1
|
Thomas IV JC, Cartee JC, Hebrank K, St. Cyr SB, Schlanger K, Raphael BH, Kersh EN, Joseph SJ. Emergence and evolution of mosaic penA-60 and penA-237 alleles in a Neisseria gonorrhoeae core genogroup that was historically susceptible to extended spectrum cephalosporins. Front Microbiol 2024; 15:1401303. [PMID: 39411431 PMCID: PMC11473337 DOI: 10.3389/fmicb.2024.1401303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Neisseria gonorrhoeae (Ng) has successively developed resistance to all previously recommended antimicrobial therapies, with ceftriaxone being the last option for monotherapy of gonorrhea. Global emergence and international spread of the FC428 clone derived mosaic penA-60 allele, associated with highlevel ceftriaxone minimum inhibitory concentrations (MICs) in non FC428 clone Ng lineages, has become an increasing concern. The penA-60 allele carrying Ng was first identified in the U.S. in Las Vegas, Nevada (2019; GCWGS-102723), with a multi-locus sequence type (MLST)-1901 strain, in a non FC428 clone Ng lineage, which is associated with a historically ceftriaxone susceptible core genogroup. Later in 2022, an allele genetically similar to penA-60, mosaic penA-237, was identified in the UK (H22-722) and France (F92) with high-level ceftriaxone MICs and both belonged to MLST-1901. Methods In this study, we assessed phylogenomic relatedness and antimicrobial resistance (AMR) determinant profiles of these three isolates with high-level ceftriaxone MICs among a global collection of 2,104 genomes belonging to the MLST-1901 core genome cluster group 31, which includes strains separated by a locus threshold of 200 or fewer differences (Ng_cgc_200). Recombination events in and around the penA coding region were catalogued and potential sources of inter species recombinant DNA were also inferred. Results The global population structure of MLST-1901 core genogroup falls into 4 major lineages. Isolates GCWGS-10723, F92, and H22-722 clustered within Lineage 1, which was dominated by non-mosaic penA-5 alleles. These three isolates formed a clade within Lineage 1 that consisted of isolates from North America and southeast Asia. Neisseria subflava and Neisseria sicca were identified as likely progenitors of two independent recombination events that may have led to the generation of mosaic penA-60 and penA-237, within a possible non-mosaic penA-5 background. Discussions Our study suggests that there are multiple evolutionary pathways that could generate concerning mosaic penA alleles via homologous recombination of historically susceptible Ng lineages with Neisseria commensals. Enhanced surveillance of gonococcal strains and Neisseria commensals is crucial for understanding of the evolution of AMR, particularly in less-studied regions (e.g., Asia), where high-level ceftriaxone MICs and multi-drug resistance are more prevalent.
Collapse
Affiliation(s)
- Jesse C. Thomas IV
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - John C. Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Katherine Hebrank
- Oak Ridge Institute for Science and Education Research Participation and Fellowship Program, Oak Ridge, TN, United States
| | - Sancta B. St. Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Karen Schlanger
- Division of HIV Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Brian H. Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Ellen N. Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Sandeep J. Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
2
|
de Medeiros RC, Barros Dos Santos KT, Costa-Lourenço APR, Skaf LB, Mercadante AM, Rosa MHB, Fracalanzza SEL, Ferreira ALP, Reimche JL, Gernert KM, Kersh EN, Bonelli RR. Neisseria gonorrhoeae ST-1901 in Rio de Janeiro from 2006 to 2022: Phylogeny and antimicrobial resistance evolution of a well-succeeded pathogen. Int J Antimicrob Agents 2024; 64:107299. [PMID: 39142419 DOI: 10.1016/j.ijantimicag.2024.107299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 06/25/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
Neisseria gonorrhoeae is a global threat to public health due to the accumulation of antimicrobial resistance mechanisms. ST-1901 is an internationally important sequence type (ST) because of its high incidence and the usual occurrence of chromosomally determined resistance. In this study, we describe the evolution of the ST-1901 and its single locus variants in Rio de Janeiro from 2006 to 2022. We analyzed 82 N. gonorrhoeae isolates according to antimicrobial susceptibility profile, resistance mechanisms, molecular typing, and phylogenetics. Six different single locus variants were detected. Phylogenetic analysis identified five clades, which share similar characteristics. Resistance rates for penicillin and tetracycline decreased due to the lower occurrence of resistance plasmids, but intermediary resistance to penicillin rose. Resistance to ciprofloxacin remained high throughout all clades and the years of the study. Regarding resistance to azithromycin, alterations in mtrR promoter and gene, and 23S rRNA encoding gene rrl were detected, with a notable rise in the incidence of C2611T mutations in more recent years occurring in four of five clades. In contrast, β-lactam resistance associated penA 34 mosaic was found only in one persisting clade (Clade D), and unique G45D and A39T mutations in mtrR gene and its promoter (Nm-Like) were found only in Clade B. Taken together, these data suggest that ST-1901, a persistently circulating lineage of N. gonorrhoeae in Rio de Janeiro, has undergone changes over the years and may evolve to develop resistance to the current recommended dual therapy adopted in Brazil, namely, ceftriaxone and azithromycin.
Collapse
Affiliation(s)
| | - Késia Thaís Barros Dos Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brasil; Diagnósticos da América - DASA, Brazil
| | | | - Larissa Brasil Skaf
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brasil
| | | | | | | | | | - Jennifer L Reimche
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kim M Gernert
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ellen Neumeister Kersh
- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Raquel Regina Bonelli
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brasil.
| |
Collapse
|
3
|
Manoharan-Basil SS, González N, Laumen JGE, Kenyon C. Horizontal Gene Transfer of Fluoroquinolone Resistance-Conferring Genes From Commensal Neisseria to Neisseria gonorrhoeae: A Global Phylogenetic Analysis of 20,047 Isolates. Front Microbiol 2022; 13:793612. [PMID: 35369513 PMCID: PMC8973304 DOI: 10.3389/fmicb.2022.793612] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/24/2022] Open
Abstract
Antimicrobial resistance in Neisseria gonorrhoeae is an important global health concern. The genetically related commensal Neisseria act as a reservoir of resistance genes, and horizontal gene transfer (HGT) has been shown to play an important role in the genesis of resistance to cephalosporins and macrolides in N. gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes gyrA/gyrB and parC/parE responsible for fluoroquinolone resistance. Even though the role of gyrB and parE in quinolone resistance is unclear, the subunits gyrB and parE were included as zoliflodacin, a promising new drug to treat N. gonorrhoeae targets the gyrB subunit. We analyzed a collection of 20,047 isolates; 18,800 N. gonorrhoeae, 1,238 commensal Neisseria spp., and nine Neisseria meningitidis. Comparative genomic analyses identified HGT events in genes, gyrA, gyrB, parC, and parE. Recombination events were predicted in N. gonorrhoeae and Neisseria commensals. Neisseria lactamica, Neisseria macacae, and Neisseria mucosa were identified as likely progenitors of the HGT events in gyrA, gyrB, and parE, respectively.
Collapse
Affiliation(s)
- Sheeba Santhini Manoharan-Basil
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- *Correspondence: Sheeba Santhini Manoharan-Basil,
| | - Natalia González
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | | | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Joseph SJ, Thomas Iv JC, Schmerer MW, Cartee J, St Cyr S, Schlanger K, Kersh EN, Raphael BH, Gernert KM. Global emergence and dissemination of Neisseria gonorrhoeae ST-9363 isolates with reduced susceptibility to azithromycin. Genome Biol Evol 2021; 14:6486421. [PMID: 34962987 DOI: 10.1093/gbe/evab287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2021] [Indexed: 11/12/2022] Open
Abstract
Neisseria gonorrhoeae multi-locus sequence type (ST) 9363 core-genogroup isolates have been associated with reduced azithromycin susceptibility (AZMrs) and show evidence of clonal expansion in the U.S. Here we analyze a global collection of ST-9363 core-genogroup genomes to shed light on the emergence and dissemination of this strain. The global population structure of ST-9363 core-genogroup falls into three lineages: Basal, European, and North American; with 32 clades within all lineages. Although, ST-9363 core-genogroup is inferred to have originated from Asia in the mid-19th century; we estimate the three modern lineages emerged from Europe in the late 1970s to early 1980s. The European lineage appears to have emerged and expanded from around 1986 to 1998, spreading into North America and Oceania in the mid-2000s with multiple introductions, along with multiple secondary reintroductions into Europe. Our results suggest two separate acquisition events of mosaic mtrR and mtrR promoter alleles: first during 2009-2011 and again during the 2012-2013 time, facilitating the clonal expansion of this core-genogroup with AZMrs in the U.S. By tracking phylodynamic evolutionary trajectories of clades that share distinct demography as well as population-based genomic statistics, we demonstrate how recombination and selective pressures in the mtrCDE efflux operon granted a fitness advantage to establish ST-9363 as a successful gonococcal lineage in the U.S. and elsewhere. Although it is difficult to pinpoint the exact timing and emergence of this young core-genogroup, it remains critically important to continue monitoring it, as it could acquire additional resistance markers.
Collapse
Affiliation(s)
- Sandeep J Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Jesse C Thomas Iv
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Matthew W Schmerer
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Jack Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Sancta St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Karen Schlanger
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Brian H Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | - Kim M Gernert
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia-30329, USA
| | | |
Collapse
|
5
|
Singh R, Kusalik A, Dillon JAR. Bioinformatics tools used for whole-genome sequencing analysis of Neisseria gonorrhoeae: a literature review. Brief Funct Genomics 2021; 21:78-89. [PMID: 34170311 DOI: 10.1093/bfgp/elab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023] Open
Abstract
Whole-genome sequencing (WGS) data are well established for the investigation of gonococcal transmission, antimicrobial resistance prediction, population structure determination and population dynamics. A variety of bioinformatics tools, repositories, services and platforms have been applied to manage and analyze Neisseria gonorrhoeae WGS datasets. This review provides an overview of the various bioinformatics approaches and resources used in 105 published studies (as of 30 April 2021). The challenges in the analysis of N. gonorrhoeae WGS datasets, as well as future bioinformatics requirements, are also discussed.
Collapse
Affiliation(s)
- Reema Singh
- Department of Biochemistry, Microbiology and Immunology
| | - Anthony Kusalik
- Department of Computer Science at the University of Saskatchewan
| | - Jo-Anne R Dillon
- Department of Biochemistry Microbiology and Immunology, College of Medicine, c/o Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, Saskatchewan S7N5E3, Canada
| |
Collapse
|
6
|
Thomas JC, Joseph SJ, Cartee JC, Pham CD, Schmerer MW, Schlanger K, St Cyr SB, Kersh EN, Raphael BH. Phylogenomic analysis reveals persistence of gonococcal strains with reduced-susceptibility to extended-spectrum cephalosporins and mosaic penA-34. Nat Commun 2021; 12:3801. [PMID: 34155204 PMCID: PMC8217231 DOI: 10.1038/s41467-021-24072-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/28/2021] [Indexed: 12/03/2022] Open
Abstract
The recent emergence of strains of Neisseria gonorrhoeae associated with treatment failures to ceftriaxone, the foundation of current treatment options, has raised concerns over a future of untreatable gonorrhea. Current global data on gonococcal strains suggest that several lineages, predominately characterized by mosaic penA alleles, are associated with elevated minimum inhibitory concentrations (MICs) to extended spectrum cephalosporins (ESCs). Here we report on whole genome sequences of 813 N. gonorrhoeae isolates collected through the Gonococcal Isolate Surveillance Project in the United States. Phylogenomic analysis revealed that one persisting lineage (Clade A, multi-locus sequence type [MLST] ST1901) with mosaic penA-34 alleles, contained the majority of isolates with elevated MICs to ESCs. We provide evidence that an ancestor to the globally circulating MLST ST1901 clones potentially emerged around the early to mid-20th century (1944, credibility intervals [CI]: 1935-1953), predating the introduction of cephalosporins, but coinciding with the use of penicillin. Such results indicate that drugs with novel mechanisms of action are needed as these strains continue to persist and disseminate globally.
Collapse
Affiliation(s)
- Jesse C Thomas
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Sandeep J Joseph
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John C Cartee
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Cau D Pham
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Matthew W Schmerer
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Karen Schlanger
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sancta B St Cyr
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Ellen N Kersh
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Brian H Raphael
- Division of STD Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
7
|
Alegun O, Pandeya A, Cui J, Ojo I, Wei Y. Donnan Potential across the Outer Membrane of Gram-Negative Bacteria and Its Effect on the Permeability of Antibiotics. Antibiotics (Basel) 2021; 10:701. [PMID: 34208097 PMCID: PMC8230823 DOI: 10.3390/antibiotics10060701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The cell envelope structure of Gram-negative bacteria is unique, composed of two lipid bilayer membranes and an aqueous periplasmic space sandwiched in between. The outer membrane constitutes an extra barrier to limit the exchange of molecules between the cells and the exterior environment. Donnan potential is a membrane potential across the outer membrane, resulted from the selective permeability of the membrane, which plays a pivotal role in the permeability of many antibiotics. In this review, we discussed factors that affect the intensity of the Donnan potential, including the osmotic strength and pH of the external media, the osmoregulated periplasmic glucans trapped in the periplasmic space, and the displacement of cell surface charges. The focus of our discussion is the impact of Donnan potential on the cellular permeability of selected antibiotics including fluoroquinolones, tetracyclines, β-lactams, and trimethoprim.
Collapse
Affiliation(s)
| | | | | | | | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA; (O.A.); (A.P.); (J.C.); (I.O.)
| |
Collapse
|
8
|
Manoharan-Basil SS, Laumen JGE, Van Dijck C, De Block T, De Baetselier I, Kenyon C. Evidence of Horizontal Gene Transfer of 50S Ribosomal Genes rplB, rplD, and rplY in Neisseria gonorrhoeae. Front Microbiol 2021; 12:683901. [PMID: 34177869 PMCID: PMC8222677 DOI: 10.3389/fmicb.2021.683901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Horizontal gene transfer (HGT) in the penA and multidrug efflux pump genes has been shown to play a key role in the genesis of antimicrobial resistance in Neisseria gonorrhoeae. In this study, we evaluated if there was evidence of HGT in the genes coding for the ribosomal proteins in the Neisseria genus. We did this in a collection of 11,659 isolates of Neisseria, including N. gonorrhoeae and commensal Neisseria species (N. cinerea, N. elongata, N. flavescens, N. mucosa, N. polysaccharea, and N. subflava). Comparative genomic analyses identified HGT events in three genes: rplB, rplD, and rplY coding for ribosomal proteins L2, L4 and L25, respectively. Recombination events were predicted in N. gonorrhoeae and N. cinerea, N. subflava, and N. lactamica were identified as likely progenitors. In total, 2,337, 2,355, and 1,127 isolates possessed L2, L4, and L25 HGT events. Strong associations were found between HGT in L2/L4 and the C2597T 23S rRNA mutation that confers reduced susceptibility to macrolides. Whilst previous studies have found evidence of HGT of entire genes coding for ribosomal proteins in other bacterial species, this is the first study to find evidence of HGT-mediated chimerization of ribosomal proteins.
Collapse
Affiliation(s)
| | - Jolein Gyonne Elise Laumen
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Christophe Van Dijck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Tessa De Block
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irith De Baetselier
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Chris Kenyon
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
9
|
Kenyon C, Laumen J, Manoharan-Basil S. Choosing New Therapies for Gonorrhoea: We Need to Consider the Impact on the Pan- Neisseria Genome. A Viewpoint. Antibiotics (Basel) 2021; 10:515. [PMID: 34062856 PMCID: PMC8147325 DOI: 10.3390/antibiotics10050515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The development of new gonorrhoea treatment guidelines typically considers the resistance-inducing effect of the treatment only on Neisseria gonorrhoeae. Antimicrobial resistance in N. gonorrhoeae has, however, frequently first emerged in commensal Neisseria species and then been passed on to N. gonorrhoeae via transformation. This creates the rationale for considering the effect of gonococcal therapies on resistance in commensal Neisseria. We illustrate the benefits of this pan-Neisseria strategy by evaluating three contemporary treatment options for N. gonorrhoeae-ceftriaxone plus azithromycin, monotherapy with ceftriaxone and zoliflodacin.
Collapse
Affiliation(s)
- Chris Kenyon
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
- Division of Infectious Diseases and HIV Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town 7701, South Africa
- STI Reference Center, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Jolein Laumen
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
| | - Sheeba Manoharan-Basil
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium; (J.L.); (S.M.-B.)
| |
Collapse
|