1
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
2
|
Chen J, Basting PJ, Han S, Garfinkel DJ, Bergman CM. Reproducible evaluation of transposable element detectors with McClintock 2 guides accurate inference of Ty insertion patterns in yeast. Mob DNA 2023; 14:8. [PMID: 37452430 PMCID: PMC10347736 DOI: 10.1186/s13100-023-00296-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Many computational methods have been developed to detect non-reference transposable element (TE) insertions using short-read whole genome sequencing data. The diversity and complexity of such methods often present challenges to new users seeking to reproducibly install, execute, or evaluate multiple TE insertion detectors. RESULTS We previously developed the McClintock meta-pipeline to facilitate the installation, execution, and evaluation of six first-generation short-read TE detectors. Here, we report a completely re-implemented version of McClintock written in Python using Snakemake and Conda that improves its installation, error handling, speed, stability, and extensibility. McClintock 2 now includes 12 short-read TE detectors, auxiliary pre-processing and analysis modules, interactive HTML reports, and a simulation framework to reproducibly evaluate the accuracy of component TE detectors. When applied to the model microbial eukaryote Saccharomyces cerevisiae, we find substantial variation in the ability of McClintock 2 components to identify the precise locations of non-reference TE insertions, with RelocaTE2 showing the highest recall and precision in simulated data. We find that RelocaTE2, TEMP, TEMP2 and TEBreak provide consistent estimates of [Formula: see text]50 non-reference TE insertions per strain and that Ty2 has the highest number of non-reference TE insertions in a species-wide panel of [Formula: see text]1000 yeast genomes. Finally, we show that best-in-class predictors for yeast applied to resequencing data have sufficient resolution to reveal a dyad pattern of integration in nucleosome-bound regions upstream of yeast tRNA genes for Ty1, Ty2, and Ty4, allowing us to extend knowledge about fine-scale target preferences revealed previously for experimentally-induced Ty1 insertions to spontaneous insertions for other copia-superfamily retrotransposons in yeast. CONCLUSION McClintock ( https://github.com/bergmanlab/mcclintock/ ) provides a user-friendly pipeline for the identification of TEs in short-read WGS data using multiple TE detectors, which should benefit researchers studying TE insertion variation in a wide range of different organisms. Application of the improved McClintock system to simulated and empirical yeast genome data reveals best-in-class methods and novel biological insights for one of the most widely-studied model eukaryotes and provides a paradigm for evaluating and selecting non-reference TE detectors in other species.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA USA
| | | | - Shunhua Han
- Institute of Bioinformatics, University of Georgia, Athens, GA USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA USA
- Department of Genetics, University of Georgia, Athens, GA USA
| |
Collapse
|
3
|
Chen J, Basting PJ, Han S, Garfinkel DJ, Bergman CM. Reproducible evaluation of transposable element detectors with McClintock 2 guides accurate inference of Ty insertion patterns in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528343. [PMID: 36824955 PMCID: PMC9948991 DOI: 10.1101/2023.02.13.528343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
BACKGROUND Many computational methods have been developed to detect non-reference transposable element (TE) insertions using short-read whole genome sequencing data. The diversity and complexity of such methods often present challenges to new users seeking to reproducibly install, execute, or evaluate multiple TE insertion detectors. RESULTS We previously developed the McClintock meta-pipeline to facilitate the installation, execution, and evaluation of six first-generation short-read TE detectors. Here, we report a completely re-implemented version of McClintock written in Python using Snakemake and Conda that improves its installation, error handling, speed, stability, and extensibility. McClintock 2 now includes 12 short-read TE detectors, auxiliary pre-processing and analysis modules, interactive HTML reports, and a simulation framework to reproducibly evaluate the accuracy of component TE detectors. When applied to the model microbial eukaryote Saccharomyces cerevisiae, we find substantial variation in the ability of McClintock 2 components to identify the precise locations of non-reference TE insertions, with RelocaTE2 showing the highest recall and precision in simulated data. We find that RelocaTE2, TEMP, TEMP2 and TEBreak provide a consistent and biologically meaningful view of non-reference TE insertions in a species-wide panel of ∼1000 yeast genomes, as evaluated by coverage-based abundance estimates and expected patterns of tRNA promoter targeting. Finally, we show that best-in-class predictors for yeast have sufficient resolution to reveal a dyad pattern of integration in nucleosome-bound regions upstream of yeast tRNA genes for Ty1, Ty2, and Ty4, allowing us to extend knowledge about fine-scale target preferences first revealed experimentally for Ty1 to natural insertions and related copia-superfamily retrotransposons in yeast. CONCLUSION McClintock (https://github.com/bergmanlab/mcclintock/) provides a user-friendly pipeline for the identification of TEs in short-read WGS data using multiple TE detectors, which should benefit researchers studying TE insertion variation in a wide range of different organisms. Application of the improved McClintock system to simulated and empirical yeast genome data reveals best-in-class methods and novel biological insights for one of the most widely-studied model eukaryotes and provides a paradigm for evaluating and selecting non-reference TE detectors for other species.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA
| | | | - Shunhua Han
- Institute of Bioinformatics, University of Georgia, Athens, GA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA
- Department of Genetics, University of Georgia, Athens, GA
| |
Collapse
|
4
|
Melde RH, Bao K, Sharp NP. Recent insights into the evolution of mutation rates in yeast. Curr Opin Genet Dev 2022; 76:101953. [PMID: 35834945 PMCID: PMC9491374 DOI: 10.1016/j.gde.2022.101953] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/08/2023]
Abstract
Mutation is the origin of all genetic variation, good and bad. The mutation process can evolve in response to mutations, positive or negative selection, and genetic drift, but how these forces contribute to mutation-rate variation is an unsolved problem at the heart of genetics research. Mutations can be challenging to measure, but genome sequencing and other tools have allowed for the collection of larger and more detailed datasets, particularly in the yeast-model system. We review key hypotheses for the evolution of mutation rates and describe recent advances in understanding variation in mutational properties within and among yeast species. The multidimensional spectrum of mutations is increasingly recognized as holding valuable clues about how this important process evolves.
Collapse
Affiliation(s)
- Robert H Melde
- Department of Genetics, University of Wisconsin-Madison, USA.
| | - Kevin Bao
- Department of Genetics, University of Wisconsin-Madison, USA
| | - Nathaniel P Sharp
- Department of Genetics, University of Wisconsin-Madison, USA. https://twitter.com/@sharpnath
| |
Collapse
|
5
|
Synonymous mutations in representative yeast genes are mostly strongly non-neutral. Nature 2022; 606:725-731. [PMID: 35676473 PMCID: PMC9650438 DOI: 10.1038/s41586-022-04823-w] [Citation(s) in RCA: 158] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/28/2022] [Indexed: 01/12/2023]
Abstract
Synonymous mutations in protein-coding genes do not alter protein sequences and are thus generally presumed to be neutral or nearly neutral1-5. Here, to experimentally verify this presumption, we constructed 8,341 yeast mutants each carrying a synonymous, nonsynonymous or nonsense mutation in one of 21 endogenous genes with diverse functions and expression levels and measured their fitness relative to the wild type in a rich medium. Three-quarters of synonymous mutations resulted in a significant reduction in fitness, and the distribution of fitness effects was overall similar-albeit nonidentical-between synonymous and nonsynonymous mutations. Both synonymous and nonsynonymous mutations frequently disturbed the level of mRNA expression of the mutated gene, and the extent of the disturbance partially predicted the fitness effect. Investigations in additional environments revealed greater across-environment fitness variations for nonsynonymous mutants than for synonymous mutants despite their similar fitness distributions in each environment, suggesting that a smaller proportion of nonsynonymous mutants than synonymous mutants are always non-deleterious in a changing environment to permit fixation, potentially explaining the common observation of substantially lower nonsynonymous than synonymous substitution rates. The strong non-neutrality of most synonymous mutations, if it holds true for other genes and in other organisms, would require re-examination of numerous biological conclusions about mutation, selection, effective population size, divergence time and disease mechanisms that rely on the assumption that synoymous mutations are neutral.
Collapse
|
6
|
Ho EKH, Bellis ES, Calkins J, Adrion JR, Latta IV LC, Schaack S. Engines of change: Transposable element mutation rates are high and variable within Daphnia magna. PLoS Genet 2021; 17:e1009827. [PMID: 34723969 PMCID: PMC8594854 DOI: 10.1371/journal.pgen.1009827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/16/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) represent a major portion of most eukaryotic genomes, yet little is known about their mutation rates or how their activity is shaped by other evolutionary forces. Here, we compare short- and long-term patterns of genome-wide mutation accumulation (MA) of TEs among 9 genotypes from three populations of Daphnia magna from across a latitudinal gradient. While the overall proportion of the genome comprised of TEs is highly similar among genotypes from Finland, Germany, and Israel, populations are distinguishable based on patterns of insertion site polymorphism. Our direct rate estimates indicate TE movement is highly variable (net rates ranging from -11.98 to 12.79 x 10-5 per copy per generation among genotypes), differing both among populations and TE families. Although gains outnumber losses when selection is minimized, both types of events appear to be highly deleterious based on their low frequency in control lines where propagation is not limited to random, single-progeny descent. With rate estimates 4 orders of magnitude higher than base substitutions, TEs clearly represent a highly mutagenic force in the genome. Quantifying patterns of intra- and interspecific variation in TE mobility with and without selection provides insight into a powerful mechanism generating genetic variation in the genome.
Collapse
Affiliation(s)
- Eddie K. H. Ho
- Department of Biology, Reed College, Portland, Oregon, United States of America
| | - Emily S. Bellis
- Department of Biology, Reed College, Portland, Oregon, United States of America
- Department of Computer Science, Arkansas State University, Jonesboro, Arkansas, United States of America
| | - Jaclyn Calkins
- Department of Biology, Reed College, Portland, Oregon, United States of America
- College of Human Medicine, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey R. Adrion
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Leigh C. Latta IV
- Department of Biology, Reed College, Portland, Oregon, United States of America
- Lewis-Clark State College, Lewiston, Idaho, United States of America
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, United States of America
| |
Collapse
|