1
|
Topaloudis A, Cumer T, Lavanchy E, Ducrest AL, Simon C, Machado AP, Paposhvili N, Roulin A, Goudet J. The recombination landscape of the barn owl, from families to populations. Genetics 2025; 229:1-50. [PMID: 39545468 PMCID: PMC11708917 DOI: 10.1093/genetics/iyae190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Homologous recombination is a meiotic process that generates diversity along the genome and interacts with all evolutionary forces. Despite its importance, studies of recombination landscapes are lacking due to methodological limitations and limited data. Frequently used approaches include linkage mapping based on familial data that provides sex-specific broad-scale estimates of realized recombination and inferences based on population linkage disequilibrium that reveal a more fine-scale resolution of the recombination landscape, albeit dependent on the effective population size and the selective forces acting on the population. In this study, we use a combination of these 2 methods to elucidate the recombination landscape for the Afro-European barn owl (Tyto alba). We find subtle differences in crossover placement between sexes that lead to differential effective shuffling of alleles. Linkage disequilibrium-based estimates of recombination are concordant with family-based estimates and identify large variation in recombination rates within and among linkage groups. Larger chromosomes show variation in recombination rates, while smaller chromosomes have a universally high rate that shapes the diversity landscape. We find that recombination rates are correlated with gene content, genetic diversity, and GC content. We find no conclusive differences in the recombination landscapes between populations. Overall, this comprehensive analysis enhances our understanding of recombination dynamics, genomic architecture, and sex-specific variation in the barn owl, contributing valuable insights to the broader field of avian genomics.
Collapse
Affiliation(s)
- Alexandros Topaloudis
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Eléonore Lavanchy
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Celine Simon
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Nika Paposhvili
- Institute of Ecology, Ilia State University, Tbilisi 0162, Georgia
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Lausanne 1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| |
Collapse
|
2
|
Wilson RE, Boyd WS, Sonsthagen SA, Ward DH, Clausen P, Dickson KM, Ebbinge BS, Gudmundsson GA, Sage GK, Rearick JR, Derksen DV, Talbot SL. Where east meets west: Phylogeography of the high Arctic North American brant goose. Ecol Evol 2024; 14:e11245. [PMID: 38601857 PMCID: PMC11004662 DOI: 10.1002/ece3.11245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/07/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
Genetic variation in Arctic species is often influenced by vicariance during the Pleistocene, as ice sheets fragmented the landscape and displaced populations to low- and high-latitude refugia. The formation of secondary contact or suture zones during periods of ice sheet retraction has important consequences on genetic diversity by facilitating genetic connectivity between formerly isolated populations. Brant geese (Branta bernicla) are a maritime migratory waterfowl (Anseriformes) species that almost exclusively uses coastal habitats. Within North America, brant geese are characterized by two phenotypically distinct subspecies that utilize disjunct breeding and wintering areas in the northern Pacific and Atlantic. In the Western High Arctic of Canada, brant geese consist of individuals with an intermediate phenotype that are rarely observed nesting outside this region. We examined the genetic structure of brant geese populations from each subspecies and areas consisting of intermediate phenotypes using mitochondrial DNA (mtDNA) control region sequence data and microsatellite loci. We found a strong east-west partition in both marker types consistent with refugial populations. Within subspecies, structure was also observed at mtDNA while microsatellite data suggested the presence of only two distinct genetic clusters. The Western High Arctic (WHA) appears to be a secondary contact zone for both Atlantic and Pacific lineages as mtDNA and nuclear genotypes were assigned to both subspecies, and admixed individuals were observed in this region. The mtDNA sequence data outside WHA suggests no or very restricted intermixing between Atlantic and Pacific wintering populations which is consistent with published banding and telemetry data. Our study indicates that, although brant geese in the WHA are not a genetically distinct lineage, this region may act as a reservoir of genetic diversity and may be an area of high conservation value given the potential of low reproductive output in this species.
Collapse
Affiliation(s)
- Robert E. Wilson
- School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
- Nebraska State MuseumUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - W. Sean Boyd
- Environment and Climate Change CanadaScience and Technology BranchDeltaBritish ColumbiaCanada
| | - Sarah A. Sonsthagen
- U.S. Geological Survey, Nebraska Cooperative Fish and Wildlife Research Unit, School of Natural ResourcesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - David H. Ward
- U.S. Geological SurveyAlaska Science CenterAnchorageAlaskaUSA
| | | | - Kathryn M. Dickson
- Canadian Wildlife ServiceEnvironment and Climate Change CanadaOttawaOntarioCanada
| | | | | | - George K. Sage
- Far Northwestern Institute of Art and ScienceAnchorageAlaskaUSA
| | | | - Dirk V. Derksen
- U.S. Geological SurveyAlaska Science CenterAnchorageAlaskaUSA
| | - Sandra L. Talbot
- Far Northwestern Institute of Art and ScienceAnchorageAlaskaUSA
- Alaska Center for Conservation ScienceUniversity of AlaskaAnchorageAlaskaUSA
| |
Collapse
|
3
|
Cumer T, Machado AP, San-Jose LM, Ducrest AL, Simon C, Roulin A, Goudet J. The genomic architecture of continuous plumage colour variation in the European barn owl ( Tyto alba). Proc Biol Sci 2024; 291:20231995. [PMID: 38196365 PMCID: PMC10777144 DOI: 10.1098/rspb.2023.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
The maintenance of colour variation in wild populations has long fascinated evolutionary biologists, although most studies have focused on discrete traits exhibiting rather simple inheritance patterns and genetic architectures. However, the study of continuous colour traits and their potentially oligo- or polygenic genetic bases remains rare in wild populations. We studied the genetics of the continuously varying white-to-rufous plumage coloration of the European barn owl (Tyto alba) using a genome-wide association approach on the whole-genome data of 75 individuals. We confirmed a mutation at the melanocortin-1-receptor gene (MC1R) is involved in the coloration and identified two new regions, located in super-scaffolds 9 and 42. The combination of the three regions explains most of the colour variation (80.37%, 95% credible interval 58.45-100%). One discovered region, located in the sex chromosome, differs between the most extreme colorations in owls sharing a specific MC1R genotype. This region may play a role in the colour sex dimorphism of this species, possibly in interaction with the autosomal MC1R. We thus provide insights into the genetic architecture of continuous colour variation, pointing to an oligogenic basis with potential epistatic effects among loci that should aid future studies understanding how continuous colour variation is maintained in nature.
Collapse
Affiliation(s)
- Tristan Cumer
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Ana Paula Machado
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Luis M. San-Jose
- Laboratoire Évolution and Diversité Biologique, UMR 5174, CNRS, Université Toulouse III Paul Sabatier, Toulouse, France
| | - Anne-Lyse Ducrest
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Céline Simon
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Alexandre Roulin
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne CH-1015, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Dai C, Feng P. Multiple concordant cytonuclear divergences and potential hybrid speciation within a species complex in Asia. Mol Phylogenet Evol 2023; 180:107709. [PMID: 36657627 DOI: 10.1016/j.ympev.2023.107709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Various environmental factors impact the distribution, population structure, demography and evolutionary trajectory of a bird species, leading to genetic and morphological divergences between populations across its distribution. The Paradoxornis webbianus species complex is found throughout much of East Asia, where its geographically distinct populations exhibit dramatic morphological variation. This has resulted in a hotly debated taxonomy. This study intended to identify genetic divergence patterns and their underlying contributing factors for this species complex. We collected 243 birds, whose data was combined with those available in GenBank to perform phylogeographic analyses using one mitochondrial and six nuclear loci. Six mitochondrial clades were observed in the species complex, while individual-based Bayesian clustering using nuclear markers showed multiple congruent breaks. Overall, the six molecular lineages could be recognized as independent species under the lineage species concept in view of genetic divergence, clade-specific morphological changes and distribution: P. webbianus, P. w. bulomachus, P. alphonsianus, P. a. ganluoensis, P. brunneus brunneus and P. b. ricketti. The estimated divergence times range from 0.46 to 3.36 million years ago, suggesting it was likely impacted by paleoclimatic changes. Interestingly, P. alphonsianus carries two divergent mitochondrial lineages shared with P. webbianus and P. a. ganluoensis, respectively, and analyses based on nuclear loci found a similar pattern. We discussed the various hypotheses for this pattern and argued that P. alphonsianus was likely the result of hybridization between P. webbianus and P. a. ganluoensis. Further data on genome, transcriptome and breeding ecology are needed to address the hypothesis of hybrid speciation and its underlying mechanisms.
Collapse
Affiliation(s)
- Chuanyin Dai
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China.
| | - Ping Feng
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China; Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin 541006, China
| |
Collapse
|
5
|
Dufresnes C, Dutoit L, Brelsford A, Goldstein-Witsenburg F, Clément L, López-Baucells A, Palmeirim J, Pavlinić I, Scaravelli D, Ševčík M, Christe P, Goudet J. Inferring genetic structure when there is little: population genetics versus genomics of the threatened bat Miniopterus schreibersii across Europe. Sci Rep 2023; 13:1523. [PMID: 36707640 PMCID: PMC9883447 DOI: 10.1038/s41598-023-27988-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
Despite their paramount importance in molecular ecology and conservation, genetic diversity and structure remain challenging to quantify with traditional genotyping methods. Next-generation sequencing holds great promises, but this has not been properly tested in highly mobile species. In this article, we compared microsatellite and RAD-sequencing (RAD-seq) analyses to investigate population structure in the declining bent-winged bat (Miniopterus schreibersii) across Europe. Both markers retrieved general patterns of weak range-wide differentiation, little sex-biased dispersal, and strong isolation by distance that associated with significant genetic structure between the three Mediterranean Peninsulas, which could have acted as glacial refugia. Microsatellites proved uninformative in individual-based analyses, but the resolution offered by genomic SNPs illuminated on regional substructures within several countries, with colonies sharing migrators of distinct ancestry without admixture. This finding is consistent with a marked philopatry and spatial partitioning between mating and rearing grounds in the species, which was suspected from marked-recaptured data. Our study advocates that genomic data are necessary to properly unveil the genetic footprints left by biogeographic processes and social organization in long-distant flyers, which are otherwise rapidly blurred by their high levels of gene flow.
Collapse
Affiliation(s)
- Christophe Dufresnes
- Laboratory for Amphibian Systematic and Evolutionary Research, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People's Republic of China.
| | - Ludovic Dutoit
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.,Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Alan Brelsford
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | | | - Laura Clément
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Adria López-Baucells
- Bat Research Area, Granollers Museum of Natural Sciences, Carrer Palaudaries 102, 08402, Granollers, Spain
| | - Jorge Palmeirim
- Department of Animal Biology, Centre for Ecology, Evolution and Environmental Change - cE3c, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Igor Pavlinić
- Department of Zoology, Croatian Natural History Museum, Demetrova 1, 10000, Zagreb, Croatia
| | - Dino Scaravelli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| | - Martin Ševčík
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| | - Jérôme Goudet
- Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
6
|
Genomic basis of insularity and ecological divergence in barn owls (Tyto alba) of the Canary Islands. Heredity (Edinb) 2022; 129:281-294. [PMID: 36175501 PMCID: PMC9613907 DOI: 10.1038/s41437-022-00562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/14/2022] Open
Abstract
Islands, and the particular organisms that populate them, have long fascinated biologists. Due to their isolation, islands offer unique opportunities to study the effect of neutral and adaptive mechanisms in determining genomic and phenotypical divergence. In the Canary Islands, an archipelago rich in endemics, the barn owl (Tyto alba), present in all the islands, is thought to have diverged into a subspecies (T. a. gracilirostris) on the eastern ones, Fuerteventura and Lanzarote. Taking advantage of 40 whole-genomes and modern population genomics tools, we provide the first look at the origin and genetic makeup of barn owls of this archipelago. We show that the Canaries hold diverse, long-standing and monophyletic populations with a neat distinction of gene pools from the different islands. Using a new method, less sensitive to structure than classical FST, to detect regions involved in local adaptation to insular environments, we identified a haplotype-like region likely under selection in all Canaries individuals and genes in this region suggest morphological adaptations to insularity. In the eastern islands, where the subspecies is present, genomic traces of selection pinpoint signs of adapted body proportions and blood pressure, consistent with the smaller size of this population living in a hot arid climate. In turn, genomic regions under selection in the western barn owls from Tenerife showed an enrichment in genes linked to hypoxia, a potential response to inhabiting a small island with a marked altitudinal gradient. Our results illustrate the interplay of neutral and adaptive forces in shaping divergence and early onset speciation.
Collapse
|