1
|
Rosenberg M, Park S, Umerov S, Ivask A. Experimental evolution of Escherichia coli on semi-dry silver, copper, stainless steel, and glass surfaces. Microbiol Spectr 2025; 13:e0217324. [PMID: 39948723 PMCID: PMC11960088 DOI: 10.1128/spectrum.02173-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025] Open
Abstract
To study bacterial adaptation to antimicrobial metal surfaces in application-relevant conditions, Escherichia coli was exposed to copper and silver surfaces for 30 exposure cycles in low-organic dry or high-organic humid conditions. The evolved populations demonstrated increased metal surface tolerance without concurrent increase in minimal biocidal concentration (MBC) and minimal inhibitory concentration (MIC) values of respective metal ions or selected antibiotics. Mutation analysis did not detect increased mutation accumulation nor mutations in cop, cus, cue, sil, pco, or general efflux genes known to actively maintain copper/silver homeostasis. Instead, during cyclic exposure, mutations in genes related to cellular barrier functions and sulfur metabolism were enriched, potentially suggesting that reducing bioavailability and passively restricting uptake of the toxic metals rather than active efflux is selected for on copper and silver surfaces. The changes detected in the evolved populations did not indicate an increased risk of antibiotic cross-resistance as a result of copper or silver surface exposure. However, rapid emergence of mutations in silS activated the cryptic sil efflux locus during silver ion challenge in liquid MBC assay with the evolved populations. The silS mutants showed no benefit on copper and silver surfaces but demonstrated decreased sensitivity to ampicillin and ciprofloxacin, as well as copper and silver ions in liquid tests, indicating that efflux might be specific to granting heavy metal tolerance in liquid but not surface exposure format. Our findings highlight the critical importance of appropriate exposure conditions not only in efficacy testing but also in risk assessment of antimicrobial surface applications. IMPORTANCE This study examines the evolutionary adaptations of Escherichia coli after semi-dry exposure to copper and silver surfaces, leading to an increase in surface tolerance but no increase in mutation accumulation or substantially enhanced metal ion tolerance in standard tests. Notably, enriched mutations indicate a shift toward more energy-passive mechanisms of metal tolerance. Additionally, while enhanced silver efflux was rapidly selected for in a single round of silver exposure in liquid tests and substantially increased copper and silver ion tolerance in conventional test formats, the causal mutations did not improve viability on silver and copper surfaces, underscoring the different fitness scenarios of tolerance mechanisms dependent on exposure conditions. These findings emphasize the need for appropriate exposure conditions in evaluating of both efficacy and the potential risks of using antimicrobial surfaces, as the results from conventional liquid-based tests may not apply in solid contexts.
Collapse
Affiliation(s)
- Merilin Rosenberg
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sandra Park
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Sigrit Umerov
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Angela Ivask
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Lavin AA, Rivas-Santisteban J. Limitations of sequence dissimilarity as a predictor of prokaryotic lineage. Open Biol 2025; 15:240302. [PMID: 40101780 PMCID: PMC11919493 DOI: 10.1098/rsob.240302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
The molecular clock rests upon the assumption that the observed changes among sequences capture the differentiation of lineages, or kinship, as dissimilarity increases with time. Although it has been questioned over the years, this paradigmatic principle continues to underlie the idea that the polymorphic space of a gene is so vast that it is unattainable in evolutionary time. Thus, the molecular clock has been used to obtain taxonomic annotations, proving to be very effective at delivering testable results. In this article, however, we ask how often this assumption leads to inaccuracies when inferring the lineage of prokaryotic genes. Thus, we open an interesting discussion by simulating, in realistic scenarios, the critical times in which specific 5S rRNA sequences of two distant lineages are exhausting the polymorphic space. We contend that certain genes in one lineage will become increasingly similar to those in another over time, as the space for new variants is finite, mimicking phylogenetic features by convergence or by chance, without implying true kinship.
Collapse
Affiliation(s)
- Alvar A. Lavin
- Department of Systems Biology, Centro Nacional de Biotecnología, Madrid, Spain
| | - Juan Rivas-Santisteban
- Department of Systems Biology, Centro Nacional de Biotecnología, Madrid, Spain
- Department of Biology and Biochemistry, University of Bath Milner Centre for Evolution, Bath, UK
| |
Collapse
|
3
|
Melia T, Fatayat, Wahibah NN, Fatonah S, Roslim DI, Adnan A. Genome-wide DNA polymorphisms in two peatland adapted Coffea liberica varieties. BMC Genom Data 2025; 26:11. [PMID: 39953379 PMCID: PMC11829567 DOI: 10.1186/s12863-025-01305-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
OBJECTIVES Coffea liberica is one of the species within the Coffea genus known for its distinctive flavor and resistance to leaf rust disease. Through breeding approaches, two superior varieties of C. liberica, designated as Liberoid Meranti 1 (Lim 1) and Liberoid Meranti 2 (Lim 2), were introduced in 2015. These varieties are known for their high adaptability in peatlands. The genetic basis of plant adaptability to peatlands remains largely unknown. It is therefore essential to identify genome-wide DNA polymorphisms in Lim 1 and 2 in order to gain insights into its capacity for adaptation in peatlands. DATA DESCRIPTION Whole genome sequencing was performed on three plants from each variety (Lim 1 and 2), resulting in 430 million sequencing reads. The mean depth of sequencing for each sample was 36.90x. The reads were mapped to the Coffea canephora genome, with an average mapping rate of 96.34%. The sequencing data revealed the presence of 3,766,805 single-nucleotide polymorphisms (SNPs) and 1,123,683 insertion-deletions (indels) in all six plants. Among the SNPs, there was a notable prevalence of transitions, with a ratio of approximately twofold compared to transversions. The generated data offers invaluable genomic resources for marker development, with significant implications for understanding peatlands adaptability.
Collapse
Affiliation(s)
- Tisha Melia
- Computer Science Department, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia.
| | - Fatayat
- Computer Science Department, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Ninik Nihayatul Wahibah
- Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Siti Fatonah
- Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Dewi Indriyani Roslim
- Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Arisman Adnan
- Mathematics Department, Faculty of Mathematics and Natural Sciences, Universitas Riau, Pekanbaru, Riau, Indonesia
| |
Collapse
|
4
|
Moreno-Contreras VI, Delgado-Gardea MCE, Ramos-Hernández JA, Mendez-Tenorio A, Varela-Rodríguez H, Sánchez-Ramírez B, Muñoz-Ramírez ZY, Infante-Ramírez R. Genome-Wide Identification and Characterization of SNPs and InDels of Capsicum annuum var. glabriusculum from Mexico Based on Whole Genome Sequencing. PLANTS (BASEL, SWITZERLAND) 2024; 13:3248. [PMID: 39599457 PMCID: PMC11597950 DOI: 10.3390/plants13223248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Capsicum annuum var. glabriusculum is an economically important horticultural crop and is considered the wild genetic ancestor of chili peppers. The distribution range extends from southern North America, through Central America, to South America. Approximately 226 million 150 paired-end reads were generated from CHMX_Ch1 (a C. annuum from Chihuahua, Mexico). To compare with the CHMX_Ch1 genome, high-quality reads from QO (a C. annuum from Querétaro, Mexico) were downloaded from the NCBI database. A total of 210,324 variants were detected in CHMX_Ch1, whereas 169,718 variants were identified in QO, all compared to the domesticated C. annuum reference genome, UCD10Xv1.1. This comprised 203,990 SNPs and 6334 InDels in CHMX_Ch1 and 164,955 SNPs and 4763 InDels in QO. The variants with high and moderate impact were identified as missense, splice acceptor, splice donor, start lost, stop gain, stop lost, frameshift, insertion, and deletion effects. The candidate genes with the highest fold enrichment values among the SNPs were predominantly involved in gene regulation and metabolic processes. InDels were associated with nuclear and transcriptional regulator activity in both genomes. Overall, a greater number of variants were found in CHMX_Ch1 compared to QO. This study provides knowledge of the principal functions associated with high- and moderate-impact variants and supplies a resource for further investigations of the genetic characteristics of these chiltepin peppers.
Collapse
Affiliation(s)
- Valeria Itzel Moreno-Contreras
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Ma. Carmen E. Delgado-Gardea
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Jesús A. Ramos-Hernández
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Alfonso Mendez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Campus Lázaro Cárdenas, Mexico City 11340, Mexico
| | - Hugo Varela-Rodríguez
- Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Blanca Sánchez-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Zilia Y. Muñoz-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| | - Rocío Infante-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Campus II Circuito Universitario s/n, Chihuahua 31125, Mexico
| |
Collapse
|
5
|
Sun M, Stoltzfus A, McCandlish DM. A fitness distribution law for amino-acid replacements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617952. [PMID: 39464166 PMCID: PMC11507765 DOI: 10.1101/2024.10.11.617952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The effect of replacing the amino acid at a given site in a protein is difficult to predict. Yet, evolutionary comparisons have revealed highly regular patterns of interchangeability between pairs of amino acids, and such patterns have proved enormously useful in a range of applications in bioinformatics, evolutionary inference, and protein design. Here we reconcile these apparently contradictory observations using fitness data from over 350,000 experimental amino acid replacements. Almost one-quarter of the 20 × 19 = 380 types of replacements have broad distributions of fitness effects (DFEs) that closely resemble the background DFE for random changes, indicating an overwhelming influence of protein context in determining mutational effects. However, we also observe that the 380 pair-specific DFEs closely follow a maximum entropy distribution, specifically a truncated exponential distribution. The shape of this distribution is determined entirely by its mean, which is equivalent to the chance that a replacement of the given type is fitter than a random replacement. In this type of distribution, modest deviations in the mean correspond to much larger changes in the probability of falling in the far right tail, so that modest differences in mean exchangeability may result in much larger differences in the chance of a highly fit mutation. Indeed, we show that under the assumption that purifying selection filters out the vast majority of mutations, the maximum entropy distributions of fitness effects inferred from deep mutational scanning experiments predict the characteristic patterns of amino acid change observed in molecular evolution. These maximum entropy distributions of mutational effects not only provide a tuneable model for molecular evolution, but also have implications for mutational effect prediction and protein engineering.
Collapse
Affiliation(s)
- Mengyi Sun
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Arlin Stoltzfus
- Office of Data and Informatics, Material Measurement Laboratory, NIST, Gaithersburg, MD
- Institute for Bioscience and Biotechnology Research, Rockville, USA
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| |
Collapse
|
6
|
Liu Y, Zhu C, Yue X, Lin Z, Li H, Di X, Wang J, Gao Z. Evolutionary relationship of moso bamboo forms and a multihormone regulatory cascade involving culm shape variation. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2578-2592. [PMID: 38743918 PMCID: PMC11331781 DOI: 10.1111/pbi.14370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Moso bamboo (Phyllostachys edulis) known as Mao Zhu (MZ) in Chinese exhibits various forms with distinct morphological characteristics. However, the evolutionary relationship among MZ forms and the mechanisms of culm shape variation are still lacking. Here, the main differences among MZ forms were identified as culm shape variation, which were confirmed by analysing MZ forms (799 bamboo culms) and MZ (458 bamboo culms) populations. To unravel the genetic basis underlying the morphological variations, 20 MZ forms were subjected to whole-genome resequencing. Further analysis yielded 3 230 107 high-quality SNPs and uncovered low genetic diversity and high genotype heterozygosity associated with MZ forms' formation. By integrating the SNP data of 427 MZ individuals representing 15 geographic regions, the origins of eight MZ forms were successfully traced using the phylogenetic tree and the identified common heterozygous loci. Meanwhile, transcriptomic analysis was performed using shoots from MZ and its two forms with culm shape variation. The results, combined with genomic analyses, demonstrated that hormone signalling related genes played crucial roles in culm variation. Co-expression network analysis uncovered genes associated with multiple plant hormone signal transduction, especially auxin and cytokinin were involved in culm shape variation. Furthermore, the regulatory relationships of a specific transcription factor and their target genes associated with auxin and ethylene signalling were validated by yeast one-hybrid, electrophoretic mobility shift assays, and dual-luciferase reporter. Overall, this study provides important insights into the culm shape variation formation in bamboo, which facilitates to breed new varieties with novel culms.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Xianghua Yue
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Sanya Research Base, International Centre for Bamboo and RattanSanyaChina
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and TechnologyBeijingChina
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and RattanBeijingChina
| |
Collapse
|
7
|
Efimenko B, Popadin K, Gunbin K. NeMu: a comprehensive pipeline for accurate reconstruction of neutral mutation spectra from evolutionary data. Nucleic Acids Res 2024; 52:W108-W115. [PMID: 38795067 PMCID: PMC11223800 DOI: 10.1093/nar/gkae438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024] Open
Abstract
The recognized importance of mutational spectra in molecular evolution is yet to be fully exploited beyond human cancer studies and model organisms. The wealth of intraspecific polymorphism data in the GenBank repository, covering a broad spectrum of genes and species, presents an untapped opportunity for detailed mutational spectrum analysis. Existing methods fall short by ignoring intermediate substitutions on the inner branches of phylogenetic trees and lacking the capability for cross-species mutational comparisons. To address these challenges, we present the NeMu pipeline, available at https://nemu-pipeline.com, a tool grounded in phylogenetic principles designed to provide comprehensive and scalable analysis of mutational spectra. Utilizing extensive sequence data from numerous available genome projects, NeMu rapidly and accurately reconstructs the neutral mutational spectrum. This tool, facilitating the reconstruction of gene- and species-specific mutational spectra, contributes to a deeper understanding of evolutionary mechanisms across the broad spectrum of known species.
Collapse
Affiliation(s)
- Bogdan Efimenko
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- A.A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
| | - Konstantin Popadin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Konstantin Gunbin
- Center for Mitochondrial Functional Genomics, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- A.A. Kharkevich Institute for Information Transmission Problems RAS, Moscow, Russia
- Institute of Molecular and Cellular Biology SB RAS, Novosibirsk, Russia
| |
Collapse
|
8
|
Rumiani M, Zouhar M, Karegar A, Hamzehzarghani H, Tahmasebi A, Rashidifard M. Morphological Characterization and Assessment of Genetic Variability of Tylenchulus semipenetrans Populations from Southern Iran. J Nematol 2024; 56:20240047. [PMID: 39703953 PMCID: PMC11658578 DOI: 10.2478/jofnem-2024-0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 12/21/2024] Open
Abstract
Molecular data should be combined with morphological data to enhance the reliability of phylogenetic and diagnostic studies on nematodes. In this study, the citrus nematode Tylenchulus semipenetrans collected from citrus orchards in different localities in Fars province, southern Iran, was characterized using the partial sequencing of ITS rDNA, D2-D3 of 28S rDNA and COI mtDNA genes. We also morphometrically characterized the second-stage juveniles (J2) and male specimens. The results showed that T. semipenetrans is a genetically homogeneous species, and only minor nucleotide differences were detected among the populations. Phylogenetic studies demonstrated that most Iranian populations were grouped together, and there were no differences among the populations. However, sequence alignment of ITS, D2-D3 of 28S rDNA and COI mtDNA revealed 17, 24, and 16 single nucleotide variations (SNVs) and 11, 12, and 11 single-nucleotide polymorphisms (SNPs), respectively. The results of the morphometric analysis showed slight morphometric differences among and within the populations of T. semipenetrans. The morphometric differences among citrus nematode populations and the haplotype topology of the populations did not correlate with their geographical origin and host type. The constructed phylogenetic trees showed a close relationship between Tylenchulus and Trophotylenchulus. In addition, the phylogenetic relationships showed that T. musicola is the closest taxon to T. semipenetrans. The results of this study provide a better understanding of the diversity of T. semipenetrans populations and may shed light on the genetic variation of citrus nematode.
Collapse
Affiliation(s)
- Mohammad Rumiani
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Miloslav Zouhar
- Department of Plant Protection, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, Prague, Czech Republic
| | - Akbar Karegar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Ahmad Tahmasebi
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Milad Rashidifard
- Department of Zoology and Entomology, University of the Free State, PO Box 339, Bloemfontein9300, South Africa
| |
Collapse
|
9
|
Javaid N, Ramzan M, Jabeen S, Shah MN, Danish S, Hirad AH. Genomic exploration of Sesuvium sesuvioides: comparative study and phylogenetic analysis within the order Caryophyllales from Cholistan desert, Pakistan. BMC PLANT BIOLOGY 2023; 23:658. [PMID: 38124056 PMCID: PMC10731703 DOI: 10.1186/s12870-023-04670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The Aizoaceae family's Sesuvium sesuvioides (Fenzl) Verdc is a medicinal species of the Cholistan desert, Pakistan. The purpose of this study was to determine the genomic features and phylogenetic position of the Sesuvium genus in the Aizoaceae family. We used the Illumina HiSeq2500 and paired-end sequencing to publish the complete chloroplast sequence of S. sesuvioides. RESULTS The 155,849 bp length cp genome sequence of S. sesuvioides has a 36.8% GC content. The Leucine codon has the greatest codon use (10.6%), 81 simple sequence repetitions of 19 kinds, and 79 oligonucleotide repeats. We investigated the phylogeny of the order Caryophyllales' 27 species from 23 families and 25 distinct genera. The maximum likelihood tree indicated Sesuvium as a monophyletic genus, and sister to Tetragonia. A comparison of S. sesuvioides, with Sesuvium portulacastrum, Mesembryanthemum crystallinum, Mesembryanthemum cordifolium, and Tetragonia tetragonoides was performed using the NCBI platform. In the comparative investigation of genomes, all five genera revealed comparable cp genome structure, gene number and composition. All five species lacked the rps15 gene and the rpl2 intron. In most comparisons with S. sesuvioides, transition substitutions (Ts) were more frequent than transversion substitutions (Tv), producing Ts/Tv ratios larger than one, and the Ka/Ks ratio was lower than one. We determined ten highly polymorphic regions, comprising rpl22, rpl32-trnL-UAG, trnD-GUC-trnY-GUA, trnE-UUC-trnT-GGU, trnK-UUU-rps16, trnM-CAU-atpE, trnH-GUG-psbA, psaJ-rpl33, rps4-trnT-UGU, and trnF-GAA-ndhJ. CONCLUSION The whole S. sesuvioides chloroplast will be examined as a resource for in-depth taxonomic research of the genus when more Sesuvium and Aizoaceae species are sequenced in the future. The chloroplast genomes of the Aizoaceae family are well preserved, with little alterations, indicating the family's monophyletic origin. This study's highly polymorphic regions could be utilized to build realistic and low-cost molecular markers for resolving taxonomic discrepancies, new species identification, and finding evolutionary links among Aizoaceae species. To properly comprehend the evolution of the Aizoaceae family, further species need to be sequenced.
Collapse
Affiliation(s)
- Nida Javaid
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Musarrat Ramzan
- Department of Botany, Faculty of Chemical and Biological Sciences, The Islamia University Bahawalpur, Bahawalpur, Punjab, Pakistan.
| | - Shagufta Jabeen
- Government Associate College for Women Ahmedpur East, Bahawalpur, Punjab, Pakistan
| | - Muhammad Nadeem Shah
- Department of Agriculture, Government College University Lahore, Lahore, Punjab, Pakistan
- North Florida Research and Education Center, University of Florida, 155 Research Road, Quincy, Florida, USA
| | - Subhan Danish
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Punjab, Pakistan.
| | - Abdurahman Hajinur Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box.2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Sane M, Diwan GD, Bhat BA, Wahl LM, Agashe D. Shifts in mutation spectra enhance access to beneficial mutations. Proc Natl Acad Sci U S A 2023; 120:e2207355120. [PMID: 37216547 PMCID: PMC10235995 DOI: 10.1073/pnas.2207355120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 05/24/2023] Open
Abstract
Biased mutation spectra are pervasive, with wide variation in the magnitude of mutational biases that influence genome evolution and adaptation. How do such diverse biases evolve? Our experiments show that changing the mutation spectrum allows populations to sample previously undersampled mutational space, including beneficial mutations. The resulting shift in the distribution of fitness effects is advantageous: Beneficial mutation supply and beneficial pleiotropy both increase, while deleterious load reduces. More broadly, simulations indicate that reducing or reversing the direction of a long-term bias is always selectively favored. Such changes in mutation bias can occur easily via altered function of DNA repair genes. A phylogenetic analysis shows that these genes are repeatedly gained and lost in bacterial lineages, leading to frequent bias shifts in opposite directions. Thus, shifts in mutation spectra may evolve under selection and can directly alter the outcome of adaptive evolution by facilitating access to beneficial mutations.
Collapse
Affiliation(s)
- Mrudula Sane
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| | - Gaurav D. Diwan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Bioquant, University of Heidelberg,69120Heidelberg, Germany
- Heidelberg University Biochemistry Center (BZH), 69120Heidelberg, Germany
| | - Bhoomika A. Bhat
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
- Undergraduate Programme, Indian Institute of Science, Bengaluru 560012, India
| | - Lindi M. Wahl
- Mathematics, Western University, London, ON, N6A 5B7, Canada
| | - Deepa Agashe
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru560065, India
| |
Collapse
|
11
|
Selection signatures in melanocortin-1 receptor gene of turkeys (Meleagris gallopavo) raised in hot humid tropics. Trop Anim Health Prod 2022; 54:183. [PMID: 35525911 DOI: 10.1007/s11250-022-03185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
Feather colours are used by avian species for defense, adaptation and signaling. Melanocortin-1 receptor (MC1R) gene is one of the genes responsible for feather colour. This study identified selection signatures in MC1R gene of Nigerian indigenous turkeys (NIT) using British United turkeys (BUT) as control breed to investigate the evolutionary processes that have shaped NIT with various feather colours. Complete MC1R gene of 146 NIT (76 males and 70 females) and 32 BUT (18 males and 14 females) were sequenced. Transition/transversion and codon usage biases were predicted using MEGA v6 software. The selective force acting on the gene was predicted using HyPhy software. The FST values were estimated using Arlequin v3.5. The highest transition/transversion bias was predicted for white BUT (1.00) while the lowest was predicted for black NIT (0.50). Negative dN-dS values, indicative of purifying selection, were observed in MC1R gene of all the turkeys. The highest pairwise FST was observed between the MC1R gene of white BUT and black NIT while the least was observed between lavender NIT and white NIT. No recombination event was observed in black NIT and white BUT. The relative synonymous codon usage was the same among different colours for some codons. Presence of purifying selection in MC1R gene of all the turkeys with different feather colours confirms that the gene plays role in many biological processes such as feather colouration, behaviour, pain perception, immunity, growth and adaptation. The results also suggested that the genetic mechanisms generating different feather colours in turkeys are conserved.
Collapse
|
12
|
Abstract
The causes and consequences of the nonrandom structure of the standard genetic code (SGC) have been of long-standing interest. A recent study reported that mutations in present-day protein-coding sequences are less likely to increase proteomic nitrogen and carbon uses under the SGC than under random genetic codes, concluding that the SGC has been selectively optimized for resource conservation. If true, this finding might offer important information on the environment in which the SGC and some of the earliest life forms evolved. However, we here show that the hypothesis of optimization of a genetic code for resource conservation is theoretically untenable. We discover that the aforementioned study estimated the expected mutational effect by inappropriately excluding mutations lowering resource consumptions and including mutations involving stop codons. After remedying these problems, we find no evidence that the SGC is optimized for nitrogen or carbon conservation.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
13
|
The rate and molecular spectrum of mutation are selectively maintained in yeast. Nat Commun 2021; 12:4044. [PMID: 34193872 PMCID: PMC8245649 DOI: 10.1038/s41467-021-24364-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022] Open
Abstract
What determines the rate (μ) and molecular spectrum of mutation is a fundamental question. The prevailing hypothesis asserts that natural selection against deleterious mutations has pushed μ to the minimum achievable in the presence of genetic drift, or the drift barrier. Here we show that, contrasting this hypothesis, μ substantially exceeds the drift barrier in diverse organisms. Random mutation accumulation (MA) in yeast frequently reduces μ, and deleting the newly discovered mutator gene PSP2 nearly halves μ. These results, along with a comparison between the MA and natural yeast strains, demonstrate that μ is maintained above the drift barrier by stabilizing selection. Similar comparisons show that the mutation spectrum such as the universal AT mutational bias is not intrinsic but has been selectively preserved. These findings blur the separation of mutation from selection as distinct evolutionary forces but open the door to alleviating mutagenesis in various organisms by genome editing. How natural selection shapes the rate and molecular spectrum of mutations is debated. Yeast mutation accumulation experiments identify a gene promoting mutagenesis and show stabilizing selection maintaining the mutation rate above the drift barrier. Selection also preserves the mutation spectrum.
Collapse
|
14
|
Sohpal VK. Comparative study: nonsynonymous and synonymous substitution of SARS-CoV-2, SARS-CoV, and MERS-CoV genome. Genomics Inform 2021; 19:e15. [PMID: 34261300 PMCID: PMC8261266 DOI: 10.5808/gi.20058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/23/2021] [Accepted: 05/30/2021] [Indexed: 12/13/2022] Open
Abstract
The direction of evolution can estimate based on the variation among nonsynonymous to synonymous substitution. The simulative study investigated the nucleotide sequence of closely related strains of respiratory syndrome viruses, codon-by-codon with maximum likelihood analysis, z selection, and the divergence time. The simulated results, dN/dS > 1 signify that an entire substitution model tends towards the hypothesis's positive evolution. The effect of transition/transversion proportion, Z-test of selection, and the evolution associated with these respiratory syndromes, are also analyzed. Z-test of selection for neutral and positive evolution indicates lower to positive values of dN-dS (0.012, 0.019) due to multiple substitutions in a short span. Modified Nei-Gojobori (P) statistical technique results also favor multiple substitutions with the transition/transversion rate from 1 to 7. The divergence time analysis also supports the result of dN/dS and imparts substantiating proof of evolution. Results conclude that a positive evolution model, higher dN-dS, and transition/transversion ratio significantly analyzes the evolution trend of severe acute respiratory syndrome coronavirus 2, severe acute respiratory syndrome coronavirus, and Middle East respiratory syndrome coronavirus.
Collapse
Affiliation(s)
- Vipan Kumar Sohpal
- Department of Chemical & Bio Engineering, Beant College of Engineering & Technology, Gurdaspur 143521, India
| |
Collapse
|