans Weber
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| | - Winfriede Weschke
- Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, D-06466 Gatersleben, Germany
| |
Collapse
|
24
|
Zou H, Tzarfati R, Hübner S, Krugman T, Fahima T, Abbo S, Saranga Y, Korol AB. Transcriptome profiling of wheat glumes in wild emmer, hulled landraces and modern cultivars. BMC Genomics 2015; 16:777. [PMID: 26462652 PMCID: PMC4603339 DOI: 10.1186/s12864-015-1996-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/03/2015] [Indexed: 12/02/2022] Open
Abstract
Background Wheat domestication is considered as one of the most important events in the development of human civilization. Wheat spikelets have undergone significant changes during evolution under domestication, resulting in soft glumes and larger kernels that are released easily upon threshing. Our main goal was to explore changes in transcriptome expression in glumes that accompanied wheat evolution under domestication. Methods A total of six tetraploid wheat accessions were selected for transcriptome profiling based on their rachis brittleness and glumes toughness. RNA pools from glumes of the central spikelet at heading time were used to construct cDNA libraries for sequencing. The trimmed reads from each library were separately aligned to the reference sub-genomes A and B, which were extracted from wheat survey sequence. Differentially expression analysis and functional annotation were performed between wild and domesticated wheat, to identity candidate genes associated with evolution under domestication. Selected candidate genes were validated using real time PCR. Results Transcriptome profiles of wild emmer wheat, wheat landraces, and wheat cultivars were compared using next generation sequencing (RNA-seq). We have found a total of 194,893 transcripts, of which 73,150 were shared between wild, landraces, and cultivars. From 781 differentially expressed genes (DEGs), 336 were down-regulated and 445 were up-regulated in the domesticated compared to wild wheat genotypes. Gene Ontology (GO) annotation assigned 293 DEGs (37.5 %) to GO term groups, of which 134 (17.1 %) were down-regulated and 159 (20.4 %) up-regulated in the domesticated wheat. Some of the down-regulated DEGs in domesticated wheat are related to the biosynthetic pathways that eventually define the mechanical strength of the glumes, such as cell wall, lignin, pectin and wax biosynthesis. The reduction in gene expression of such genes, may explain the softness of the glumes in the domesticated forms. In addition, we have identified genes involved in nutrient remobilization that may affect grain size and other agronomic traits evolved under domestication. Conclusions The comparison of RNA-seq profiles between glumes of wheat groups differing in glumes toughness and rachis brittleness revealed a few DEGs that may be involved in glumes toughness and nutrient remobilization. These genes may be involved in processes of wheat improvement under domestication. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1996-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hongda Zou
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Raanan Tzarfati
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Sariel Hübner
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Tamar Krugman
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| | - Shahal Abbo
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Yehoshua Saranga
- Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel.
| | - Abraham B Korol
- Department of Evolutionary and Environmental Biology, The Institute of Evolution, Faculty of Natural Sciences, University of Haifa, Haifa, 31905, Israel.
| |
Collapse
|