1
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. An atlas of bacterial serine-threonine kinases reveals functional diversity and key distinctions from eukaryotic kinases. Sci Signal 2025; 18:eadt8686. [PMID: 40327749 DOI: 10.1126/scisignal.adt8686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/11/2025] [Indexed: 05/08/2025]
Abstract
Bacterial serine-threonine kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity and are evolutionarily related to the druggable eukaryotic STKs. A deeper understanding of how bacterial STKs differ from their eukaryotic counterparts and how they have evolved to regulate diverse bacterial signaling functions is crucial for advancing the discovery and development of new antibiotic therapies. Here, we classified more than 300,000 bacterial STK sequences from the NCBI RefSeq nonredundant and UniProt protein databases into 35 canonical and seven pseudokinase families on the basis of the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified features distinguishing bacterial STKs from eukaryotic STKs, including an arginine residue in a regulatory helix (C helix) that dynamically couples the ATP- and substrate-binding lobes of the kinase domain. Biochemical and peptide library screens demonstrated that evolutionarily constrained residues contributed to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Together, these findings open previously unidentified avenues for investigating bacterial STK functions in cellular signaling and for developing selective bacterial STK inhibitors.
Collapse
Affiliation(s)
- Brady O'Boyle
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Jason D Lu
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10021, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Natarajan Kannan
- Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Bendzunas GN, Byrne DP, Shrestha S, Daly LA, Oswald SO, Katiyar S, Venkat A, Yeung W, Eyers CE, Eyers PA, Kannan N. Redox regulation and dynamic control of brain-selective kinases BRSK1/2 in the AMPK family through cysteine-based mechanisms. eLife 2025; 13:RP92536. [PMID: 40172959 PMCID: PMC11964447 DOI: 10.7554/elife.92536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications, including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide-mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.
Collapse
Affiliation(s)
- George N Bendzunas
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Safal Shrestha
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Sally O Oswald
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Wayland Yeung
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Patrick A Eyers
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| |
Collapse
|
3
|
Rutaganira FU, Coyle MC, Nguyen MHT, Hernandez I, Scopton AP, Dar AC, King N. A stress-responsive p38 signaling axis in choanoflagellates. RSC Chem Biol 2025:d4cb00122b. [PMID: 40226336 PMCID: PMC11984502 DOI: 10.1039/d4cb00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/21/2025] [Indexed: 04/15/2025] Open
Abstract
Animal kinases regulate cellular responses to environmental stimuli, including cell differentiation, migration, survival, and response to stress, but the ancestry of these functions is poorly understood. Choanoflagellates, the closest living relatives of animals, encode homologs of diverse animal kinases and have emerged as model organisms for reconstructing animal origins. However, efforts to identify key kinase regulators in choanoflagellates have been constrained by the limitations of currently available genetic tools. Here, we report on a framework that combines small molecule-driven kinase discovery with targeted genetics to reveal kinase function in choanoflagellates. To study the physiological roles of choanoflagellate kinases, we established two high-throughput platforms to screen the model choanoflagellate Salpingoeca rosetta with a curated library of human kinase inhibitors. We identified 95 diverse kinase inhibitors that disrupt S. rosetta cell proliferation. By focusing on one inhibitor, sorafenib, we identified a p38 kinase as a regulator of the heat shock response in S. rosetta. This finding reveals a conserved p38 function between choanoflagellates, animals, and fungi. Moreover, this study demonstrates that existing kinase inhibitors can serve as powerful tools to examine the ancestral roles of kinases that regulate modern animal development.
Collapse
Affiliation(s)
- Florentine U Rutaganira
- Department of Biochemistry, Stanford University School of Medicine Stanford CA 94305 USA
- Department of Developmental Biology, Stanford University School of Medicine Stanford CA 94305 USA
| | - Maxwell C Coyle
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
| | - Maria H T Nguyen
- Department of Biology, Stanford University Stanford CA 94305 USA
| | - Iliana Hernandez
- Department of Biochemistry, Stanford University School of Medicine Stanford CA 94305 USA
| | - Alex P Scopton
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | - Arvin C Dar
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai New York NY 10029 USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California Berkeley CA 94720 USA
| |
Collapse
|
4
|
Sias F, Zoroddu S, Migheli R, Bagella L. Untangling the Role of MYC in Sarcomas and Its Potential as a Promising Therapeutic Target. Int J Mol Sci 2025; 26:1973. [PMID: 40076599 PMCID: PMC11900228 DOI: 10.3390/ijms26051973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
MYC plays a pivotal role in the biology of various sarcoma subtypes, acting as a key regulator of tumor growth, proliferation, and metabolic reprogramming. This oncogene is frequently dysregulated across different sarcomas, where its expression is closely intertwined with the molecular features unique to each subtype. MYC interacts with critical pathways such as cell cycle regulation, apoptosis, and angiogenesis, amplifying tumor aggressiveness and resistance to standard therapies. Furthermore, MYC influences the tumor microenvironment by modulating cell-extracellular matrix interactions and immune evasion mechanisms, further complicating therapeutic management. Despite its well-established centrality in sarcoma pathogenesis, targeting MYC directly remains challenging due to its "undruggable" protein structure. However, emerging therapeutic strategies, including indirect MYC inhibition via epigenetic modulators, transcriptional machinery disruptors, and metabolic pathway inhibitors, offer new hope for sarcoma treatment. This review underscores the importance of understanding the intricate roles of MYC across sarcoma subtypes to guide the development of effective targeted therapies. Given MYC's central role in tumorigenesis and progression, innovative approaches aiming at MYC inhibition could transform the therapeutic landscape for sarcoma patients, providing a much-needed avenue to overcome therapeutic resistance and improve clinical outcomes.
Collapse
Affiliation(s)
- Fabio Sias
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
| | - Stefano Zoroddu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
| | - Rossana Migheli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy;
| | - Luigi Bagella
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100 Sassari, Italy; (F.S.); (S.Z.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Centre for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
5
|
O'Boyle B, Yeung W, Lu JD, Katiyar S, Yaron-Barir TM, Johnson JL, Cantley LC, Kannan N. Atlas of the Bacterial Serine-Threonine Kinases expands the functional diversity of the kinome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.12.632604. [PMID: 39868133 PMCID: PMC11760699 DOI: 10.1101/2025.01.12.632604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Bacterial serine-threonine protein kinases (STKs) regulate diverse cellular processes associated with cell growth, virulence, and pathogenicity. They are evolutionarily related to the druggable eukaryotic STKs. However, an incomplete knowledge of how bacterial STKs differ from their eukaryotic counterparts and how they have diverged to regulate diverse bacterial signaling functions presents a bottleneck in targeting them for drug discovery efforts. Here, we classified over 300,000 bacterial STK sequences from the NCBI RefSeq non-redundant and UniProt protein databases into 35 canonical and seven non-canonical (pseudokinase) families based on the patterns of evolutionary constraints in the conserved catalytic domain and flanking regulatory domains. Through statistical comparisons, we identified distinguishing features of bacterial STKs, including a distinctive arginine residue in a regulatory helix (C-Helix) that dynamically couples ATP and substrate binding lobes of the kinase domain. Biochemical and peptide-library screens demonstrated that constrained residues contribute to substrate specificity and kinase activation in the Mycobacterium tuberculosis kinase PknB. Collectively, these findings open new avenues for investigating bacterial STK functions in cellular signaling and for the development of selective bacterial STK inhibitors.
Collapse
|
6
|
Gizzio J, Thakur A, Haldane A, Post CB, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. Nat Commun 2024; 15:6545. [PMID: 39095350 PMCID: PMC11297160 DOI: 10.1038/s41467-024-50812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory folded conformation, due to intrinsic sequence effects. Here we investigate the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a thermodynamic cycle involving many (n = 108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation DFG-out Activation Loop Folded, is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Chemistry, Temple University, Philadelphia, PA, USA
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA
- Department of Physics, Temple University, Philadelphia, PA, USA
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, PA, USA.
- Department of Chemistry, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Gizzio J, Thakur A, Haldane A, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. RESEARCH SQUARE 2024:rs.3.rs-4048991. [PMID: 38746330 PMCID: PMC11092858 DOI: 10.21203/rs.3.rs-4048991/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory "folded" conformation, due to intrinsic sequence effects. Here we investigated the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a novel thermodynamic cycle involving many (n=108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation "DFG-out Activation Loop Folded", is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
8
|
Gizzio J, Thakur A, Haldane A, Post CB, Levy RM. Evolutionary sequence and structural basis for the distinct conformational landscapes of Tyr and Ser/Thr kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584161. [PMID: 38559238 PMCID: PMC10979876 DOI: 10.1101/2024.03.08.584161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Protein kinases are molecular machines with rich sequence variation that distinguishes the two main evolutionary branches - tyrosine kinases (TKs) from serine/threonine kinases (STKs). Using a sequence co-variation Potts statistical energy model we previously concluded that TK catalytic domains are more likely than STKs to adopt an inactive conformation with the activation loop in an autoinhibitory "folded" conformation, due to intrinsic sequence effects. Here we investigated the structural basis for this phenomenon by integrating the sequence-based model with structure-based molecular dynamics (MD) to determine the effects of mutations on the free energy difference between active and inactive conformations, using a novel thermodynamic cycle involving many (n=108) protein-mutation free energy perturbation (FEP) simulations in the active and inactive conformations. The sequence and structure-based results are consistent and support the hypothesis that the inactive conformation "DFG-out Activation Loop Folded", is a functional regulatory state that has been stabilized in TKs relative to STKs over the course of their evolution via the accumulation of residue substitutions in the activation loop and catalytic loop that facilitate distinct substrate binding modes in trans and additional modes of regulation in cis for TKs.
Collapse
Affiliation(s)
- Joan Gizzio
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Abhishek Thakur
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| | - Allan Haldane
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122
| | - Carol Beth Post
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907
| | - Ronald M. Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
9
|
Yaron-Barir TM, Joughin BA, Huntsman EM, Kerelsky A, Cizin DM, Cohen BM, Regev A, Song J, Vasan N, Lin TY, Orozco JM, Schoenherr C, Sagum C, Bedford MT, Wynn RM, Tso SC, Chuang DT, Li L, Li SSC, Creixell P, Krismer K, Takegami M, Lee H, Zhang B, Lu J, Cossentino I, Landry SD, Uduman M, Blenis J, Elemento O, Frame MC, Hornbeck PV, Cantley LC, Turk BE, Yaffe MB, Johnson JL. The intrinsic substrate specificity of the human tyrosine kinome. Nature 2024; 629:1174-1181. [PMID: 38720073 PMCID: PMC11136658 DOI: 10.1038/s41586-024-07407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/10/2024] [Indexed: 05/31/2024]
Abstract
Phosphorylation of proteins on tyrosine (Tyr) residues evolved in metazoan organisms as a mechanism of coordinating tissue growth1. Multicellular eukaryotes typically have more than 50 distinct protein Tyr kinases that catalyse the phosphorylation of thousands of Tyr residues throughout the proteome1-3. How a given Tyr kinase can phosphorylate a specific subset of proteins at unique Tyr sites is only partially understood4-7. Here we used combinatorial peptide arrays to profile the substrate sequence specificity of all human Tyr kinases. Globally, the Tyr kinases demonstrate considerable diversity in optimal patterns of residues surrounding the site of phosphorylation, revealing the functional organization of the human Tyr kinome by substrate motif preference. Using this information, Tyr kinases that are most compatible with phosphorylating any Tyr site can be identified. Analysis of mass spectrometry phosphoproteomic datasets using this compendium of kinase specificities accurately identifies specific Tyr kinases that are dysregulated in cells after stimulation with growth factors, treatment with anti-cancer drugs or expression of oncogenic variants. Furthermore, the topology of known Tyr signalling networks naturally emerged from a comparison of the sequence specificities of the Tyr kinases and the SH2 phosphotyrosine (pTyr)-binding domains. Finally we show that the intrinsic substrate specificity of Tyr kinases has remained fundamentally unchanged from worms to humans, suggesting that the fidelity between Tyr kinases and their protein substrate sequences has been maintained across hundreds of millions of years of evolution.
Collapse
Affiliation(s)
- Tomer M Yaron-Barir
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Brian A Joughin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emily M Huntsman
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Alexander Kerelsky
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Daniel M Cizin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin M Cohen
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Amit Regev
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Junho Song
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Neil Vasan
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ting-Yu Lin
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Discovery Technologies, Calico Life Sciences, South San Francisco, CA, USA
| | - Jose M Orozco
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Christina Schoenherr
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Cari Sagum
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Chia Tso
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Li
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shawn S-C Li
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Pau Creixell
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Cambridge, UK
| | - Konstantin Krismer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mina Takegami
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Harin Lee
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Bin Zhang
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Jingyi Lu
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Ian Cossentino
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Sean D Landry
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Mohamed Uduman
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Margaret C Frame
- Cancer Research United Kingdom Scotland Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Peter V Hornbeck
- Department Of Bioinformatics, Cell Signaling Technology, Danvers, MA, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - Michael B Yaffe
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Acute Care Surgery, Trauma, and Surgical Critical Care, and Division of Surgical Oncology, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
10
|
Bendzunas GN, Byrne DP, Shrestha S, Daly LA, Oswald SO, Katiyar S, Venkat A, Yeung W, Eyers CE, Eyers PA, Kannan N. Redox Regulation of Brain Selective Kinases BRSK1/2: Implications for Dynamic Control of the Eukaryotic AMPK family through Cys-based mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.05.561145. [PMID: 38586025 PMCID: PMC10996518 DOI: 10.1101/2023.10.05.561145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
In eukaryotes, protein kinase signaling is regulated by a diverse array of post-translational modifications (PTMs), including phosphorylation of Ser/Thr residues and oxidation of cysteine (Cys) residues. While regulation by activation segment phosphorylation of Ser/Thr residues is well understood, relatively little is known about how oxidation of cysteine residues modulate catalysis. In this study, we investigate redox regulation of the AMPK-related Brain-selective kinases (BRSK) 1 and 2, and detail how broad catalytic activity is directly regulated through reversible oxidation and reduction of evolutionarily conserved Cys residues within the catalytic domain. We show that redox-dependent control of BRSKs is a dynamic and multilayered process involving oxidative modifications of several Cys residues, including the formation of intramolecular disulfide bonds involving a pair of Cys residues near the catalytic HRD motif and a highly conserved T-Loop Cys with a BRSK-specific Cys within an unusual CPE motif at the end of the activation segment. Consistently, mutation of the CPE-Cys increases catalytic activity in vitro and drives phosphorylation of the BRSK substrate Tau in cells. Molecular modeling and molecular dynamics simulations indicate that oxidation of the CPE-Cys destabilizes a conserved salt bridge network critical for allosteric activation. The occurrence of spatially proximal Cys amino acids in diverse Ser/Thr protein kinase families suggests that disulfide mediated control of catalytic activity may be a prevalent mechanism for regulation within the broader AMPK family.
Collapse
Affiliation(s)
- George N. Bendzunas
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Sally O. Oswald
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Patrick A Eyers
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
11
|
Venkat A, Watterson G, Byrne DP, O'Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, Aggarwal I, Katiyar S, Eyers CE, Eyers PA, Kannan N. Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases. eLife 2023; 12:RP87958. [PMID: 37883155 PMCID: PMC10602587 DOI: 10.7554/elife.87958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The doublecortin-like kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations, and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other calcium calmodulin kinases (CAMKs), and a 'Swiss Army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for autoregulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically divergent DCLK1 modulators, stabilizers, or degraders.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Grace Watterson
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Dominic P Byrne
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Brady O'Boyle
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Safal Shrestha
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Nathan Gravel
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Emma E Fairweather
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Leonard A Daly
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Claire Bunn
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Wayland Yeung
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Ishan Aggarwal
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of GeorgiaAthensUnited States
| | - Claire E Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
- Centre for Proteome Research, Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Patrick A Eyers
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of LiverpoolLiverpoolUnited Kingdom
| | - Natarajan Kannan
- Institute of Bioinformatics, University of GeorgiaAthensUnited States
| |
Collapse
|
12
|
Majumdar S, Di Palma F, Spyrakis F, Decherchi S, Cavalli A. Molecular Dynamics and Machine Learning Give Insights on the Flexibility-Activity Relationships in Tyrosine Kinome. J Chem Inf Model 2023; 63:4814-4826. [PMID: 37462363 PMCID: PMC10428216 DOI: 10.1021/acs.jcim.3c00738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Indexed: 08/15/2023]
Abstract
Tyrosine kinases are a subfamily of kinases with critical roles in cellular machinery. Dysregulation of their active or inactive forms is associated with diseases like cancer. This study aimed to holistically understand their flexibility-activity relationships, focusing on pockets and fluctuations. We studied 43 different tyrosine kinases by collecting 120 μs of molecular dynamics simulations, pocket and residue fluctuation analysis, and a complementary machine learning approach. We found that the inactive forms often have increased flexibility, particularly at the DFG motif level. Noteworthy, thanks to these long simulations combined with a decision tree, we identified a semiquantitative fluctuation threshold of the DGF+3 residue over which the kinase has a higher probability to be in the inactive form.
Collapse
Affiliation(s)
- Sarmistha Majumdar
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Francesco Di Palma
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Francesca Spyrakis
- Department
of Drug Science and Technology, University
of Turin, via Giuria
9, I-10125 Turin, Italy
| | - Sergio Decherchi
- Data
Science and Computation, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Andrea Cavalli
- Computational
& Chemical Biology, Fondazione Istituto
Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, University
of Bologna, Via Belmeloro 6, I-40126 Bologna, Italy
| |
Collapse
|
13
|
Yin Z, Shen D, Zhao Y, Peng H, Liu J, Dou D. Cross-kingdom analyses of transmembrane protein kinases show their functional diversity and distinct origins in protists. Comput Struct Biotechnol J 2023; 21:4070-4078. [PMID: 37649710 PMCID: PMC10463195 DOI: 10.1016/j.csbj.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Transmembrane kinases (TMKs) are important mediators of cellular signaling cascades. The kinase domains of most metazoan and plant TMKs belong to the serine/threonine/tyrosine kinase (S/T/Y-kinase) superfamily. They share a common origin with prokaryotic kinases and have diversified into distinct subfamilies. Diverse members of the eukaryotic crown radiation such as amoebae, ciliates, and red and brown algae (grouped here under the umbrella term "protists") have long diverged from higher eukaryotes since their ancient common ancestry, making them ideal organisms for studying TMK evolution. Here, we developed an accurate and high-throughput pipeline to predict TMKomes in cellular organisms. Cross-kingdom analyses revealed distinct features of TMKomes in each grouping. Two-transmembrane histidine kinases constitute the main TMKomes of bacteria, while metazoans, plants, and most protists have a large proportion of single-pass TM S/T/Y-kinases. Phylogenetic analyses classified most protist S/T/Y-kinases into three clades, with clades II and III specifically expanded in amoebae and oomycetes, respectively. In contrast, clade I kinases were widespread in all protists examined here, and likely shared a common origin with other eukaryotic S/T/Y-kinases. Functional annotation further showed that most non-kinase domains were grouping-specific, suggesting that their recombination with the more conserved kinase domains led to the divergence of S/T/Y-kinases. However, we also found that protist leucine-rich repeat (LRR)- and G-protein-coupled receptor (GPCR)-type TMKs shared similar sensory domain architectures with respective plant and animal TMKs, despite that they belong to distinct kinase subfamilies. Collectively, our study revealed the functional diversity of TMKomes and the distinct origins of S/T/Y-kinases in protists.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaning Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Peng
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Jinding Liu
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Venkat A, Watterson G, Byrne DP, O’Boyle B, Shrestha S, Gravel N, Fairweather EE, Daly LA, Bunn C, Yeung W, Aggarwal I, Katiyar S, Eyers CE, Eyers PA, Kannan N. Mechanistic and evolutionary insights into isoform-specific 'supercharging' in DCLK family kinases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534689. [PMID: 37034755 PMCID: PMC10081240 DOI: 10.1101/2023.03.29.534689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Catalytic signaling outputs of protein kinases are dynamically regulated by an array of structural mechanisms, including allosteric interactions mediated by intrinsically disordered segments flanking the conserved catalytic domain. The Doublecortin Like Kinases (DCLKs) are a family of microtubule-associated proteins characterized by a flexible C-terminal autoregulatory 'tail' segment that varies in length across the various human DCLK isoforms. However, the mechanism whereby these isoform-specific variations contribute to unique modes of autoregulation is not well understood. Here, we employ a combination of statistical sequence analysis, molecular dynamics simulations and in vitro mutational analysis to define hallmarks of DCLK family evolutionary divergence, including analysis of splice variants within the DCLK1 sub-family, which arise through alternative codon usage and serve to 'supercharge' the inhibitory potential of the DCLK1 C-tail. We identify co-conserved motifs that readily distinguish DCLKs from all other Calcium Calmodulin Kinases (CAMKs), and a 'Swiss-army' assembly of distinct motifs that tether the C-terminal tail to conserved ATP and substrate-binding regions of the catalytic domain to generate a scaffold for auto-regulation through C-tail dynamics. Consistently, deletions and mutations that alter C-terminal tail length or interfere with co-conserved interactions within the catalytic domain alter intrinsic protein stability, nucleotide/inhibitor-binding, and catalytic activity, suggesting isoform-specific regulation of activity through alternative splicing. Our studies provide a detailed framework for investigating kinome-wide regulation of catalytic output through cis-regulatory events mediated by intrinsically disordered segments, opening new avenues for the design of mechanistically-divergent DCLK1 modulators, stabilizers or degraders.
Collapse
Affiliation(s)
- Aarya Venkat
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Grace Watterson
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Dominic P. Byrne
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Brady O’Boyle
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Safal Shrestha
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Nathan Gravel
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Emma E. Fairweather
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Leonard A. Daly
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Claire Bunn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Wayland Yeung
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| | - Ishan Aggarwal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Samiksha Katiyar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Claire E. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
- Centre for Proteome Research, Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Patrick A. Eyers
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Bajaj T, Kuriyan J, Gee CL. Crystal structure of the kinase domain of a receptor tyrosine kinase from a choanoflagellate, Monosiga brevicollis. PLoS One 2023; 18:e0276413. [PMID: 37310965 DOI: 10.1371/journal.pone.0276413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/28/2023] [Indexed: 06/15/2023] Open
Abstract
Genomic analysis of the unicellular choanoflagellate, Monosiga brevicollis (MB), revealed the remarkable presence of cell signaling and adhesion protein domains that are characteristically associated with metazoans. Strikingly, receptor tyrosine kinases, one of the most critical elements of signal transduction and communication in metazoans, are present in choanoflagellates. We determined the crystal structure at 1.95 Å resolution of the kinase domain of the M. brevicollis receptor tyrosine kinase C8 (RTKC8, a member of the choanoflagellate receptor tyrosine kinase C family) bound to the kinase inhibitor staurospaurine. The chonanoflagellate kinase domain is closely related in sequence to mammalian tyrosine kinases (~ 40% sequence identity to the human Ephrin kinase domain EphA3) and, as expected, has the canonical protein kinase fold. The kinase is structurally most similar to human Ephrin (EphA5), even though the extracellular sensor domain is completely different from that of Ephrin. The RTKC8 kinase domain is in an active conformation, with two staurosporine molecules bound to the kinase, one at the active site and another at the peptide-substrate binding site. To our knowledge this is the first example of staurospaurine binding in the Aurora A activation segment (AAS). We also show that the RTKC8 kinase domain can phosphorylate tyrosine residues in peptides from its C-terminal tail segment which is presumably the mechanism by which it transmits the extracellular stimuli to alter cellular function.
Collapse
Affiliation(s)
- Teena Bajaj
- Graduate Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, California, United States of America
| | - John Kuriyan
- Graduate Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
16
|
Liu Y, Zhang M, Jang H, Nussinov R. Higher-order interactions of Bcr-Abl can broaden chronic myeloid leukemia (CML) drug repertoire. Protein Sci 2023; 32:e4504. [PMID: 36369657 PMCID: PMC9795542 DOI: 10.1002/pro.4504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
Abstract
Bcr-Abl, a nonreceptor tyrosine kinase, is associated with leukemias, especially chronic myeloid leukemia (CML). Deletion of Abl's N-terminal region, to which myristoyl is linked, renders the Bcr-Abl fusion oncoprotein constitutively active. The substitution of Abl's N-terminal region by Bcr enables Bcr-Abl oligomerization. Oligomerization is critical: it promotes clustering on the membrane, which is essential for potent MAPK signaling and cell proliferation. Here we decipher the Bcr-Abl specific, step-by-step oligomerization process, identify a specific packing surface, determine exactly how the process is structured and identify its key elements. Bcr's coiled coil (CC) domain at the N-terminal controls Bcr-Abl oligomerization. Crystallography validated oligomerization via Bcr-Abl dimerization between two Bcr CC domains, with tetramerization via tight packing between two binary assemblies. However, the structural principles guiding Bcr CC domain oligomerization are unknown, hindering mechanistic understanding and drugs exploiting it. Using molecular dynamics (MD) simulations, we determine that the binary complex of the Bcr CC domain serves as a basic unit in the quaternary complex providing a specific surface for dimer-dimer packing and higher-order oligomerization. We discover that the small α1-helix is the key. In the binary assembly, the helix forms interchain aromatic dimeric packing, and in the quaternary assembly, it contributes to the specific dimer-dimer packing. Our mechanism is supported by the experimental literature. It offers the key elements controlling this process which can expand the drug discovery strategy, including by Bcr CC-derived peptides, and candidate residues for small covalent drugs, toward quenching oligomerization, supplementing competitive and allosteric tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Yonglan Liu
- Cancer Innovation LaboratoryNational Cancer InstituteFrederickMarylandUSA
| | - Mingzhen Zhang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Hyunbum Jang
- Computational Structural Biology SectionFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Ruth Nussinov
- Computational Structural Biology SectionFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA,Department of Human Molecular Genetics and BiochemistrySackler School of Medicine, Tel Aviv UniversityTel AvivIsrael
| |
Collapse
|