1
|
Wang G, Zhang H, Shao M, Tian M, Feng H, Li Q, Cao C. Optimal variable identification for accurate detection of causal expression Quantitative Trait Loci with applications in heart-related diseases. Comput Struct Biotechnol J 2024; 23:2478-2486. [PMID: 38952424 PMCID: PMC11215961 DOI: 10.1016/j.csbj.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/03/2024] Open
Abstract
Gene expression plays a pivotal role in various diseases, contributing significantly to their mechanisms. Most GWAS risk loci are in non-coding regions, potentially affecting disease risk by altering gene expression in specific tissues. This expression is notably tissue-specific, with genetic variants substantially influencing it. However, accurately detecting the expression Quantitative Trait Loci (eQTL) is challenging due to limited heritability in gene expression, extensive linkage disequilibrium (LD), and multiple causal variants. The single variant association approach in eQTL analysis is limited by its susceptibility to capture the combined effects of multiple variants, and a bias towards common variants, underscoring the need for a more robust method to accurately identify causal eQTL variants. To address this, we developed an algorithm, CausalEQTL, which integrates L 0 +L 1 penalized regression with an ensemble approach to localize eQTL, thereby enhancing prediction performance precisely. Our results demonstrate that CausalEQTL outperforms traditional models, including LASSO, Elastic Net, Ridge, in terms of power and overall performance. Furthermore, analysis of heart tissue data from the GTEx project revealed that eQTL sites identified by our algorithm provide deeper insights into heart-related tissue eQTL detection. This advancement in eQTL mapping promises to improve our understanding of the genetic basis of tissue-specific gene expression and its implications in disease. The source code and identified causal eQTLs for CausalEQTL are available on GitHub: https://github.com/zhc-moushang/CausalEQTL.
Collapse
Affiliation(s)
- Guishen Wang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
| | - Hangchen Zhang
- College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
| | - Mengting Shao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Min Tian
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Hui Feng
- College of Computer Science and Engineering, Changchun University of Technology, Changchun 130012, China
| | - Qiaoling Li
- Department of Cardiology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Chen Cao
- Key Laboratory for Bio-Electromagnetic Environment and Advanced Medical Theranostics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Ding Y, Zhou H, Zou Q, Yuan L. Identification of drug-side effect association via correntropy-loss based matrix factorization with neural tangent kernel. Methods 2023; 219:73-81. [PMID: 37783242 DOI: 10.1016/j.ymeth.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/04/2023] Open
Abstract
Adverse drug reactions include side effects, allergic reactions, and secondary infections. Severe adverse reactions can cause cancer, deformity, or mutation. The monitoring of drug side effects is an important support for post marketing safety supervision of drugs, and an important basis for revising drug instructions. Its purpose is to timely detect and control drug safety risks. Traditional methods are time-consuming. To accelerate the discovery of side effects, we propose a machine learning based method, called correntropy-loss based matrix factorization with neural tangent kernel (CLMF-NTK), to solve the prediction of drug side effects. Our method and other computational methods are tested on three benchmark datasets, and the results show that our method achieves the best predictive performance.
Collapse
Affiliation(s)
- Yijie Ding
- Key Laboratory of Computational Science and Application of Hainan Province, Hainan Normal University, Haikou 571158, China; Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China; School of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hongmei Zhou
- Beidahuang Industry Group General Hospital, Harbin 150001, China
| | - Quan Zou
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China.
| | - Lei Yuan
- Department of Hepatobiliary Surgery, Quzhou People's Hospital, 100# Minjiang Main Road, Quzhou 324000, China.
| |
Collapse
|
3
|
Qian Y, Shang T, Guo F, Wang C, Cui Z, Ding Y, Wu H. Identification of DNA-binding protein based multiple kernel model. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:13149-13170. [PMID: 37501482 DOI: 10.3934/mbe.2023586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
DNA-binding proteins (DBPs) play a critical role in the development of drugs for treating genetic diseases and in DNA biology research. It is essential for predicting DNA-binding proteins more accurately and efficiently. In this paper, a Laplacian Local Kernel Alignment-based Restricted Kernel Machine (LapLKA-RKM) is proposed to predict DBPs. In detail, we first extract features from the protein sequence using six methods. Second, the Radial Basis Function (RBF) kernel function is utilized to construct pre-defined kernel metrics. Then, these metrics are combined linearly by weights calculated by LapLKA. Finally, the fused kernel is input to RKM for training and prediction. Independent tests and leave-one-out cross-validation were used to validate the performance of our method on a small dataset and two large datasets. Importantly, we built an online platform to represent our model, which is now freely accessible via http://8.130.69.121:8082/.
Collapse
Affiliation(s)
- Yuqing Qian
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Tingting Shang
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Fei Guo
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Chunliang Wang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiming Cui
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Yijie Ding
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, China
| | - Hongjie Wu
- College of Electronic and Information Engineering, Suzhou University of Science and Technology, Suzhou, China
| |
Collapse
|
4
|
Jiang J, Li J, Li J, Pei H, Li M, Zou Q, Lv Z. A Machine Learning Method to Identify Umami Peptide Sequences by Using Multiplicative LSTM Embedded Features. Foods 2023; 12:foods12071498. [PMID: 37048319 PMCID: PMC10094688 DOI: 10.3390/foods12071498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Umami peptides enhance the umami taste of food and have good food processing properties, nutritional value, and numerous potential applications. Wet testing for the identification of umami peptides is a time-consuming and expensive process. Here, we report the iUmami-DRLF that uses a logistic regression (LR) method solely based on the deep learning pre-trained neural network feature extraction method, unified representation (UniRep based on multiplicative LSTM), for feature extraction from the peptide sequences. The findings demonstrate that deep learning representation learning significantly enhanced the capability of models in identifying umami peptides and predictive precision solely based on peptide sequence information. The newly validated taste sequences were also used to test the iUmami-DRLF and other predictors, and the result indicates that the iUmami-DRLF has better robustness and accuracy and remains valid at higher probability thresholds. The iUmami-DRLF method can aid further studies on enhancing the umami flavor of food for satisfying the need for an umami-flavored diet.
Collapse
Affiliation(s)
- Jici Jiang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayu Li
- College of Life Science, Sichuan University, Chengdu 610065, China
| | - Junxian Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Hongdi Pei
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
- Wu Yuzhang Honors College, Sichuan University, Chengdu 610065, China
| | - Mingxin Li
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
- Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou 324000, China
| | - Zhibin Lv
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Feng X, Cheng H, Portik D, Li H. Metagenome assembly of high-fidelity long reads with hifiasm-meta. Nat Methods 2022; 19:671-674. [PMID: 35534630 DOI: 10.1038/s41592-022-01478-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
De novo assembly of metagenome samples is a common approach to the study of microbial communities. Current metagenome assemblers developed for short sequence reads or noisy long reads were not optimized for accurate long reads. We thus developed hifiasm-meta, a metagenome assembler that exploits the high accuracy of recent data. Evaluated on seven empirical datasets, hifiasm-meta reconstructed tens to hundreds of complete circular bacterial genomes per dataset, consistently outperforming other metagenome assemblers.
Collapse
Affiliation(s)
- Xiaowen Feng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Haoyu Cheng
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | | | - Heng Li
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Farrer RA. HaplotypeTools: a toolkit for accurately identifying recombination and recombinant genotypes. BMC Bioinformatics 2021; 22:560. [PMID: 34809571 PMCID: PMC8607637 DOI: 10.1186/s12859-021-04473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background Identifying haplotypes is central to sequence analysis in diploid or polyploid genomes. Despite this, there remains a lack of research and tools designed for physical phasing and its downstream analysis. Results HaplotypeTools is a new toolset to phase variant sites using VCF and BAM files and to analyse phased VCFs. Phasing is achieved via the identification of reads overlapping ≥ 2 heterozygous positions and then extended by additional reads, a process that can be parallelized across a computer cluster. HaplotypeTools includes various utility scripts for downstream analysis including crossover detection and phylogenetic placement of haplotypes to other lineages or species. HaplotypeTools was assessed for accuracy against WhatsHap using simulated short and long reads, demonstrating higher accuracy, albeit with reduced haplotype length. HaplotypeTools was also tested on real Illumina data to determine the ancestry of hybrid fungal isolate Batrachochytrium dendrobatidis (Bd) SA-EC3, finding 80% of haplotypes across the genome phylogenetically cluster with parental lineages BdGPL (39%) and BdCAPE (41%), indicating those are the parental lineages. Finally, ~ 99% of phasing was conserved between overlapping phase groups between SA-EC3 and either parental lineage, indicating mitotic gene conversion/parasexuality as the mechanism of recombination for this hybrid isolate. HaplotypeTools is open source and freely available from https://github.com/rhysf/HaplotypeTools under the MIT License. Conclusions HaplotypeTools is a powerful resource for analyzing hybrid or recombinant diploid or polyploid genomes and identifying parental ancestry for sub-genomic regions.
Collapse
Affiliation(s)
- Rhys A Farrer
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Exeter, UK.
| |
Collapse
|
7
|
Pelizzola M, Behr M, Li H, Munk A, Futschik A. Multiple haplotype reconstruction from allele frequency data. NATURE COMPUTATIONAL SCIENCE 2021; 1:262-271. [PMID: 38217170 DOI: 10.1038/s43588-021-00056-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/12/2021] [Indexed: 01/15/2024]
Abstract
Because haplotype information is of widespread interest in biomedical applications, effort has been put into their reconstruction. Here, we propose an efficient method, called haploSep, that is able to accurately infer major haplotypes and their frequencies just from multiple samples of allele frequency data. Even the accuracy of experimentally obtained allele frequencies can be improved by re-estimating them from our reconstructed haplotypes. From a methodological point of view, we model our problem as a multivariate regression problem where both the design matrix and the coefficient matrix are unknown. Compared to other methods, haploSep is very fast, with linear computational complexity in the haplotype length. We illustrate our method on simulated and real data focusing on experimental evolution and microbial data.
Collapse
Affiliation(s)
- Marta Pelizzola
- Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vienna, Austria
| | - Merle Behr
- University of California, Berkeley, CA, USA
| | - Housen Li
- University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
| | - Axel Munk
- University of Göttingen, Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | |
Collapse
|