1
|
Madern D, Halgand F, Houée-Levin C, Dufour AB, Coquille S, Ansanay-Alex S, Sacquin-Mora S, Brochier-Armanet C. The Characterization of Ancient Methanococcales Malate Dehydrogenases Reveals That Strong Thermal Stability Prevents Unfolding Under Intense γ-Irradiation. Mol Biol Evol 2024; 41:msae231. [PMID: 39494471 PMCID: PMC11631191 DOI: 10.1093/molbev/msae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024] Open
Abstract
Malate dehydrogenases (MalDHs) (EC.1.1.1.37), which are involved in the conversion of oxaloacetate to pyruvate in the tricarboxylic acid cycle, are a relevant model for the study of enzyme evolution and adaptation. Likewise, a recent study showed that Methanococcales, a major lineage of Archaea, is a good model to study the molecular processes of proteome thermoadaptation in prokaryotes. Here, we use ancestral sequence reconstruction and paleoenzymology to characterize both ancient and extant MalDHs. We observe a good correlation between inferred optimal growth temperatures and experimental optimal temperatures for activity (A-Topt). In particular, we show that the MalDH present in the ancestor of Methanococcales was hyperthermostable and had an A-Topt of 80 °C, consistent with a hyperthermophilic lifestyle. This ancestor gave rise to two lineages with different thermal constraints: one remained hyperthermophilic, while the other underwent several independent adaptations to colder environments. Surprisingly, the enzymes of the first lineage have retained a thermoresistant behavior (i.e. strong thermostability and high A-Topt), whereas the ancestor of the second lineage shows a strong thermostability, but a reduced A-Topt. Using mutants, we mimic the adaptation trajectory toward mesophily and show that it is possible to significantly reduce the A-Topt without altering the thermostability of the enzyme by introducing a few mutations. Finally, we reveal an unexpected link between thermostability and the ability to resist γ-irradiation-induced unfolding.
Collapse
Affiliation(s)
| | - Frédéric Halgand
- Institut de Chimie Physique, Université Paris-Saclay, 91405 Orsay, France
| | | | - Anne-Béatrice Dufour
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne F-69622, France
| | | | | | - Sophie Sacquin-Mora
- Laboratoire de Biochimie Théorique, CNRS, UPR9080, Université Paris-Cité, 75005 Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Céline Brochier-Armanet
- Universite Claude Bernard Lyon 1, LBBE, UMR 5558, CNRS, VAS, Villeurbanne F-69622, France
- Institut Universitaire de France (IUF), France
| |
Collapse
|
2
|
Maslać N, Cadoux C, Bolte P, Murken F, Gu W, Milton RD, Wagner T. Structural comparison of (hyper-)thermophilic nitrogenase reductases from three marine Methanococcales. FEBS J 2024; 291:3454-3480. [PMID: 38696373 DOI: 10.1111/febs.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/17/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
The nitrogenase reductase NifH catalyses ATP-dependent electron delivery to the Mo-nitrogenase, a reaction central to biological dinitrogen (N2) fixation. While NifHs have been extensively studied in bacteria, structural information about their archaeal counterparts is limited. Archaeal NifHs are considered more ancient, particularly those from Methanococcales, a group of marine hydrogenotrophic methanogens, which includes diazotrophs growing at temperatures near 92 °C. Here, we structurally and biochemically analyse NifHs from three Methanococcales, offering the X-ray crystal structures from meso-, thermo-, and hyperthermophilic methanogens. While NifH from Methanococcus maripaludis (37 °C) was obtained through heterologous recombinant expression, the proteins from Methanothermococcus thermolithotrophicus (65 °C) and Methanocaldococcus infernus (85 °C) were natively purified from the diazotrophic archaea. The structures from M. thermolithotrophicus crystallised as isolated exhibit high flexibility. In contrast, the complexes of NifH with MgADP obtained from the three methanogens are superposable, more rigid, and present remarkable structural conservation with their homologues. They retain key structural features of P-loop NTPases and share similar electrostatic profiles with the counterpart from the bacterial model organism Azotobacter vinelandii. In comparison to the NifH from the phylogenetically distant Methanosarcina acetivorans, these reductases do not cross-react significantly with Mo-nitrogenase from A. vinelandii. However, they associate with bacterial nitrogenase when ADP·AlF 4 - is added to mimic a transient reactive state. Accordingly, detailed surface analyses suggest that subtle substitutions would affect optimal binding during the catalytic cycle between the NifH from Methanococcales and the bacterial nitrogenase, implying differences in the N2-machinery from these ancient archaea.
Collapse
Affiliation(s)
- Nevena Maslać
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Cécile Cadoux
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Pauline Bolte
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Fenja Murken
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Wenyu Gu
- Laboratory of Microbial Physiology and Resource Biorecovery, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédéral de Lausanne, Switzerland
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Geneva, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva, Switzerland
| | - Tristan Wagner
- Microbial Metabolism Research Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
3
|
McShea H, Weibel C, Wehbi S, Goodman P, James JE, Wheeler AL, Masel J. The effectiveness of selection in a species affects the direction of amino acid frequency evolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.01.526552. [PMID: 38948853 PMCID: PMC11212923 DOI: 10.1101/2023.02.01.526552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Nearly neutral theory predicts that species with higher effective population size (N e ) are better able to purge slightly deleterious mutations. We compare evolution in high-N e vs. low-N e vertebrates to reveal which amino acid frequencies are subject to subtle selective preferences. We take three complementary approaches, two measuring flux and one measuring outcomes. First, we fit non-stationary substitution models of amino acid flux using maximum likelihood, comparing the high-N e clade of rodents and lagomorphs to its low-N e sister clade of primates and colugos. Second, we compare evolutionary outcomes across a wider range of vertebrates, via correlations between amino acid frequencies and N e . Third, we dissect the details of flux in human, chimpanzee, mouse, and rat, as scored by parsimony - this also enables comparison to a historical paper. All three methods agree on which amino acids are preferred under more effective selection. Preferred amino acids tend to be smaller, less costly to synthesize, and to promote intrinsic structural disorder. Parsimony-induced bias in the historical study produces an apparent reduction in structural disorder, perhaps driven by slightly deleterious substitutions. Within highly exchangeable pairs of amino acids, arginine is strongly preferred over lysine, and valine over isoleucine, consistent with more effective selection preferring a marginally larger free energy of folding. These two preferences match differences between thermophiles and mesophilic relatives. These results reveal the biophysical consequences of mutation-selection-drift balance, and demonstrate the utility of nearly neutral theory for understanding protein evolution.
Collapse
Affiliation(s)
- Hanon McShea
- Department of Earth System Science, Stanford University
| | - Catherine Weibel
- Department of Ecology & Evolutionary Biology, University of Arizona
- Department of Applied Physics, Stanford University
| | - Sawsan Wehbi
- Graduate Interdisciplinary Program in Genetics, University of Arizona
| | | | - Jennifer E James
- Department of Ecology & Evolutionary Biology, University of Arizona
- Department of Ecology and Genetics, Uppsala University
| | - Andrew L Wheeler
- Graduate Interdisciplinary Program in Genetics, University of Arizona
| | - Joanna Masel
- Department of Ecology & Evolutionary Biology, University of Arizona
| |
Collapse
|
4
|
Bou Dagher L, Madern D, Malbos P, Brochier-Armanet C. Persistent homology reveals strong phylogenetic signal in 3D protein structures. PNAS NEXUS 2024; 3:pgae158. [PMID: 38689707 PMCID: PMC11058471 DOI: 10.1093/pnasnexus/pgae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Abstract
Changes that occur in proteins over time provide a phylogenetic signal that can be used to decipher their evolutionary history and the relationships between organisms. Sequence comparison is the most common way to access this phylogenetic signal, while those based on 3D structure comparisons are still in their infancy. In this study, we propose an effective approach based on Persistent Homology Theory (PH) to extract the phylogenetic information contained in protein structures. PH provides efficient and robust algorithms for extracting and comparing geometric features from noisy datasets at different spatial resolutions. PH has a growing number of applications in the life sciences, including the study of proteins (e.g. classification, folding). However, it has never been used to study the phylogenetic signal they may contain. Here, using 518 protein families, representing 22,940 protein sequences and structures, from 10 major taxonomic groups, we show that distances calculated with PH from protein structures correlate strongly with phylogenetic distances calculated from protein sequences, at both small and large evolutionary scales. We test several methods for calculating PH distances and propose some refinements to improve their relevance for addressing evolutionary questions. This work opens up new perspectives in evolutionary biology by proposing an efficient way to access the phylogenetic signal contained in protein structures, as well as future developments of topological analysis in the life sciences.
Collapse
Affiliation(s)
- Léa Bou Dagher
- Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et BiologieÉvolutive, UMR5558, F-69622 Villeurbanne, France
- Université Claude Bernard Lyon 1, CNRS, Institut Camille Jordan, UMR5208, F-69622 Villeurbanne, France
- Université Libanaise, Laboratoire de Mathématiques, École Doctorale en Science et Technologie, PO BOX 5 Hadath, Liban
| | - Dominique Madern
- University Grenoble Alpes, CEA, CNRS, IBS, 38000 Grenoble, France
| | - Philippe Malbos
- Université Claude Bernard Lyon 1, CNRS, Institut Camille Jordan, UMR5208, F-69622 Villeurbanne, France
| | - Céline Brochier-Armanet
- Université Claude Bernard Lyon 1, CNRS, VetAgro Sup, Laboratoire de Biométrie et BiologieÉvolutive, UMR5558, F-69622 Villeurbanne, France
| |
Collapse
|
5
|
Ni S, Lv W, Ji Z, Wang K, Mei Y, Li Y. Progress of Crude Oil Gasification Technology Assisted by Microorganisms in Reservoirs. Microorganisms 2024; 12:702. [PMID: 38674646 PMCID: PMC11051786 DOI: 10.3390/microorganisms12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Crude oil gasification bacteria, including fermenting bacteria, hydrocarbon-oxidizing bacteria, reducing bacteria, and methanogenic bacteria, participate in multi-step reactions involving initial activation, intermediate metabolism, and the methanogenesis of crude oil hydrocarbons. These bacteria degrade crude oil into smaller molecules such as hydrogen, carbon dioxide, acetic acid, and formic acid. Ultimately, they convert it into methane, which can be utilized or stored as a strategic resource. However, the current challenges in crude oil gasification include long production cycles and low efficiency. This paper provides a summary of the microbial flora involved in crude oil gasification, the gasification metabolism pathways within reservoirs, and other relevant information. It specifically focuses on analyzing the factors that affect the efficiency of crude oil gasification metabolism and proposes suggestions for improving this efficiency. These studies deepen our understanding of the potential of reservoir ecosystems and provide valuable insights for future reservoir development and management.
Collapse
Affiliation(s)
- Shumin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Weifeng Lv
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zemin Ji
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Kai Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yuhao Mei
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yushu Li
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| |
Collapse
|
6
|
Lehmann M, Prohaska C, Zeldes B, Poehlein A, Daniel R, Basen M. Adaptive laboratory evolution of a thermophile toward a reduced growth temperature optimum. Front Microbiol 2023; 14:1265216. [PMID: 37901835 PMCID: PMC10601643 DOI: 10.3389/fmicb.2023.1265216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023] Open
Abstract
Thermophily is an ancient trait among microorganisms. The molecular principles to sustain high temperatures, however, are often described as adaptations, somewhat implying that they evolved from a non-thermophilic background and that thermophiles, i.e., organisms with growth temperature optima (TOPT) above 45°C, evolved from mesophilic organisms (TOPT 25-45°C). On the contrary, it has also been argued that LUCA, the last universal common ancestor of Bacteria and Archaea, may have been a thermophile, and mesophily is the derived trait. In this study, we took an experimental approach toward the evolution of a mesophile from a thermophile. We selected the acetogenic bacterium T. kivui (TOPT 66°C) since acetogenesis is considered ancient physiology and cultivated it at suboptimal low temperatures. We found that the lowest possible growth temperature (TMIN) under the chosen conditions was 39°C. The bacterium was subsequently subjected to adaptive laboratory evolution (ALE) by serial transfer at 45°C. Interestingly, after 67 transfers (approximately 180 generations), the adapted strain Adpt45_67 did not grow better at 45°C, but a shift in the TOPT to 60°C was observed. Growth at 45°C was accompanied by a change in the morphology as shorter, thicker cells were observed that partially occurred in chains. While the proportion of short-chain fatty acids increased at 50°C vs. 66°C in both strains, Adpt45_67 also showed a significantly increased proportion of plasmalogens. The genome analysis revealed 67 SNPs compared to the type strain, among these mutations in transcriptional regulators and in the cAMP binding protein. Ultimately, the molecular basis of the adaptation of T. kivui to a lower TOPT remains to be elucidated. The observed change in phenotype is the first experimental step toward the evolution of thermophiles growing at colder temperatures and toward a better understanding of the cold adaptation of thermophiles on early Earth.
Collapse
Affiliation(s)
- Maria Lehmann
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Christoph Prohaska
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Benjamin Zeldes
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Anja Poehlein
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Rolf Daniel
- Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Georg-August University, Göttingen, Germany
| | - Mirko Basen
- Department of Microbiology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| |
Collapse
|
7
|
Ofer S, Blombach F, Erkelens AM, Barker D, Soloviev Z, Schwab S, Smollett K, Matelska D, Fouqueau T, van der Vis N, Kent NA, Thalassinos K, Dame RT, Werner F. DNA-bridging by an archaeal histone variant via a unique tetramerisation interface. Commun Biol 2023; 6:968. [PMID: 37740023 PMCID: PMC10516927 DOI: 10.1038/s42003-023-05348-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/12/2023] [Indexed: 09/24/2023] Open
Abstract
In eukaryotes, histone paralogues form obligate heterodimers such as H3/H4 and H2A/H2B that assemble into octameric nucleosome particles. Archaeal histones are dimeric and assemble on DNA into 'hypernucleosome' particles of varying sizes with each dimer wrapping 30 bp of DNA. These are composed of canonical and variant histone paralogues, but the function of these variants is poorly understood. Here, we characterise the structure and function of the histone paralogue MJ1647 from Methanocaldococcus jannaschii that has a unique C-terminal extension enabling homotetramerisation. The 1.9 Å X-ray structure of a dimeric MJ1647 species, structural modelling of the tetramer, and site-directed mutagenesis reveal that the C-terminal tetramerization module consists of two alpha helices in a handshake arrangement. Unlike canonical histones, MJ1647 tetramers can bridge two DNA molecules in vitro. Using single-molecule tethered particle motion and DNA binding assays, we show that MJ1647 tetramers bind ~60 bp DNA and compact DNA in a highly cooperative manner. We furthermore show that MJ1647 effectively competes with the transcription machinery to block access to the promoter in vitro. To the best of our knowledge, MJ1647 is the first histone shown to have DNA bridging properties, which has important implications for genome structure and gene expression in archaea.
Collapse
Affiliation(s)
- Sapir Ofer
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Fabian Blombach
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Amanda M Erkelens
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Declan Barker
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Zoja Soloviev
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Samuel Schwab
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Katherine Smollett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Dorota Matelska
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
- Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Thomas Fouqueau
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Nico van der Vis
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Nicholas A Kent
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Konstantinos Thalassinos
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK
| | - Remus T Dame
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands.
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Prondzinsky P, Toyoda S, McGlynn SE. The methanogen core and pangenome: conservation and variability across biology's growth temperature extremes. DNA Res 2023; 30:dsac048. [PMID: 36454681 PMCID: PMC9886072 DOI: 10.1093/dnares/dsac048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
Temperature is a key variable in biological processes. However, a complete understanding of biological temperature adaptation is lacking, in part because of the unique constraints among different evolutionary lineages and physiological groups. Here we compared the genomes of cultivated psychrotolerant and thermotolerant methanogens, which are physiologically related and span growth temperatures from -2.5°C to 122°C. Despite being phylogenetically distributed amongst three phyla in the archaea, the genomic core of cultivated methanogens comprises about one-third of a given genome, while the genome fraction shared by any two organisms decreases with increasing phylogenetic distance between them. Increased methanogenic growth temperature is associated with reduced genome size, and thermotolerant organisms-which are distributed across the archaeal tree-have larger core genome fractions, suggesting that genome size is governed by temperature rather than phylogeny. Thermotolerant methanogens are enriched in metal and other transporters, and psychrotolerant methanogens are enriched in proteins related to structure and motility. Observed amino acid compositional differences between temperature groups include proteome charge, polarity and unfolding entropy. Our results suggest that in the methanogens, shared physiology maintains a large, conserved genomic core even across large phylogenetic distances and biology's temperature extremes.
Collapse
Affiliation(s)
- Paula Prondzinsky
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, 226-8503 Yokohama, Japan
| | - Shawn Erin McGlynn
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, 152-8550 Tokyo, Japan
- Center for Sustainable Resource Science, RIKEN, 2-1 Hirosawa, Wako, 351-0198 Saitama, Japan
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| |
Collapse
|
9
|
Gophna U, Altman-Price N. Horizontal Gene Transfer in Archaea-From Mechanisms to Genome Evolution. Annu Rev Microbiol 2022; 76:481-502. [PMID: 35667126 DOI: 10.1146/annurev-micro-040820-124627] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Archaea remains the least-studied and least-characterized domain of life despite its significance not just to the ecology of our planet but also to the evolution of eukaryotes. It is therefore unsurprising that research into horizontal gene transfer (HGT) in archaea has lagged behind that of bacteria. Indeed, several archaeal lineages may owe their very existence to large-scale HGT events, and thus understanding both the molecular mechanisms and the evolutionary impact of HGT in archaea is highly important. Furthermore, some mechanisms of gene exchange, such as plasmids that transmit themselves via membrane vesicles and the formation of cytoplasmic bridges that allows transfer of both chromosomal and plasmid DNA, may be archaea specific. This review summarizes what we know about HGT in archaea, and the barriers that restrict it, highlighting exciting recent discoveries and pointing out opportunities for future research. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; ,
| | - Neta Altman-Price
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; , .,Department of Natural and Life Sciences, The Open University of Israel, Raanana, Israel
| |
Collapse
|
10
|
Hu EZ, Lan XR, Liu ZL, Gao J, Niu DK. A positive correlation between GC content and growth temperature in prokaryotes. BMC Genomics 2022; 23:110. [PMID: 35139824 PMCID: PMC8827189 DOI: 10.1186/s12864-022-08353-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND GC pairs are generally more stable than AT pairs; GC-rich genomes were proposed to be more adapted to high temperatures than AT-rich genomes. Previous studies consistently showed positive correlations between growth temperature and the GC contents of structural RNA genes. However, for the whole genome sequences and the silent sites of the codons in protein-coding genes, the relationship between GC content and growth temperature is in a long-lasting debate. RESULTS With a dataset much larger than previous studies (681 bacteria and 155 archaea with completely assembled genomes), our phylogenetic comparative analyses showed positive correlations between optimal growth temperature (Topt) and GC content both in bacterial and archaeal structural RNA genes and in bacterial whole genome sequences, chromosomal sequences, plasmid sequences, core genes, and accessory genes. However, in the 155 archaea, we did not observe a significant positive correlation of Topt with whole-genome GC content (GCw) or GC content at four-fold degenerate sites. We randomly drew 155 samples from the 681 bacteria for 1000 rounds. In most cases (> 95%), the positive correlations between Topt and genomic GC contents became statistically nonsignificant (P > 0.05). This result suggested that the small sample sizes might account for the lack of positive correlations between growth temperature and genomic GC content in the 155 archaea and the bacterial samples of previous studies. Comparing the GC content among four categories (psychrophiles/psychrotrophiles, mesophiles, thermophiles, and hyperthermophiles) also revealed a positive correlation between GCw and growth temperature in bacteria. By including the GCw of incompletely assembled genomes, we expanded the sample size of archaea to 303. Positive correlations between GCw and Topt appear especially after excluding the halophilic archaea whose GC contents might be strongly shaped by intense UV radiation. CONCLUSIONS This study explains the previous contradictory observations and ends a long debate. Prokaryotes growing in high temperatures have higher GC contents. Thermal adaptation is one possible explanation for the positive association. Meanwhile, we propose that the elevated efficiency of DNA repair in response to heat mutagenesis might have the by-product of increasing GC content like that happens in intracellular symbionts and marine bacterioplankton.
Collapse
Affiliation(s)
- En-Ze Hu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xin-Ran Lan
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhi-Ling Liu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jie Gao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
11
|
Villain E, Fort P, Kajava AV. Aspartate-phobia of thermophiles as a reaction to deleterious chemical transformations. Bioessays 2021; 44:e2100213. [PMID: 34791689 DOI: 10.1002/bies.202100213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/08/2022]
Abstract
Prokaryotes growing at high temperatures have a high proportion of charged residues in their proteins to stabilize their 3D structure. By mining 175 disparate bacterial and archaeal proteomes we found that, against the general trend for charged residues, the frequency of aspartic acid residues decreases strongly as natural growth temperature increases. In search of the explanation, we hypothesized that the reason for such unusual correlation is the deleterious consequences of spontaneous chemical transformations of aspartate at high temperatures. Our subsequent statistical analysis supported this hypothesis. This finding reveals that organisms have likely adapted to high temperatures by minimizing the harmful consequences of spontaneous chemical transformations.
Collapse
Affiliation(s)
- Etienne Villain
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université de Montpellier 1919 Route de Mende, Montpellier, France
| | - Philippe Fort
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université de Montpellier 1919 Route de Mende, Montpellier, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237 CNRS, Université de Montpellier 1919 Route de Mende, Montpellier, France
| |
Collapse
|