1
|
Moffett AS, Falcón-Cortés A, Di Pierro M. Quantifying the influence of genetic context on duplicated mammalian genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.647042. [PMID: 40236061 PMCID: PMC11996522 DOI: 10.1101/2025.04.03.647042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Gene duplication is a fundamental part of evolutionary innovation. While single-gene duplications frequently exhibit asymmetric evolutionary rates between paralogs, the extent to which this applies to multi-gene duplications remains unclear. In this study, we investigate the role of genetic context in shaping evolutionary divergence within multi-gene duplications, leveraging microsynteny to differentiate source and target copies. Using a dataset of 193 mammalian genome assemblies and a bird outgroup, we systematically analyze patterns of sequence divergence between duplicated genes and reference orthologs. We find that target copies, those relocated to new genomic environments, exhibit elevated evolutionary rates compared to source copies in the ancestral location. This asymmetry is influenced by the distance between copies and the size of the target copy. We also demonstrate that the polarization of rate asymmetry in paralogs, the "choice" of the slowly evolving copy, is biased towards collective, block-wise polarization in multi-gene duplications. Our findings highlight the importance of genetic context in modulating post-duplication divergence, where differences in cis-regulatory elements and co-expressed gene clusters between source and target copies may be responsible. This study presents a large-scale test of asymmetric evolution in multi-gene duplications, offering new insight into how genome architecture shapes functional diversification of paralogs.
Collapse
|
2
|
Mantica F, Irimia M. Gene Duplication and Alternative Splicing as Evolutionary Drivers of Proteome Specialization. Bioessays 2025; 47:e202400202. [PMID: 39995355 DOI: 10.1002/bies.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Animals comprise hundreds of cell types, each with specialized biological functions. However, many genes expressed in each cell type belong to widely conserved gene families with ancestrally ubiquitous expression. This raises a paradox: how have these genes evolved to shape cell type-specific traits without compromising their ancestral function in all other cells? This can be achieved through gene duplication and the origin of regulated, alternatively spliced exons, which generate new related proteins in the form of paralogous genes and alternative isoforms, respectively. Here, we explore how such new related proteins can contribute to the evolution of specific cell types while preserving broader ancestral roles. Specifically, we separately classify possible expression and functional fates for new related proteins and discuss their interplays and evolutionary likelihood. Our primary hypothesis is that expression specialization, mostly coupled with functional specialization, is the predominant fate for both paralogous genes and alternative isoforms throughout animal evolution.
Collapse
Affiliation(s)
- Federica Mantica
- Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Manuel Irimia
- Universitat Pompeu Fabra, Barcelona, Spain
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
3
|
Fu LL, Yan M, Yu X, Shao M, Gosau M, Friedrich RE, Vollkommer T, Smeets R, Feng HC, Xu L. Retinol-binding protein type 1 expression predicts poor prognosis in head and neck squamous cell carcinoma. BMC Cancer 2024; 24:1277. [PMID: 39407127 PMCID: PMC11476480 DOI: 10.1186/s12885-024-12565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/25/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) is the sixth most prevalent malignancy worldwide, with high incidence and poor survival rates. RBP1 is highly expressed in several kinds of cancer and plays a potential prognostic factor. However, the relationship between RBP1 and HNSCC were analyzed based on The Cancer Genome Atlas (TCGA) database. MATERIALS AND METHODS RBP1 expression and clinical information were obtained from the Cancer Genome Atlas (TCGA) database. Tumor tissue and adjacent normal tissue of 6 HNSCC patients were collected to analyze the RBP1 mRNA expression level by quantitative PCR. Cox regression analysis was used to evaluate the prognostic values of RBP1 and clinical data in HNSCC. A nomogram was also established to predict the impact of RBP1 on prognosis based on Cox multivariate results. The methylation level of RBP1 in HNSC and its prognosis were analyzed in UALACN and MethSurv. Finally, the potential biological functions of RBP1 were investigated using gene set enrichment analysis (GSEA) and single sample GSEA (ssGSEA). RESULTS The mRNA expression levels of RBP1 were highly expressed in HNSCC tissue. The Cox analyses demonstrate that highly-expressed RBP1 is an independent prognosis marker(P < 0.05). ROC curve analysis showed that performances of RBP1 (area under the ROC curve: 0.887, sensitivity: 84.1%, specificity: 79.9%). The methylation was increased in HNSCC patients compared with normal subjects(P < 0.05) and was associated with better prognosis at sites cg06208339, cg12298268, cg12497564, cg15288618, cg20532370, cg23448348. Additionally, RBP1 expression is mildly associated with immune cell infiltration and immunological checkpoints. CONCLUSION RBP1 is overexpressed and associated with poor patient prognosis in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Ling-Ling Fu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, 20246, Germany
| | - Ming Yan
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, 20246, Germany
| | - Xin Yu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Min Shao
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, 20246, Germany
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, 20246, Germany
| | - Tobias Vollkommer
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, 20246, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg- Eppendorf, Hamburg, 20246, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Hong-Chao Feng
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China.
| | - Liya Xu
- Department of Oral and Maxillofacial Surgery, Guiyang Hospital of Stomatology, Guiyang, 050017, PR China.
| |
Collapse
|
4
|
Pallarès-Albanell J, Ortega-Flores L, Senar-Serra T, Ruiz A, Abril JF, Rossello M, Almudi I. Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. Development 2024; 151:dev203017. [PMID: 39324209 PMCID: PMC11491810 DOI: 10.1242/dev.203017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
The evolution of insects has been marked by the appearance of key body plan innovations that promoted the outstanding ability of this lineage to adapt to new habitats, boosting the most successful radiation in animals. To understand the evolution of these new structures, it is essential to investigate which genes and gene regulatory networks participate during the embryonic development of insects. Great efforts have been made to fully understand gene expression and gene regulation during the development of holometabolous insects, in particular Drosophila melanogaster. Conversely, functional genomics resources and databases in other insect lineages are scarce. To provide a new platform to study gene regulation in insects, we generated ATAC-seq for the first time during the development of the mayfly Cloeon dipterum, which belongs to Paleoptera, the sister group to all other winged insects. With these comprehensive datasets along six developmental stages, we characterized pronounced changes in accessible chromatin between early and late embryogenesis. The application of ATAC-seq in mayflies provides a fundamental resource to understand the evolution of gene regulation in insects.
Collapse
Affiliation(s)
- Joan Pallarès-Albanell
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Laia Ortega-Flores
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Tòt Senar-Serra
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Antoni Ruiz
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Josep F. Abril
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institute of Biomedicine of Universitat de Barcelona (IBUB), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Maria Rossello
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics, Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Diagonal 643, 08028 Barcelona, Spain
| |
Collapse
|
5
|
Yoon K, Williams S, Duncan EJ. DNA methylation machinery is involved in development and reproduction in the viviparous pea aphid (Acyrthosiphon pisum). INSECT MOLECULAR BIOLOGY 2024; 33:534-549. [PMID: 38923717 DOI: 10.1111/imb.12936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
Epigenetic mechanisms, such as DNA methylation, have been proposed to mediate plastic responses in insects. The pea aphid (Acyrthosiphon pisum), like the majority of extant aphids, displays cyclical parthenogenesis - the ability of mothers to switch the reproductive mode of their offspring from reproducing parthenogenetically to sexually in response to environmental cues. The pea aphid genome encodes two paralogs of the de novo DNA methyltransferase gene, dnmt3a and dnmt3x. Here we show, using phylogenetic analysis, that this gene duplication event occurred at least 150 million years ago, likely after the divergence of the lineage leading to the Aphidomorpha (phylloxerans, adelgids and true aphids) from that leading to the scale insects (Coccomorpha) and that the two paralogs are maintained in the genomes of all aphids examined. We also show that the mRNA of both dnmt3 paralogs is maternally expressed in the viviparous aphid ovary. During development both paralogs are expressed in the germ cells of embryos beginning at stage 5 and persisting throughout development. Treatment with 5-azactyidine, a chemical that generally inhibits the DNA methylation machinery, leads to defects of oocytes and early-stage embryos and causes a proportion of later stage embryos to be born dead or die soon after birth. These phenotypes suggest a role for DNA methyltransferases in reproduction, consistent with that seen in other insects. Taking the vast evolutionary history of the dnmt3 paralogs, and the localisation of their mRNAs in the ovary, we suggest there is a role for dnmt3a and/or dnmt3x in early development, and a role for DNA methylation machinery in reproduction and development of the viviparous pea aphid.
Collapse
Affiliation(s)
- Kane Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stephanie Williams
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Mantica F, Iñiguez LP, Marquez Y, Permanyer J, Torres-Mendez A, Cruz J, Franch-Marro X, Tulenko F, Burguera D, Bertrand S, Doyle T, Nouzova M, Currie PD, Noriega FG, Escriva H, Arnone MI, Albertin CB, Wotton KR, Almudi I, Martin D, Irimia M. Evolution of tissue-specific expression of ancestral genes across vertebrates and insects. Nat Ecol Evol 2024; 8:1140-1153. [PMID: 38622362 DOI: 10.1038/s41559-024-02398-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/08/2024] [Indexed: 04/17/2024]
Abstract
Regulation of gene expression is arguably the main mechanism underlying the phenotypic diversity of tissues within and between species. Here we assembled an extensive transcriptomic dataset covering 8 tissues across 20 bilaterian species and performed analyses using a symmetric phylogeny that allowed the combined and parallel investigation of gene expression evolution between vertebrates and insects. We specifically focused on widely conserved ancestral genes, identifying strong cores of pan-bilaterian tissue-specific genes and even larger groups that diverged to define vertebrate and insect tissues. Systematic inferences of tissue-specificity gains and losses show that nearly half of all ancestral genes have been recruited into tissue-specific transcriptomes. This occurred during both ancient and, especially, recent bilaterian evolution, with several gains being associated with the emergence of unique phenotypes (for example, novel cell types). Such pervasive evolution of tissue specificity was linked to gene duplication coupled with expression specialization of one of the copies, revealing an unappreciated prolonged effect of whole-genome duplications on recent vertebrate evolution.
Collapse
Affiliation(s)
- Federica Mantica
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Luis P Iñiguez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Yamile Marquez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jon Permanyer
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Antonio Torres-Mendez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Josefa Cruz
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Frank Tulenko
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Demian Burguera
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins; BIOM, Banyuls-sur-Mer, France
| | - Toby Doyle
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Marcela Nouzova
- Institute of Parasitology, CAS, České Budějovice, Czech Republic
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
- EMBL Australia; Victorian Node, Monash University, Clayton, Victoria, Australia
| | - Fernando G Noriega
- Biology and BSI, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins; BIOM, Banyuls-sur-Mer, France
| | | | - Caroline B Albertin
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Karl R Wotton
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| | - Isabel Almudi
- Department of Genetics, Microbiology and Statistics and IRBio, Universitat de Barcelona, Barcelona, Spain
| | - David Martin
- Institute of Evolutionary Biology (IBE, CSIC-Universitat Pompeu Fabra), Barcelona, Catalonia, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
7
|
Li Z, Xue AZ, Maeda GP, Li Y, Nabity PD, Moran NA. Phylloxera and Aphids Show Distinct Features of Genome Evolution Despite Similar Reproductive Modes. Mol Biol Evol 2023; 40:msad271. [PMID: 38069672 DOI: 10.1093/molbev/msad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023] Open
Abstract
Genomes of aphids (family Aphididae) show several unusual evolutionary patterns. In particular, within the XO sex determination system of aphids, the X chromosome exhibits a lower rate of interchromosomal rearrangements, fewer highly expressed genes, and faster evolution at nonsynonymous sites compared with the autosomes. In contrast, other hemipteran lineages have similar rates of interchromosomal rearrangement for autosomes and X chromosomes. One possible explanation for these differences is the aphid's life cycle of cyclical parthenogenesis, where multiple asexual generations alternate with 1 sexual generation. If true, we should see similar features in the genomes of Phylloxeridae, an outgroup of aphids which also undergoes cyclical parthenogenesis. To investigate this, we generated a chromosome-level assembly for the grape phylloxera, an agriculturally important species of Phylloxeridae, and identified its single X chromosome. We then performed synteny analysis using the phylloxerid genome and 30 high-quality genomes of aphids and other hemipteran species. Unexpectedly, we found that the phylloxera does not share aphids' patterns of chromosome evolution. By estimating interchromosomal rearrangement rates on an absolute time scale, we found that rates are elevated for aphid autosomes compared with their X chromosomes, but this pattern does not extend to the phylloxera branch. Potentially, the conservation of X chromosome gene content is due to selection on XO males that appear in the sexual generation. We also examined gene duplication patterns across Hemiptera and uncovered horizontal gene transfer events contributing to phylloxera evolution.
Collapse
Affiliation(s)
- Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Allen Z Xue
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Gerald P Maeda
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Yiyuan Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Paul D Nabity
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
8
|
Li Z, Xue AZ, Maeda GP, Li Y, Nabity PD, Moran NA. Phylloxera and aphids show distinct features of genome evolution despite similar reproductive modes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555181. [PMID: 37693541 PMCID: PMC10491136 DOI: 10.1101/2023.08.28.555181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Genomes of aphids (family Aphididae) show several unusual evolutionary patterns. In particular, within the XO sex determination system of aphids, the X chromosome exhibits a lower rate of interchromosomal rearrangements, fewer highly expressed genes, and faster evolution at nonsynonymous sites compared to the autosomes. In contrast, other hemipteran lineages have similar rates of interchromosomal rearrangement for autosomes and X chromosomes. One possible explanation for these differences is the aphid's life cycle of cyclical parthenogenesis, where multiple asexual generations alternate with one sexual generation. If true, we should see similar features in the genomes of Phylloxeridae, an outgroup of aphids which also undergoes cyclical parthenogenesis. To investigate this, we generated a chromosome-level assembly for the grape phylloxera, an agriculturally important species of Phylloxeridae, and identified its single X chromosome. We then performed synteny analysis using the phylloxerid genome and 30 high-quality genomes of aphids and other hemipteran species. Unexpectedly, we found that the phylloxera does not share aphids' patterns of chromosome evolution. By estimating interchromosomal rearrangement rates on an absolute time scale, we found that rates are elevated for aphid autosomes compared to their X chromosomes, but this pattern does not extend to the phylloxera branch. Potentially, the conservation of X chromosome gene content is due to selection on XO males that appear in the sexual generation. We also examined gene duplication patterns across Hemiptera and uncovered horizontal gene transfer events contributing to phylloxera evolution.
Collapse
|
9
|
Santos D, Feng M, Kolliopoulou A, Taning CNT, Sun J, Swevers L. What Are the Functional Roles of Piwi Proteins and piRNAs in Insects? INSECTS 2023; 14:insects14020187. [PMID: 36835756 PMCID: PMC9962485 DOI: 10.3390/insects14020187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/01/2023]
Abstract
Research on Piwi proteins and piRNAs in insects has focused on three experimental models: oogenesis and spermatogenesis in Drosophila melanogaster, the antiviral response in Aedes mosquitoes and the molecular analysis of primary and secondary piRNA biogenesis in Bombyx mori-derived BmN4 cells. Significant unique and complementary information has been acquired and has led to a greater appreciation of the complexity of piRNA biogenesis and Piwi protein function. Studies performed in other insect species are emerging and promise to add to the current state of the art on the roles of piRNAs and Piwi proteins. Although the primary role of the piRNA pathway is genome defense against transposons, particularly in the germline, recent findings also indicate an expansion of its functions. In this review, an extensive overview is presented of the knowledge of the piRNA pathway that so far has accumulated in insects. Following a presentation of the three major models, data from other insects were also discussed. Finally, the mechanisms for the expansion of the function of the piRNA pathway from transposon control to gene regulation were considered.
Collapse
Affiliation(s)
- Dulce Santos
- Research Group of Molecular Developmental Physiology and Signal Transduction, Division of Animal Physiology and Neurobiology, Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| | - Clauvis N. T. Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences & Applications, National Centre for Scientific Research “Demokritos”, Aghia Paraskevi, 15341 Athens, Greece
| |
Collapse
|
10
|
Nuclear receptor subfamily 3 group c member 2 (NR3C2) is downregulated due to hypermethylation and plays a tumor-suppressive role in colon cancer. Mol Cell Biochem 2022; 477:2669-2679. [PMID: 35604518 DOI: 10.1007/s11010-022-04449-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 04/25/2022] [Indexed: 12/20/2022]
Abstract
Nuclear receptor subfamily 3 group c member 2 (NR3C2) has been reported to function as a tumor suppressor in several tumors. However, the clinical significance and potential action mechanisms of NR3C2 in colon cancer (COAD) remain unclear. NR3C2 expression and its correlation with clinicopathological features in COAD were analyzed based on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic (ROC) curves and Human Protein Atlas (HPA) database were used to evaluate the diagnostic and prognostic values of NR3C2 in COAD. Immune infiltration and DNA methylation analyses were performed by Gene Set Cancer Analysis (GSCA) database. NR3C2-correlated genes were identified by UALCAN database and subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment pathway analyses. Cell apoptosis and proliferation were evaluated using TUNEL and CCK-8 assays, respectively. NR3C2 was downregulated in COAD based on TCGA and GEO databases, which may be due to promoter hypermethylation. NR3C2 expression was correlated with prognosis and immune infiltration of COAD. High NR3C2 expression displayed good diagnostic value in COAD. KEGG pathway analysis presented that NR3C2-correlated genes were mainly clustered in choline metabolism in cancer and apoptosis. In vitro experiments confirmed that NR3C2 overexpression induced apoptosis and suppressed proliferation in COAD cells. In conclusion, our study revealed the potential prognostic and diagnostic values of NR3C2 and provided insights into understanding the tumor-suppressive role of NR3C2 in COAD progression.
Collapse
|
11
|
The evolution of gene regulation on sex chromosomes. Trends Genet 2022; 38:844-855. [DOI: 10.1016/j.tig.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
12
|
Fuentes D, Molina M, Chorostecki U, Capella-Gutiérrez S, Marcet-Houben M, Gabaldón T. PhylomeDB V5: an expanding repository for genome-wide catalogues of annotated gene phylogenies. Nucleic Acids Res 2021; 50:D1062-D1068. [PMID: 34718760 PMCID: PMC8728271 DOI: 10.1093/nar/gkab966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022] Open
Abstract
PhylomeDB is a unique knowledge base providing public access to minable and browsable catalogues of pre-computed genome-wide collections of annotated sequences, alignments and phylogenies (i.e. phylomes) of homologous genes, as well as to their corresponding phylogeny-based orthology and paralogy relationships. In addition, PhylomeDB trees and alignments can be downloaded for further processing to detect and date gene duplication events, infer past events of inter-species hybridization and horizontal gene transfer, as well as to uncover footprints of selection, introgression, gene conversion, or other relevant evolutionary processes in the genes and organisms of interest. Here, we describe the latest evolution of PhylomeDB (version 5). This new version includes a newly implemented web interface and several new functionalities such as optimized searching procedures, the possibility to create user-defined phylome collections, and a fully redesigned data structure. This release also represents a significant core data expansion, with the database providing access to 534 phylomes, comprising over 8 million trees, and homology relationships for genes in over 6000 species. This makes PhylomeDB the largest and most comprehensive public repository of gene phylogenies. PhylomeDB is available at http://www.phylomedb.org.
Collapse
Affiliation(s)
- Diego Fuentes
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Manuel Molina
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Uciel Chorostecki
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | - Marina Marcet-Houben
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS). Jordi Girona 29, 08034 Barcelona, Spain.,Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
13
|
Jockusch EL, Fisher CR. Something old, something new, something borrowed, something red: the origin of ecologically relevant novelties in Hemiptera. Curr Opin Genet Dev 2021; 69:154-162. [PMID: 34058515 DOI: 10.1016/j.gde.2021.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Comparative transcriptomics, applied in an evolutionary context, has transformed the possibilities for studying phenotypic evolution in non-model taxa. We review recent discoveries about the development of novel, ecologically relevant phenotypes in hemipteran insects. These discoveries highlight the diverse genomic substrates of novelty: 'something old', when novelty results from changes in the regulation of existing genes or gene duplication; 'something new', wherein lineage-restricted genes contribute to the evolution of new phenotypes; and 'something borrowed', showcasing contributions of horizontal gene transfer to the evolution of novelty, including carotenoid synthesis (resulting in 'something red'). These findings show the power and flexibility of comparative transcriptomic approaches for expanding beyond the 'toolkit' model for the evolution of development. We conclude by raising questions about the relationship between new genes and new traits and outlining a research framework for answering them in Hemiptera.
Collapse
Affiliation(s)
- Elizabeth L Jockusch
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 N. Eagleville Rd., U-3043, Storrs, CT 06269, USA.
| | - Cera R Fisher
- Cornell University, Department of Entomology, 2126 Comstock Hall, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Mathers TC, Wouters RHM, Mugford ST, Swarbreck D, van Oosterhout C, Hogenhout SA. Chromosome-Scale Genome Assemblies of Aphids Reveal Extensively Rearranged Autosomes and Long-Term Conservation of the X Chromosome. Mol Biol Evol 2021; 38:856-875. [PMID: 32966576 PMCID: PMC7947777 DOI: 10.1093/molbev/msaa246] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chromosome rearrangements are arguably the most dramatic type of mutations, often leading to rapid evolution and speciation. However, chromosome dynamics have only been studied at the sequence level in a small number of model systems. In insects, Diptera and Lepidoptera have conserved genome structure at the scale of whole chromosomes or chromosome arms. Whether this reflects the diversity of insect genome evolution is questionable given that many species exhibit rapid karyotype evolution. Here, we investigate chromosome evolution in aphids-an important group of hemipteran plant pests-using newly generated chromosome-scale genome assemblies of the green peach aphid (Myzus persicae) and the pea aphid (Acyrthosiphon pisum), and a previously published assembly of the corn-leaf aphid (Rhopalosiphum maidis). We find that aphid autosomes have undergone dramatic reorganization over the last 30 My, to the extent that chromosome homology cannot be determined between aphids from the tribes Macrosiphini (Myzus persicae and Acyrthosiphon pisum) and Aphidini (Rhopalosiphum maidis). In contrast, gene content of the aphid sex (X) chromosome remained unchanged despite rapid sequence evolution, low gene expression, and high transposable element load. To test whether rapid evolution of genome structure is a hallmark of Hemiptera, we compared our aphid assemblies with chromosome-scale assemblies of two blood-feeding Hemiptera (Rhodnius prolixus and Triatoma rubrofasciata). Despite being more diverged, the blood-feeding hemipterans have conserved synteny. The exceptional rate of structural evolution of aphid autosomes renders them an important emerging model system for studying the role of large-scale genome rearrangements in evolution.
Collapse
Affiliation(s)
- Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Roland H M Wouters
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
15
|
Biello R, Singh A, Godfrey CJ, Fernández FF, Mugford ST, Powell G, Hogenhout SA, Mathers TC. A chromosome-level genome assembly of the woolly apple aphid, Eriosoma lanigerum Hausmann (Hemiptera: Aphididae). Mol Ecol Resour 2020; 21:316-326. [PMID: 32985768 DOI: 10.1111/1755-0998.13258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023]
Abstract
Woolly apple aphid (WAA, Eriosoma lanigerum Hausmann) (Hemiptera: Aphididae) is a major pest of apple trees (Malus domestica, order Rosales) and is critical to the economics of the apple industry in most parts of the world. Here, we generated a chromosome-level genome assembly of WAA-representing the first genome sequence from the aphid subfamily Eriosomatinae-using a combination of 10X Genomics linked-reads and in vivo Hi-C data. The final genome assembly is 327 Mb, with 91% of the assembled sequences anchored into six chromosomes. The contig and scaffold N50 values are 158 kb and 71 Mb, respectively, and we predicted a total of 28,186 protein-coding genes. The assembly is highly complete, including 97% of conserved arthropod single-copy orthologues based on Benchmarking Universal Single-Copy Orthologs (busco) analysis. Phylogenomic analysis of WAA and nine previously published aphid genomes, spanning four aphid tribes and three subfamilies, reveals that the tribe Eriosomatini (represented by WAA) is recovered as a sister group to Aphidini + Macrosiphini (subfamily Aphidinae). We identified syntenic blocks of genes between our WAA assembly and the genomes of other aphid species and find that two WAA chromosomes (El5 and El6) map to the conserved Macrosiphini and Aphidini X chromosome. Our high-quality WAA genome assembly and annotation provides a valuable resource for research in a broad range of areas such as comparative and population genomics, insect-plant interactions and pest resistance management.
Collapse
Affiliation(s)
- Roberto Biello
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Archana Singh
- Earlham Institute, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | - Sam T Mugford
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Saskia A Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Thomas C Mathers
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|