1
|
Dubocanin D, Hartley GA, Sedeño Cortés AE, Mao Y, Hedouin S, Ranchalis J, Agarwal A, Logsdon GA, Munson KM, Real T, Mallory BJ, Eichler EE, Biggins S, O'Neill RJ, Stergachis AB. Conservation of dichromatin organization along regional centromeres. CELL GENOMICS 2025; 5:100819. [PMID: 40147439 PMCID: PMC12008808 DOI: 10.1016/j.xgen.2025.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/20/2024] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
The attachment of the kinetochore to the centromere is essential for genome maintenance, yet the highly repetitive nature of satellite regional centromeres limits our understanding of their chromatin organization. We demonstrate that single-molecule chromatin fiber sequencing (Fiber-seq) can uniquely co-resolve kinetochore and surrounding chromatin architectures along point centromeres, revealing largely homogeneous single-molecule kinetochore occupancy. In contrast, the application of Fiber-seq to regional centromeres exposed marked per-molecule heterogeneity in their chromatin organization. Regional centromere cores uniquely contain a dichotomous chromatin organization (dichromatin) composed of compacted nucleosome arrays punctuated with highly accessible chromatin patches. CENP-B occupancy phases dichromatin to the underlying alpha-satellite repeat within centromere cores but is not necessary for dichromatin formation. Centromere core dichromatin is conserved between humans and primates, including along regional centromeres lacking satellite repeats. Overall, the chromatin organization of regional centromeres is defined by marked per-molecule heterogeneity, buffering kinetochore attachment against sequence and structural variability within regional centromeres.
Collapse
Affiliation(s)
- Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| | - Adriana E Sedeño Cortés
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Sabrine Hedouin
- Fred Hutchinson Cancer Center, Basic Sciences Division, Seattle, WA 98109, USA
| | - Jane Ranchalis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Aman Agarwal
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Glennis A Logsdon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Taylor Real
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Benjamin J Mallory
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; Department of Genomics and Genome Sciences, UConn Health, Farmington, CT 06269, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O'Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. CELL GENOMICS 2025; 5:100808. [PMID: 40088887 PMCID: PMC12008813 DOI: 10.1016/j.xgen.2025.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/10/2024] [Accepted: 02/12/2025] [Indexed: 03/17/2025]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here, we characterize fully assembled centromeres in the eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha-satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence that this epigenetic feature is conserved in the absence of satellite arrays. We uncovered a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, we identify duplications and deletions in HLE centromeres that distinguish them from other gibbons. Finally, we observed differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, and thus propose that a combination of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA; Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA; Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA; Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA; Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA; Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA.
| |
Collapse
|
3
|
Yan H, Han J, Jin S, Han Z, Si Z, Yan S, Xuan L, Yu G, Guan X, Fang L, Wang K, Zhang T. Post-polyploidization centromere evolution in cotton. Nat Genet 2025; 57:1021-1030. [PMID: 40033059 DOI: 10.1038/s41588-025-02115-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/03/2025] [Indexed: 03/05/2025]
Abstract
Upland cotton (Gossypium hirsutum) accounts for more than 90% of the world's cotton production and, as an allotetraploid, is a model plant for polyploid crop domestication. In the present study, we reported a complete telomere-to-telomere (T2T) genome assembly of Upland cotton accession Texas Marker-1 (T2T-TM-1), which has a total size of 2,299.6 Mb, and annotated 79,642 genes. Based on T2T-TM-1, interspecific centromere divergence was detected between the A- and D-subgenomes and their corresponding diploid progenitors. Centromere-associated repetitive sequences (CRCs) were found to be enriched for Gypsy-like retroelements. Centromere size expansion, repositioning and structure variations occurred post-polyploidization. It is interesting that CRC homologs were transferred from the diploid D-genome progenitor to the D-subgenome, invaded the A-subgenome and then underwent post-tetraploidization proliferation. This suggests an evolutionary advantage for the CRCs of the D-genome progenitor, presents a D-genome-adopted inheritance of centromere repeats after polyploidization and shapes the dynamic centromeric landscape during polyploidization in polyploid species.
Collapse
Affiliation(s)
- Hu Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Shangkun Jin
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Sunyi Yan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Lisha Xuan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
| | - Guangrun Yu
- School of Life Sciences, Nantong University, Nantong, China
| | - Xueying Guan
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China.
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, the Advanced Seed Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Key Laboratory of Plant Factory Generation-adding Breeding, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
- Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
4
|
Chabot BJ, Sun R, Amjad A, Hoyt SJ, Ouyang L, Courret C, Drennan R, Leo L, Larracuente AM, Core LJ, O'Neill RJ, Mellone BG. Transcription of a centromere-enriched retroelement and local retention of its RNA are significant features of the CENP-A chromatin landscape. Genome Biol 2024; 25:295. [PMID: 39558354 PMCID: PMC11575011 DOI: 10.1186/s13059-024-03433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 11/01/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Centromeres depend on chromatin containing the conserved histone H3 variant CENP-A for function and inheritance, while the role of centromeric DNA repeats remains unclear. Retroelements are prevalent at centromeres across taxa and represent a potential mechanism for promoting transcription to aid in CENP-A incorporation or for generating RNA transcripts to maintain centromere integrity. RESULTS In this study, we probe into the transcription and RNA localization of the centromere-enriched retroelement G2/Jockey-3 (hereafter referred to as Jockey-3) in Drosophila melanogaster, currently the only in vivo model with assembled centromeres. We find that Jockey-3 is a major component of the centromeric transcriptome and produces RNAs that localize to centromeres in metaphase. Leveraging the polymorphism of Jockey-3 and a de novo centromere system, we show that these RNAs remain associated with their cognate DNA sequences in cis, suggesting they are unlikely to perform a sequence-specific function at all centromeres. We show that Jockey-3 transcription is positively correlated with the presence of CENP-A and that recent Jockey-3 transposition events have occurred preferentially at CENP-A-containing chromatin. CONCLUSIONS We propose that Jockey-3 preferentially inserts at the centromere to ensure its own selfish propagation, while contributing to transcription across these regions. Given the conservation of retroelements as centromere components through evolution, our findings may offer a basis for understanding similar associations in other species.
Collapse
Affiliation(s)
- B J Chabot
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - R Sun
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - A Amjad
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - S J Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - L Ouyang
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - C Courret
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - R Drennan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - L Leo
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185, Rome, Italy
- Present Address: RNA Editing Lab, Onco-Haematology Department, Genetics and Epigenetics of Pediatric Cancers, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - A M Larracuente
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - L J Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - R J O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| | - B G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
5
|
de Lima LG, Guarracino A, Koren S, Potapova T, McKinney S, Rhie A, Solar SJ, Seidel C, Fagen B, Walenz BP, Bouffard GG, Brooks SY, Peterson M, Hall K, Crawford J, Young AC, Pickett BD, Garrison E, Phillippy AM, Gerton JL. The formation and propagation of human Robertsonian chromosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614821. [PMID: 39386535 PMCID: PMC11463614 DOI: 10.1101/2024.09.24.614821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Robertsonian chromosomes are a type of variant chromosome found commonly in nature. Present in one in 800 humans, these chromosomes can underlie infertility, trisomies, and increased cancer incidence. Recognized cytogenetically for more than a century, their origins have remained mysterious. Recent advances in genomics allowed us to assemble three human Robertsonian chromosomes completely. We identify a common breakpoint and epigenetic changes in centromeres that provide insight into the formation and propagation of common Robertsonian translocations. Further investigation of the assembled genomes of chimpanzee and bonobo highlights the structural features of the human genome that uniquely enable the specific crossover event that creates these chromosomes. Resolving the structure and epigenetic features of human Robertsonian chromosomes at a molecular level paves the way to understanding how chromosomal structural variation occurs more generally, and how chromosomes evolve.
Collapse
Affiliation(s)
| | - Andrea Guarracino
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sergey Koren
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Potapova
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Arang Rhie
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Steven J Solar
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brandon Fagen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Brian P Walenz
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gerard G Bouffard
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shelise Y Brooks
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Kate Hall
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Juyun Crawford
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alice C Young
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon D Pickett
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Adam M Phillippy
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
- Genome Informatics Section, Center for Genomics and Data Science Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Hartley GA, Okhovat M, Hoyt SJ, Fuller E, Pauloski N, Alexandre N, Alexandrov I, Drennan R, Dubocanin D, Gilbert DM, Mao Y, McCann C, Neph S, Ryabov F, Sasaki T, Storer JM, Svendsen D, Troy W, Wells J, Core L, Stergachis A, Carbone L, O’Neill RJ. Centromeric transposable elements and epigenetic status drive karyotypic variation in the eastern hoolock gibbon. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610280. [PMID: 39257810 PMCID: PMC11384015 DOI: 10.1101/2024.08.29.610280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Great apes have maintained a stable karyotype with few large-scale rearrangements; in contrast, gibbons have undergone a high rate of chromosomal rearrangements coincident with rapid centromere turnover. Here we characterize assembled centromeres in the Eastern hoolock gibbon, Hoolock leuconedys (HLE), finding a diverse group of transposable elements (TEs) that differ from the canonical alpha satellites found across centromeres of other apes. We find that HLE centromeres contain a CpG methylation centromere dip region, providing evidence this epigenetic feature is conserved in the absence of satellite arrays; nevertheless, we report a variety of atypical centromeric features, including protein-coding genes and mismatched replication timing. Further, large structural variations define HLE centromeres and distinguish them from other gibbons. Combined with differentially methylated TEs, topologically associated domain boundaries, and segmental duplications at chromosomal breakpoints, we propose that a "perfect storm" of multiple genomic attributes with propensities for chromosome instability shaped gibbon centromere evolution.
Collapse
Affiliation(s)
- Gabrielle A. Hartley
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Savannah J. Hoyt
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Emily Fuller
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicole Pauloski
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolas Alexandre
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, USA
| | - Ivan Alexandrov
- Department of Anatomy and Anthropology and Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Israel
| | - Ryan Drennan
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Yizi Mao
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Christine McCann
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Shane Neph
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Fedor Ryabov
- UC Santa Cruz Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
- Department of Biomolecular Engineering, University of California Santa Cruz, CA, USA
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Jessica M. Storer
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Derek Svendsen
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Leighton Core
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Andrew Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA
- Division of Genetics, Oregon National Primate Research Center, Portland, OR, USA
| | - Rachel J. O’Neill
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
7
|
Gerton JL. A working model for the formation of Robertsonian chromosomes. J Cell Sci 2024; 137:jcs261912. [PMID: 38606789 PMCID: PMC11057876 DOI: 10.1242/jcs.261912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.
Collapse
|
8
|
Brannan EO, Hartley GA, O’Neill RJ. Mechanisms of Rapid Karyotype Evolution in Mammals. Genes (Basel) 2023; 15:62. [PMID: 38254952 PMCID: PMC10815390 DOI: 10.3390/genes15010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Chromosome reshuffling events are often a foundational mechanism by which speciation can occur, giving rise to highly derivative karyotypes even amongst closely related species. Yet, the features that distinguish lineages prone to such rapid chromosome evolution from those that maintain stable karyotypes across evolutionary time are still to be defined. In this review, we summarize lineages prone to rapid karyotypic evolution in the context of Simpson's rates of evolution-tachytelic, horotelic, and bradytelic-and outline the mechanisms proposed to contribute to chromosome rearrangements, their fixation, and their potential impact on speciation events. Furthermore, we discuss relevant genomic features that underpin chromosome variation, including patterns of fusions/fissions, centromere positioning, and epigenetic marks such as DNA methylation. Finally, in the era of telomere-to-telomere genomics, we discuss the value of gapless genome resources to the future of research focused on the plasticity of highly rearranged karyotypes.
Collapse
Affiliation(s)
- Emry O. Brannan
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269, USA; (E.O.B.); (G.A.H.)
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
9
|
Voleníková A, Lukšíková K, Mora P, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Jankásek M, Reichard M, Nguyen P, Sember A. Fast satellite DNA evolution in Nothobranchius annual killifishes. Chromosome Res 2023; 31:33. [PMID: 37985497 PMCID: PMC10661780 DOI: 10.1007/s10577-023-09742-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/04/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
Collapse
Affiliation(s)
- Anna Voleníková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Karolína Lukšíková
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pablo Mora
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Experimental Biology, Genetics Area, University of Jaén, Jaén, Spain
| | - Tomáš Pavlica
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marie Altmanová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Štundlová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Šárka Pelikánová
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Sergey A Simanovsky
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Marek Jankásek
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Reichard
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Ecology and Vertebrate Zoology, University of Łódź, Łódź, Poland
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Nguyen
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Alexandr Sember
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| |
Collapse
|
10
|
Boutros SW, Zimmerman B, Nagy SC, Unni VK, Raber J. Age, sex, and apolipoprotein E isoform alter contextual fear learning, neuronal activation, and baseline DNA damage in the hippocampus. Mol Psychiatry 2023; 28:3343-3354. [PMID: 36732588 PMCID: PMC10618101 DOI: 10.1038/s41380-023-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 01/06/2023] [Accepted: 01/16/2023] [Indexed: 02/04/2023]
Abstract
Age, female sex, and apolipoprotein E4 (E4) are risk factors to develop Alzheimer's disease (AD). There are three major human apoE isoforms: E2, E3, and E4. Compared to E3, E4 increases while E2 decreases AD risk. However, E2 is associated with increased risk and severity of post-traumatic stress disorder (PTSD). In cognitively healthy adults, E4 carriers have greater brain activation during learning and memory tasks in the absence of behavioral differences. Human apoE targeted replacement (TR) mice display differences in fear extinction that parallel human data: E2 mice show impaired extinction, mirroring heightened PTSD symptoms in E2 combat veterans. Recently, an adaptive role of DNA double strand breaks (DSBs) in immediate early gene expression (IEG) has been described. Age and disease synergistically increase DNA damage and decrease DNA repair. As the mechanisms underlying the relative risks of apoE, sex, and their interactions in aging are unclear, we used young (3 months) and middle-aged (12 months) male and female TR mice to investigate the influence of these factors on DSBs and IEGs at baseline and following contextual fear conditioning. We assessed brain-wide changes in neural activation following fear conditioning using whole-brain cFos imaging in young female TR mice. E4 mice froze more during fear conditioning and had lower cFos immunoreactivity across regions important for somatosensation and contextual encoding compared to E2 mice. E4 mice also showed altered co-activation compared to E3 mice, corresponding to human MRI and cognitive data, and indicating that there are differences in brain activity and connectivity at young ages independent of fear learning. There were increased DSB markers in middle-aged animals and alterations to cFos levels dependent on sex and isoform, as well. The increase in hippocampal DSB markers in middle-aged animals and female E4 mice may play a role in the risk for developing AD.
Collapse
Affiliation(s)
- Sydney Weber Boutros
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Department of Psychological Sciences, Boise State University, 2133 W Cesar Chavez Ln, Boise, ID, 83725, USA
| | - Benjamin Zimmerman
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Advanced Imaging Research Center, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Helfgott Research Institute, NUNM, 2201 SW First Avenue, Portland, OR, 97201, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N, Matthews Avenue, Urbana, IL 61801, USA
| | - Sydney C Nagy
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Vivek K Unni
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
- Jungers Center for Neurosciences Research, OHSU; and OHSU Parkinson Center, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Department of Neurology, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Departments of Psychiatry and Radiation Medicine, OHSU, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
- Division of Neuroscience, ONPRC, 505 NW 185th Ave, Beaverton, OR, 97006, USA.
| |
Collapse
|
11
|
Escalona M, VanCampen J, Maurer NW, Haukness M, Okhovat M, Harris RS, Watwood A, Hartley GA, O’Neill RJ, Medvedev P, Makova KD, Vollmers C, Carbone L, Green RE. Whole-genome sequence and assembly of the Javan gibbon (Hylobates moloch). J Hered 2023; 114:35-43. [PMID: 36146896 PMCID: PMC10019027 DOI: 10.1093/jhered/esac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/08/2022] [Indexed: 02/04/2023] Open
Abstract
The Javan gibbon, Hylobates moloch, is an endangered gibbon species restricted to the forest remnants of western and central Java, Indonesia, and one of the rarest of the Hylobatidae family. Hylobatids consist of 4 genera (Holoock, Hylobates, Symphalangus, and Nomascus) that are characterized by different numbers of chromosomes, ranging from 38 to 52. The underlying cause of this karyotype plasticity is not entirely understood, at least in part, due to the limited availability of genomic data. Here we present the first scaffold-level assembly for H. moloch using a combination of whole-genome Illumina short reads, 10X Chromium linked reads, PacBio, and Oxford Nanopore long reads and proximity-ligation data. This Hylobates genome represents a valuable new resource for comparative genomics studies in primates.
Collapse
Affiliation(s)
- Merly Escalona
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Nicholas W Maurer
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| | - Marina Haukness
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, Santa Cruz, CA 95064, USA
| | - Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Allison Watwood
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabrielle A Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06296, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06296, USA
| | - Rachel J O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06296, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06296, USA
| | - Paul Medvedev
- Center for Medical Genomics, Pennsylvania State University, University Park, PA, USA
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, USA
- Department of Computer Science and Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Kateryna D Makova
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Center for Medical Genomics, Pennsylvania State University, University Park, PA, USA
- Center for Computational Biology and Bioinformatics, Pennsylvania State University, University Park, PA, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR 97239, USA
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR 97006, USA
- Department of Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Richard E Green
- Department of Biomolecular Engineering, University of California–Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
12
|
Haig D. Paradox lost: Concerted evolution and centromeric instability: Centromeres are hospitable habitats for repeats that evolve adaptations for proliferation within the nucleus sometimes at organismal cost.: Centromeres are hospitable habitats for repeats that evolve adaptations for proliferation within the nucleus sometimes at organismal cost. Bioessays 2022; 44:e2200023. [PMID: 35748194 DOI: 10.1002/bies.202200023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/11/2022]
Abstract
Homologous centromeres compete for segregation to the secondary oocyte nucleus at female meiosis I. Centromeric repeats also compete with each other to populate centromeres in mitotic cells of the germline and have become adapted to use the recombinational machinery present at centromeres to promote their own propagation. Repeats are not needed at centromeres, rather centromeres appear to be hospitable habitats for the colonization and proliferation of repeats. This is probably an indirect consequence of two distinctive features of centromeric DNA. Centromeres are subject to breakage by the mechanical forces exerted by microtubules and meiotic crossing-over is suppressed. Centromeric proteins acting in trans are under selection to mitigate the costs of centromeric repeats acting in cis. Collateral costs of mitotic competition at centromeres may help to explain the high rates of aneuploidy observed in early human embryos.
Collapse
Affiliation(s)
- David Haig
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Dudka D, Lampson MA. Centromere drive: model systems and experimental progress. Chromosome Res 2022; 30:187-203. [PMID: 35731424 DOI: 10.1007/s10577-022-09696-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 11/28/2022]
Abstract
Centromeres connect chromosomes and spindle microtubules to ensure faithful chromosome segregation. Paradoxically, despite this conserved function, centromeric DNA evolves rapidly and centromeric proteins show signatures of positive selection. The centromere drive hypothesis proposes that centromeric DNA can act like a selfish genetic element and drive non-Mendelian segregation during asymmetric female meiosis. Resulting fitness costs lead to genetic conflict with the rest of the genome and impose a selective pressure for centromeric proteins to adapt by suppressing the costs. Here, we describe experimental model systems for centromere drive in yellow monkeyflowers and mice, summarize key findings demonstrating centromere drive, and explain molecular mechanisms. We further discuss efforts to test if centromeric proteins are involved in suppressing drive-associated fitness costs, highlight a model for centromere drive and suppression in mice, and put forth outstanding questions for future research.
Collapse
Affiliation(s)
- Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
14
|
Hoyt SJ, Storer JM, Hartley GA, Grady PGS, Gershman A, de Lima LG, Limouse C, Halabian R, Wojenski L, Rodriguez M, Altemose N, Rhie A, Core LJ, Gerton JL, Makalowski W, Olson D, Rosen J, Smit AFA, Straight AF, Vollger MR, Wheeler TJ, Schatz MC, Eichler EE, Phillippy AM, Timp W, Miga KH, O’Neill RJ. From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science 2022; 376:eabk3112. [PMID: 35357925 PMCID: PMC9301658 DOI: 10.1126/science.abk3112] [Citation(s) in RCA: 191] [Impact Index Per Article: 63.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome. We identified previously unknown satellite arrays, expanded the catalog of variants and families for repeats and mobile elements, characterized classes of complex composite repeats, and located retroelement transduction events. We detected nascent transcription and delineated CpG methylation profiles to define the structure of transcriptionally active retroelements in humans, including those in centromeres. These data expand our insight into the diversity, distribution, and evolution of repetitive regions that have shaped the human genome.
Collapse
Affiliation(s)
- Savannah J. Hoyt
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | | | - Gabrielle A. Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Patrick G. S. Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Ariel Gershman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
| | | | - Charles Limouse
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Reza Halabian
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Luke Wojenski
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matias Rodriguez
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Nicolas Altemose
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Arang Rhie
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Leighton J. Core
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | | | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Münster, Münster, Germany
| | - Daniel Olson
- Department of Computer Science, University of Montana, Missoula, MT, USA
| | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Mitchell R. Vollger
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Travis J. Wheeler
- Department of Computer Science, University of Montana, Missoula, MT, USA
| | - Michael C. Schatz
- Department of Computer Science and Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Adam M. Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Winston Timp
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Karen H. Miga
- UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Rachel J. O’Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
- Department of Genetics and Genome Sciences, UConn Health, Farmington, CT, USA
| |
Collapse
|
15
|
Abstract
The centromere performs a universally conserved function, to accurately partition genetic information upon cell division. Yet, centromeres are among the most rapidly evolving regions of the genome and are bound by a varying assortment of centromere-binding factors that are themselves highly divergent at the protein-sequence level. A common thread in most species is the dependence on the centromere-specific histone variant CENP-A for the specification of the centromere site. However, CENP-A is not universally required in all species or cell types, making the identification of a general mechanism for centromere specification challenging. In this review, we examine our current understanding of the mechanisms of centromere specification in CENP-A-dependent and independent systems, focusing primarily on recent work.
Collapse
Affiliation(s)
- Barbara G Mellone
- Department of Molecular and Cell Biology, and Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, F-75005 Paris, France.
| |
Collapse
|