1
|
Wittmers F, Poirier C, Bachy C, Eckmann C, Matantseva O, Carlson CA, Giovannoni SJ, Goodenough U, Worden AZ. Symbionts of predatory protists are widespread in the oceans and related to animal pathogens. Cell Host Microbe 2025; 33:182-199.e7. [PMID: 39947132 DOI: 10.1016/j.chom.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 01/15/2025] [Indexed: 05/09/2025]
Abstract
Protists are major predators of ocean microbial life, with an ancient history of entanglements with prokaryotes, but their delicate cell structures and recalcitrance to culturing hinder exploration of marine symbioses. We report that tiny oceanic protistan predators, specifically choanoflagellates-the closest living unicellular relatives of animals-and uncultivated MAST-3 form symbioses with four bacterial lineages related to animal symbionts. By targeting living phagotrophs on ship expeditions, we recovered genomes from physically associated uncultivated Legionellales and Rickettsiales. The evolutionary trajectories of Marinicoxiellaceae, Cosmosymbacterales, Simplirickettsiaceae, and previously named Gamibacteraceae vary, including host-engagement mechanisms unknown in marine bacteria, horizontally transferred genes that mediate pathogen-microbiome interactions, and nutritional pathways. These symbionts and hosts occur throughout subtropical and tropical oceans. Related bacteria were detected in public data from freshwater, fish, and human samples. Symbiont associations with animal-related protists, alongside relationships to animal pathogens, suggest an unexpectedly long history of shifting associations and possibilities for host expansion as environments change.
Collapse
Affiliation(s)
- Fabian Wittmers
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Camille Poirier
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | - Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
| | | | - Olga Matantseva
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Craig A Carlson
- The Marine Science Institute, Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | - Ursula Goodenough
- Department of Biology, Washington University St. Louis, St. Louis, MO, USA
| | - Alexandra Z Worden
- Marine Biological Laboratory, Woods Hole, MA, USA; Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany; Max Planck Institute for Evolutionary Biology, Plön, Germany; Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
McKaig JM, Kim M, Carr CE. Translation as a Biosignature. ASTROBIOLOGY 2024; 24:1257-1274. [PMID: 39611974 DOI: 10.1089/ast.2023.0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Life on Earth relies on mechanisms to store heritable information and translate this information into cellular machinery required for biological activity. In all known life, storage, regulation, and translation are provided by DNA, RNA, and ribosomes. Life beyond Earth, even if ancestrally or chemically distinct from life as we know it, may utilize similar structures: it has been proposed that charged linear polymers analogous to nucleic acids may be responsible for storage and regulation of genetic information in nonterran biochemical systems. We further propose that a ribosome-like structure may also exist in such a system, due to the evolutionary advantages of separating heritability from cellular machinery. In this study, we use a solid-state nanopore to detect DNA, RNA, and ribosomes, and we demonstrate that machine learning can distinguish between biomolecule samples and accurately classify new data. This work is intended to serve as a proof of principal that such biosignatures (i.e., informational polymers or translation apparatuses) could be detected, for example, as part of future missions targeting extant life on Ocean Worlds. A negative detection does not imply the absence of life; however, the detection of ribosome-like structures could provide a robust and sensitive method to seek extant life in combination with other methods. Key Words: RNA world-Darwinian evolution-Nucleic acids-Agnostic life detection. Astrobiology 24, 1257-1274.
Collapse
Affiliation(s)
- Jordan M McKaig
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - MinGyu Kim
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Samigullin TH, Logacheva MD, Averyanov LV, Zeng SJ, Fu LF, Nuraliev MS. Phylogenetic position and plastid genome structure of Vietorchis, a mycoheterotrophic genus of Orchidaceae (subtribe Orchidinae) endemic to Vietnam. FRONTIERS IN PLANT SCIENCE 2024; 15:1393225. [PMID: 38855461 PMCID: PMC11157612 DOI: 10.3389/fpls.2024.1393225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 06/11/2024]
Abstract
The orchid genus Vietorchis comprises three species, all discovered in the 21 century. Each of these species is achlorophyllous, mycoheterotrophic and is known to be endemic to Vietnam. The type species of the genus, V. aurea, occurs in a single location in northern Vietnam within a lowland limestone karstic area. Vietorchis furcata and V. proboscidea, in contrast, are confined to mountains of southern Vietnam, far away from any limestone formations. Taxonomic placement of Vietorchis remained uncertain for the reason of inconclusive morphological affinities. At the same time, the genus has never been included into molecular phylogenetic studies. We investigate the phylogenetic relationships of two species of Vietorchis (V. aurea and V. furcata) based on three DNA datasets: (1) a dataset comprising two nuclear regions, (2) a dataset comprising two plastid regions, and (3) a dataset employing data on the entire plastid genomes. Our phylogenetic reconstructions support the placement of Vietorchis into the subtribe Orchidinae (tribe Orchideae, subfamily Orchidoideae). This leads to a conclusion that the previously highlighted similarities in the rhizome morphology between Vietorchis and certain mycoheterotrophic genera of the subfamilies Epidendroideae and Vanilloideae are examples of a convergence. Vietorchis is deeply nested within Orchidinae, and therefore the subtribe Vietorchidinae is to be treated as a synonym of Orchidinae. In the obtained phylogenetic reconstructions, Vietorchis is sister to the photosynthetic genus Sirindhornia. Sirindhornia is restricted to limestone mountains, which allows to speculate that association with limestone karst is plesiomorphic for Vietorchis. Flower morphology is concordant with the molecular data in placing Vietorchis into Orchidinae and strongly supports the assignment of the genus to one of the two major clades within this subtribe. Within this clade, however, Vietorchis shows no close structural similarity with any of its genera; in particular, the proximity between Vietorchis and Sirindhornia has never been proposed. Finally, we assembled the plastid genome of V. furcata, which is 65969 bp long and contains 45 unique genes, being one of the most reduced plastomes in the subfamily Orchidoideae. The plastome of Vietorchis lacks any rearrangements in comparison with the closest studied autotrophic species, and possesses substantially contracted inverted repeats. No signs of positive selection acting on the protein-coding plastid sequences were detected.
Collapse
Affiliation(s)
- Tahir H. Samigullin
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Maria D. Logacheva
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Leonid V. Averyanov
- Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Si-Jin Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops / Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China and South China National Botanical Garden, Guangzhou, China
| | - Long-Fei Fu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Maxim S. Nuraliev
- Department of Higher Plants, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia
- Joint Russian-Vietnamese Tropical Scientific and Technological Center, Hanoi, Vietnam
| |
Collapse
|
4
|
Lactobacillus for ribosome peptide editing cancer. Clin Transl Oncol 2023; 25:1522-1544. [PMID: 36694080 PMCID: PMC9873400 DOI: 10.1007/s12094-022-03066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/24/2022] [Indexed: 01/25/2023]
Abstract
This study reviews newly discovered insect peptide point mutations as new possible cancer research targets. To interpret newly discovered peptide point mutations in insects as new possible cancer research targets, we focused on the numerous peptide changes found in the 'CSP' family on the sex pheromone gland of the female silkworm moth Bombyx mori. We predict that the Bombyx peptide modifications will have a significant effect on cancer CUP (cancers of unknown primary) therapy and that bacterial peptide editing techniques, specifically Lactobacillus combined to CRISPR, will be used to regulate ribosomes and treat cancer in humans.
Collapse
|
5
|
Vasquez YM, Bennett GM. A complex interplay of evolutionary forces continues to shape ancient co-occurring symbiont genomes. iScience 2022; 25:104786. [PMID: 35982793 PMCID: PMC9379567 DOI: 10.1016/j.isci.2022.104786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/03/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Many insects depend on ancient associations with intracellular bacteria for essential nutrition. The genomes of these bacteria are often highly reduced. Although drift is a major driver of symbiont evolution, other evolutionary forces continue to influence them. To understand how ongoing molecular evolution and gene loss shape symbiont genomes, we sequenced two of the most ancient symbionts known, Sulcia and Nasuia, from 20 Hawaiian Nesophrosyne leafhoppers. We leveraged the parallel divergence of Nesophrosyne lineages throughout Hawaii as a natural experimental framework. Sulcia and Nasuia experience ongoing-but divergent-gene loss, often in a convergent fashion. Although some genes are under relaxed selection, purifying and positive selection are also important drivers of genome evolution, particularly in maintaining certain nutritional and cellular functions. Our results further demonstrate that symbionts experience dramatically different evolutionary environments, as evidenced by the finding that Sulcia and Nasuia have one of the slowest and fastest rates of molecular evolution known.
Collapse
Affiliation(s)
- Yumary M. Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M. Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| |
Collapse
|
6
|
Hurtado-Rios JJ, Carrasco-Navarro U, Almanza-Pérez JC, Ponce-Alquicira E. Ribosomes: The New Role of Ribosomal Proteins as Natural Antimicrobials. Int J Mol Sci 2022; 23:ijms23169123. [PMID: 36012387 PMCID: PMC9409020 DOI: 10.3390/ijms23169123] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins are those capable of performing more than one biochemical or biophysical function within the same polypeptide chain. They have been a recent focus of research due to their potential applications in the health, pharmacological, and nutritional sciences. Among them, some ribosomal proteins involved in assembly and protein translation have also shown other functionalities, including inhibiting infectious bacteria, viruses, parasites, fungi, and tumor cells. Therefore, they may be considered antimicrobial peptides (AMPs). However, information regarding the mechanism of action of ribosomal proteins as AMPs is not yet fully understood. Researchers have suggested that the antimicrobial activity of ribosomal proteins may be associated with an increase in intracellular reactive oxidative species (ROS) in target cells, which, in turn, could affect membrane integrity and cause their inactivation and death. Moreover, the global overuse of antibiotics has resulted in an increase in pathogenic bacteria resistant to common antibiotics. Therefore, AMPs such as ribosomal proteins may have potential applications in the pharmaceutical and food industries in the place of antibiotics. This article provides an overview of the potential roles of ribosomes and AMP ribosomal proteins in conjunction with their potential applications.
Collapse
Affiliation(s)
- Jessica J. Hurtado-Rios
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Ulises Carrasco-Navarro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Julio Cesar Almanza-Pérez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
| | - Edith Ponce-Alquicira
- Departamento de Biotecnología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, Ciudad de México 09340, Mexico
- Correspondence: ; Tel.: +52-55-58044600 (ext. 2676)
| |
Collapse
|
7
|
Tsurumaki M, Saito M, Tomita M, Kanai A. Features of smaller ribosomes in candidate phyla radiation (CPR) bacteria revealed with a molecular evolutionary analysis. RNA (NEW YORK, N.Y.) 2022; 28:1041-1057. [PMID: 35688647 PMCID: PMC9297842 DOI: 10.1261/rna.079103.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/06/2022] [Indexed: 06/01/2023]
Abstract
The candidate phyla radiation (CPR) is a large bacterial group consisting mainly of uncultured lineages. They have small cells and small genomes, and they often lack ribosomal proteins uL1, bL9, and/or uL30, which are basically ubiquitous in non-CPR bacteria. Here, we comprehensively analyzed the genomic information on CPR bacteria and identified their unique properties. The distribution of protein lengths in CPR bacteria peaks at around 100-150 amino acids, whereas the position of the peak varies in the range of 100-300 amino acids in free-living non-CPR bacteria, and at around 100-200 amino acids in most symbiotic non-CPR bacteria. These results show that the proteins of CPR bacteria are smaller, on average, than those of free-living non-CPR bacteria, like those of symbiotic non-CPR bacteria. We found that ribosomal proteins bL28, uL29, bL32, and bL33 have been lost in CPR bacteria in a taxonomic lineage-specific manner. Moreover, the sequences of approximately half of all ribosomal proteins of CPR differ, in part, from those of non-CPR bacteria, with missing regions or specifically added regions. We also found that several regions in the 16S, 23S, and 5S rRNAs of CPR bacteria are lacking, which presumably caused the total predicted lengths of the three rRNAs of CPR bacteria to be smaller than those of non-CPR bacteria. The regions missing in the CPR ribosomal proteins and rRNAs are located near the surface of the ribosome, and some are close to one another. These observations suggest that ribosomes are smaller in CPR bacteria than those in free-living non-CPR bacteria, with simplified surface structures.
Collapse
Affiliation(s)
- Megumi Tsurumaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Motofumi Saito
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| | - Akio Kanai
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0017, Japan
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| |
Collapse
|
8
|
Hassler HB, Probert B, Moore C, Lawson E, Jackson RW, Russell BT, Richards VP. Phylogenies of the 16S rRNA gene and its hypervariable regions lack concordance with core genome phylogenies. MICROBIOME 2022; 10:104. [PMID: 35799218 PMCID: PMC9264627 DOI: 10.1186/s40168-022-01295-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 05/23/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND The 16S rRNA gene is used extensively in bacterial phylogenetics, in species delineation, and now widely in microbiome studies. However, the gene suffers from intragenomic heterogeneity, and reports of recombination and an unreliable phylogenetic signal are accumulating. Here, we compare core gene phylogenies to phylogenies constructed using core gene concatenations to estimate the strength of signal for the 16S rRNA gene, its hypervariable regions, and all core genes at the intra- and inter-genus levels. Specifically, we perform four intra-genus analyses (Clostridium, n = 65; Legionella, n = 47; Staphylococcus, n = 36; and Campylobacter, n = 17) and one inter-genus analysis [41 core genera of the human gut microbiome (31 families, 17 orders, and 12 classes), n = 82]. RESULTS At both taxonomic levels, the 16S rRNA gene was recombinant and subject to horizontal gene transfer. At the intra-genus level, the gene showed one of the lowest levels of concordance with the core genome phylogeny (50.7% average). Concordance for hypervariable regions was lower still, with entropy masking providing little to no benefit. A major factor influencing concordance was SNP count, which showed a positive logarithmic association. Using this relationship, we determined that 690 ± 110 SNPs were required for 80% concordance (average 16S rRNA gene SNP count was 254). We also found a wide range in 16S-23S-5S rRNA operon copy number among genomes (1-27). At the inter-genus level, concordance for the whole 16S rRNA gene was markedly higher (73.8% - 10th out of 49 loci); however, the most concordant hypervariable regions (V4, V3-V4, and V1-V2) ranked in the third quartile (62.5 to 60.0%). CONCLUSIONS Ramifications of a poor phylogenetic performance for the 16S rRNA gene are far reaching. For example, in addition to incorrect species/strain delineation and phylogenetic inference, it has the potential to confound community diversity metrics if phylogenetic information is incorporated - for example, with popular approaches such as Faith's phylogenetic diversity and UniFrac. Our results highlight the problematic nature of these approaches and their use (along with entropy masking) is discouraged. Lastly, the wide range in 16S rRNA gene copy number among genomes also has a strong potential to confound diversity metrics. Video Abstract.
Collapse
Affiliation(s)
- Hayley B. Hassler
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Brett Probert
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Carson Moore
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | - Elizabeth Lawson
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| | | | - Brook T. Russell
- School of Mathematical and Statistical Sciences, Clemson University, Clemson, SC 29634 USA
| | - Vincent P. Richards
- Department of Biological Sciences, College of Science, Clemson University, Clemson, SC 29634 USA
| |
Collapse
|
9
|
Garzón MJ, Reyes-Prieto M, Gil R. The Minimal Translation Machinery: What We Can Learn From Naturally and Experimentally Reduced Genomes. Front Microbiol 2022; 13:858983. [PMID: 35479634 PMCID: PMC9035817 DOI: 10.3389/fmicb.2022.858983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022] Open
Abstract
The current theoretical proposals of minimal genomes have not attempted to outline the essential machinery for proper translation in cells. Here, we present a proposal of a minimal translation machinery based on (1) a comparative analysis of bacterial genomes of insects’ endosymbionts using a machine learning classification algorithm, (2) the empiric genomic information obtained from Mycoplasma mycoides JCVI-syn3.0 the first minimal bacterial genome obtained by design and synthesis, and (3) a detailed functional analysis of the candidate genes based on essentiality according to the DEG database (Escherichia coli and Bacillus subtilis) and the literature. This proposed minimal translational machinery is composed by 142 genes which must be present in any synthetic prokaryotic cell designed for biotechnological purposes, 76.8% of which are shared with JCVI-syn3.0. Eight additional genes were manually included in the proposal for a proper and efficient translation.
Collapse
Affiliation(s)
| | - Mariana Reyes-Prieto
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- Sequencing and Bioinformatics Service, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencian Community, Valencia, Spain
| | - Rosario Gil
- Departament de Genètica, Universitat de València, Burjassot, Spain
- Institute for Integrative Systems Biology, Universitat de València–Consejo Superior de Investigaciones Científicas, Paterna, Spain
- *Correspondence: Rosario Gil,
| |
Collapse
|
10
|
Kondratyeva LG, Dyachkova MS, Galchenko AV. The Origin of Genetic Code and Translation in the Framework of Current Concepts on the Origin of Life. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:150-169. [PMID: 35508902 DOI: 10.1134/s0006297922020079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The origin of genetic code and translation system is probably the central and most difficult problem in the investigations on the origin of life and one of the most complex problems in the evolutionary biology in general. There are multiple hypotheses on the emergence and development of existing genetic systems that propose the mechanisms for the origin and early evolution of genetic code, as well as for the emergence of replication and translation. Here, we discuss the most well-known of these hypotheses, although none of them provides a description of the early evolution of genetic systems without gaps and assumptions. The RNA world hypothesis is a currently prevailing scientific idea on the early evolution of biological and pre-biological structures, the main advantage of which is the assumption that RNAs as the first living systems were self-sufficient, i.e., capable of functioning as both catalysts and templates. However, this hypothesis has also significant limitations. In particular, no ribozymes with processive polymerase activity have been yet discovered or synthesized. Taking into account the mutual need of proteins and nucleic acids in each other in the current world, many authors propose the early evolution scenarios based on the co-evolution of these two classes of organic molecules. They postulate that the emergence of translation was necessary for the replication of nucleic acids, in contrast to the RNA world hypothesis, according to which the emergence of translation was preceded by the era of self-replicating RNAs. Although such scenarios are less parsimonious from the evolutionary point of view, since they require simultaneous emergence and evolution of two classes of organic molecules, as well as the emergence of synchronized replication and translation, their major advantage is that they explain the development of processive and much more accurate protein-dependent replication.
Collapse
Affiliation(s)
- Liya G Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | | | - Alexey V Galchenko
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| |
Collapse
|
11
|
Nicholson D, Salamina M, Panek J, Helena-Bueno K, Brown CR, Hirt RP, Ranson NA, Melnikov SV. Adaptation to genome decay in the structure of the smallest eukaryotic ribosome. Nat Commun 2022; 13:591. [PMID: 35105900 PMCID: PMC8807834 DOI: 10.1038/s41467-022-28281-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/14/2022] [Indexed: 12/18/2022] Open
Abstract
The evolution of microbial parasites involves the counterplay between natural selection forcing parasites to improve and genetic drifts forcing parasites to lose genes and accumulate deleterious mutations. Here, to understand how this counterplay occurs at the scale of individual macromolecules, we describe cryo-EM structure of ribosomes from Encephalitozoon cuniculi, a eukaryote with one of the smallest genomes in nature. The extreme rRNA reduction in E. cuniculi ribosomes is accompanied with unparalleled structural changes, such as the evolution of previously unknown molten rRNA linkers and bulgeless rRNA. Furthermore, E. cuniculi ribosomes withstand the loss of rRNA and protein segments by evolving an ability to use small molecules as structural mimics of degenerated rRNA and protein segments. Overall, we show that the molecular structures long viewed as reduced, degenerated, and suffering from debilitating mutations possess an array of compensatory mechanisms that allow them to remain active despite the extreme molecular reduction. Many parasitic organisms contain molecular structures that are drastically smaller than analogous structures in non-parasitic organisms. Here the authors describe a cryo-EM structure of the ribosome from E. cuniculi that reveals that it compensated rRNA truncations by evolving the ability to use small molecules as ribosomal building blocks.
Collapse
Affiliation(s)
- David Nicholson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Marco Salamina
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Johan Panek
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert P Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK. .,Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
12
|
Tirumalai MR, Rivas M, Tran Q, Fox GE. The Peptidyl Transferase Center: a Window to the Past. Microbiol Mol Biol Rev 2021; 85:e0010421. [PMID: 34756086 PMCID: PMC8579967 DOI: 10.1128/mmbr.00104-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In his 2001 article, "Translation: in retrospect and prospect," the late Carl Woese made a prescient observation that there was a need for the then-current view of translation to be "reformulated to become an all-embracing perspective about which 21st century Biology can develop" (RNA 7:1055-1067, 2001, https://doi.org/10.1017/s1355838201010615). The quest to decipher the origins of life and the road to the genetic code are both inextricably linked with the history of the ribosome. After over 60 years of research, significant progress in our understanding of how ribosomes work has been made. Particularly attractive is a model in which the ribosome may facilitate an ∼180° rotation of the CCA end of the tRNA from the A-site to the P-site while the acceptor stem of the tRNA would then undergo a translation from the A-site to the P-site. However, the central question of how the ribosome originated remains unresolved. Along the path from a primitive RNA world or an RNA-peptide world to a proto-ribosome world, the advent of the peptidyl transferase activity would have been a seminal event. This functionality is now housed within a local region of the large-subunit (LSU) rRNA, namely, the peptidyl transferase center (PTC). The PTC is responsible for peptide bond formation during protein synthesis and is usually considered to be the oldest part of the modern ribosome. What is frequently overlooked is that by examining the origins of the PTC itself, one is likely going back even further in time. In this regard, it has been proposed that the modern PTC originated from the association of two smaller RNAs that were once independent and now comprise a pseudosymmetric region in the modern PTC. Could such an association have survived? Recent studies have shown that the extant PTC is largely depleted of ribosomal protein interactions. It is other elements like metallic ion coordination and nonstandard base/base interactions that would have had to stabilize the association of RNAs. Here, we present a detailed review of the literature focused on the nature of the extant PTC and its proposed ancestor, the proto-ribosome.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mario Rivas
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Quyen Tran
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|
13
|
Abstract
Ribosomal proteins (RPs) are highly conserved across the bacterial and archaeal domains. Although many RPs are essential for survival, genome analysis demonstrates the absence of some RP genes in many bacterial and archaeal genomes. Furthermore, global transposon mutagenesis and/or targeted deletion showed that elimination of some RP genes had only a moderate effect on the bacterial growth rate. Here, we systematically analyze the evolutionary conservation of RPs in prokaryotes by compiling the list of the ribosomal genes that are missing from one or more genomes in the recently updated version of the Clusters of Orthologous Genes (COG) database. Some of these absences occurred because the respective genes carried frameshifts, presumably, resulting from sequencing errors, while others were overlooked and not translated during genome annotation. Apart from these annotation errors, we identified multiple genuine losses of RP genes in a variety of bacteria and archaea. Some of these losses are clade-specific, whereas others occur in symbionts and parasites with dramatically reduced genomes. The lists of computationally and experimentally defined non-essential ribosomal genes show a substantial overlap, revealing a common trend in prokaryote ribosome evolution that could be linked to the architecture and assembly of the ribosomes. Thus, RPs that are located at the surface of the ribosome and/or are incorporated at a late stage of ribosome assembly are more likely to be non-essential and to be lost during microbial evolution, particularly, in the course of genome compaction.IMPORTANCEIn many prokaryote genomes, one or more ribosomal protein (RP) genes are missing. Analysis of 1,309 prokaryote genomes included in the COG database shows that only about half of the RPs are universally conserved in bacteria and archaea. In contrast, up to 16 other RPs are missing in some genomes, primarily, tiny (<1 Mb) genomes of host-associated bacteria and archaea. Ten universal and nine archaea-specific ribosomal proteins show clear patterns of lineage-specific gene loss. Most of the RPs that are frequently lost from bacterial genomes are located on the ribosome periphery and are non-essential in Escherichia coli and Bacillus subtilis These results reveal general trends and common constraints in the architecture and evolution of ribosomes in prokaryotes.
Collapse
|
14
|
Galperin MY, Wolf YI, Makarova KS, Vera Alvarez R, Landsman D, Koonin EV. COG database update: focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Res 2021; 49:D274-D281. [PMID: 33167031 DOI: 10.1093/nar/gkaa1018] [Citation(s) in RCA: 504] [Impact Index Per Article: 126.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 12/20/2022] Open
Abstract
The Clusters of Orthologous Genes (COG) database, also referred to as the Clusters of Orthologous Groups of proteins, was created in 1997 and went through several rounds of updates, most recently, in 2014. The current update, available at https://www.ncbi.nlm.nih.gov/research/COG, substantially expands the scope of the database to include complete genomes of 1187 bacteria and 122 archaea, typically, with a single genome per genus. In addition, the current version of the COGs includes the following new features: (i) the recently deprecated NCBI's gene index (gi) numbers for the encoded proteins are replaced with stable RefSeq or GenBank\ENA\DDBJ coding sequence (CDS) accession numbers; (ii) COG annotations are updated for >200 newly characterized protein families with corresponding references and PDB links, where available; (iii) lists of COGs grouped by pathways and functional systems are added; (iv) 266 new COGs for proteins involved in CRISPR-Cas immunity, sporulation in Firmicutes and photosynthesis in cyanobacteria are included; and (v) the database is made available as a web page, in addition to FTP. The current release includes 4877 COGs. Future plans include further expansion of the COG collection by adding archaeal COGs (arCOGs), splitting the COGs containing multiple paralogs, and continued refinement of COG annotations.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Roberto Vera Alvarez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
15
|
Wen JD, Kuo ST, Chou HHD. The diversity of Shine-Dalgarno sequences sheds light on the evolution of translation initiation. RNA Biol 2020; 18:1489-1500. [PMID: 33349119 DOI: 10.1080/15476286.2020.1861406] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Shine-Dalgarno (SD) sequences, the core element of prokaryotic ribosome-binding sites, facilitate mRNA translation by base-pair interaction with the anti-SD (aSD) sequence of 16S rRNA. In contrast to this paradigm, an inspection of thousands of prokaryotic species unravels tremendous SD sequence diversity both within and between genomes, whereas aSD sequences remain largely static. The pattern has led many to suggest unidentified mechanisms for translation initiation. Here we review known translation-initiation pathways in prokaryotes. Moreover, we seek to understand the cause and consequence of SD diversity through surveying recent advances in biochemistry, genomics, and high-throughput genetics. These findings collectively show: (1) SD:aSD base pairing is beneficial but nonessential to translation initiation. (2) The 5' untranslated region of mRNA evolves dynamically and correlates with organismal phylogeny and ecological niches. (3) Ribosomes have evolved distinct usage of translation-initiation pathways in different species. We propose a model portraying the SD diversity shaped by optimization of gene expression, adaptation to environments and growth demands, and the species-specific prerequisite of ribosomes to initiate translation. The model highlights the coevolution of ribosomes and mRNA features, leading to functional customization of the translation apparatus in each organism.
Collapse
Affiliation(s)
- Jin-Der Wen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Kuo
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Hung David Chou
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.,Department of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Poitevin F, Kushner A, Li X, Dao Duc K. Structural Heterogeneities of the Ribosome: New Frontiers and Opportunities for Cryo-EM. Molecules 2020; 25:E4262. [PMID: 32957592 PMCID: PMC7570653 DOI: 10.3390/molecules25184262] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
The extent of ribosomal heterogeneity has caught increasing interest over the past few years, as recent studies have highlighted the presence of structural variations of the ribosome. More precisely, the heterogeneity of the ribosome covers multiple scales, including the dynamical aspects of ribosomal motion at the single particle level, specialization at the cellular and subcellular scale, or evolutionary differences across species. Upon solving the ribosome atomic structure at medium to high resolution, cryogenic electron microscopy (cryo-EM) has enabled investigating all these forms of heterogeneity. In this review, we present some recent advances in quantifying ribosome heterogeneity, with a focus on the conformational and evolutionary variations of the ribosome and their functional implications. These efforts highlight the need for new computational methods and comparative tools, to comprehensively model the continuous conformational transition pathways of the ribosome, as well as its evolution. While developing these methods presents some important challenges, it also provides an opportunity to extend our interpretation and usage of cryo-EM data, which would more generally benefit the study of molecular dynamics and evolution of proteins and other complexes.
Collapse
Affiliation(s)
- Frédéric Poitevin
- Department of LCLS Data Analytics, Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;
| | - Artem Kushner
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xinpei Li
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khanh Dao Duc
- Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (A.K.); (X.L.)
- Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|