1
|
Fu Y, Ni P, Zhang Y, Liang F, Stover NA, Li L. The genome and comparative transcriptome of the euryhaline model ciliate Paramecium duboscqui reveal adaptations to environmental salinity. BMC Biol 2024; 22:237. [PMID: 39407207 PMCID: PMC11476214 DOI: 10.1186/s12915-024-02026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND As a potential model organism for studies of environmental and cell biology, Paramecium duboscqui is a special euryhaline species of Paramecium that can be found in fresh, brackish, or marine water in natural salinity ranges between 0‰ and 33‰. However, the genome information as well as molecular mechanisms that account for its remarkable halotolerant traits remain extremely unknown. To characterize its genome feature, we combined PacBio and Illumina sequencing to assemble the first high-quality and near-complete macronuclear genome of P. duboscqui. Meanwhile, comparative transcriptomic profiles under different salinities gave underlying insight into the molecular mechanism of its adaptations to environmental salinity. RESULTS The results showed that the MAC genome of P. duboscqui comprises 160 contigs, with 113 of them possessing telomere (~ 28.82 Mb haploid genome size). Through comparative genomic analyses with the other ciliate, we found that gene families encoding transmembrane transporter proteins have been expanded in P. duboscqui, showing enormous potential in salinity adaptation. Like other Paramecium, P. duboscqui utilizes TGA as its only termination codon and has reassigned TAA and TAG to encode glutamine. P. duboscqui showed different growth rates under different salinities, with an optimum growth rate in 5‰ salinity. A comparison of the transcriptomic profiles among P. duboscqui grown under different concentrations showed that genes involved in protein folding, oxygen respiration, and glutathione-dependent detoxification were upregulated in the high-salt group, whereas genes encoding DNA-binding proteins and transcription factors were upregulated in the low-salt group, suggesting distinct mechanisms for responding to low and high salinity. Weighted gene coexpression network analysis (WGCNA) linked the hub genes expressed at 30‰ salinity to cysteine-type peptidase activity, lipid transfer, sodium hydrogen exchange, and cell division, with the hub genes expressed at 0‰ salinity involved in transmembrane transport and protein localization. CONCLUSIONS This study characterizes a new euryhaline model Paramecium, provides novel insights into Paramecium evolution, and describes the molecular mechanisms that have allow P. duboscqui to adapt to different osmotic environments.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Ping Ni
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Ying Zhang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Fasheng Liang
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Naomi A Stover
- Department of Biology, Bradley University, Peoria, 61625, USA
| | - Lifang Li
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China.
| |
Collapse
|
2
|
Zhang B, Xiao L, Lyu L, Zhao F, Miao M. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. MICROBIOME 2024; 12:96. [PMID: 38790063 PMCID: PMC11127453 DOI: 10.1186/s40168-024-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND The eukaryotic-bacterial symbiotic system plays an important role in various physiological, developmental, and evolutionary processes. However, our current understanding is largely limited to multicellular eukaryotes without adequate consideration of diverse unicellular protists, including ciliates. RESULTS To investigate the bacterial profiles associated with unicellular organisms, we collected 246 ciliate samples spanning the entire Ciliophora phylum and conducted single-cell based metagenome sequencing. This effort has yielded the most extensive collection of bacteria linked to unicellular protists to date. From this dataset, we identified 883 bacterial species capable of cohabiting with ciliates, unveiling the genomes of 116 novel bacterial cohabitants along with 7 novel archaeal cohabitants. Highlighting the intimate relationship between ciliates and their cohabitants, our study unveiled that over 90% of ciliates coexist with bacteria, with individual hosts fostering symbiotic relationships with multiple bacteria concurrently, resulting in the observation of seven distinct symbiotic patterns among bacteria. Our exploration of symbiotic mechanisms revealed the impact of host digestion on the intracellular diversity of cohabitants. Additionally, we identified the presence of eukaryotic-like proteins in bacteria as a potential contributing factor to their resistance against host digestion, thereby expanding their potential host range. CONCLUSIONS As the first large-scale analysis of prokaryotic associations with ciliate protists, this study provides a valuable resource for future research on eukaryotic-bacterial symbioses. Video Abstract.
Collapse
Affiliation(s)
- Bing Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Liwen Xiao
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liping Lyu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Xu S, Shao S, Feng X, Li S, Zhang L, Wu W, Liu M, Tracy ME, Zhong C, Guo Z, Wu CI, Shi S, He Z. Adaptation in Unstable Environments and Global Gene Losses: Small but Stable Gene Networks by the May-Wigner Theory. Mol Biol Evol 2024; 41:msae059. [PMID: 38507653 PMCID: PMC10991078 DOI: 10.1093/molbev/msae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/07/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024] Open
Abstract
Although gene loss is common in evolution, it remains unclear whether it is an adaptive process. In a survey of seven major mangrove clades that are woody plants in the intertidal zones of daily environmental perturbations, we noticed that they generally evolved reduced gene numbers. We then focused on the largest clade of Rhizophoreae and observed the continual gene set reduction in each of the eight species. A great majority of gene losses are concentrated on environmental interaction processes, presumably to cope with the constant fluctuations in the tidal environments. Genes of the general processes for woody plants are largely retained. In particular, fewer gene losses are found in physiological traits such as viviparous seeds, high salinity, and high tannin content. Given the broad and continual genome reductions, we propose the May-Wigner theory (MWT) of system stability as a possible mechanism. In MWT, the most effective solution for buffering continual perturbations is to reduce the size of the system (or to weaken the total genic interactions). Mangroves are unique as immovable inhabitants of the compound environments in the land-sea interface, where environmental gradients (such as salinity) fluctuate constantly, often drastically. Extending MWT to gene regulatory network (GRN), computer simulations and transcriptome analyses support the stabilizing effects of smaller gene sets in mangroves vis-à-vis inland plants. In summary, we show the adaptive significance of gene losses in mangrove plants, including the specific role of promoting phenotype innovation and a general role in stabilizing GRN in unstable environments as predicted by MWT.
Collapse
Affiliation(s)
- Shaohua Xu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
- School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Shao Shao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Xiao Feng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Sen Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Lingjie Zhang
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Weihong Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Min Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Miles E Tracy
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Cairong Zhong
- Institute of Wetland Research, Hainan Academy of Forestry (Hainan Academy of Mangrove), Haikou, China
| | - Zixiao Guo
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Chung-I Wu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ziwen He
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Tekle YI, Tefera H. A Small Genome amidst the Giants: Evidence of Genome Reduction in a Small Tubulinid Free-Living Amoeba. Genome Biol Evol 2024; 16:evae058. [PMID: 38504610 PMCID: PMC10980511 DOI: 10.1093/gbe/evae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/22/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024] Open
Abstract
This study investigates the genomic characteristics of Echinamoeba silvestris, a small-sized amoeba within the Tubulinea clade of the Amoebozoa supergroup. Despite Tubulinea's significance in various fields, genomic data for this clade have been scarce. E. silvestris presents the smallest free-living amoeba genome within Tubulinea and Amoebozoa to date. Comparative analysis reveals intriguing parallels with parasitic lineages in terms of genome size and predicted gene numbers, emphasizing the need to understand the consequences of reduced genomes in free-living amoebae. Functional categorization of predicted genes in E. silvestris shows similar percentages of ortholog groups to other amoebae in various categories, but a distinctive feature is the extensive gene contraction in orphan (ORFan) genes and those involved in biological processes. Notably, among the few genes that underwent expansion, none are related to cellular components, suggesting adaptive processes that streamline biological processes and cellular components for efficiency and energy conservation. Additionally, our investigation into noncoding and repetitive elements sheds light on the evolution of genome size in amoebae, with E. silvestris distinguished by low percentage of repetitive elements. Furthermore, the analysis reveals that E. silvestris has the lowest mean number of introns per gene among the species studied, providing further support for its observed compact genome. Overall, this research underscores the diversity within Tubulinea, highlights knowledge gaps in Amoebozoa genomics, and positions E. silvestris as a valuable addition to genomic data sets, prompting further exploration of complexities in Amoebozoa diversity and genome evolution.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| | - Hanna Tefera
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
5
|
Pan J, Wang Y, Li C, Zhang S, Ye Z, Ni J, Li H, Li Y, Yue H, Ruan C, Zhao D, Jiang Y, Wu X, Shen X, Zufall RA, Zhang Y, Li W, Lynch M, Long H. Molecular basis of phenotypic plasticity in a marine ciliate. THE ISME JOURNAL 2024; 18:wrae136. [PMID: 39018220 PMCID: PMC11308186 DOI: 10.1093/ismejo/wrae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
Phenotypic plasticity, which involves phenotypic transformation in the absence of genetic change, may serve as a strategy for organisms to survive in complex and highly fluctuating environments. However, its reaction norm, molecular basis, and evolution remain unclear in most organisms, especially microbial eukaryotes. In this study, we explored these questions by investigating the reaction norm, regulation, and evolution of phenotypic plasticity in the cosmopolitan marine free-living ciliates Glauconema spp., which undergo significant phenotypic changes in response to food shortages. This study led to the de novo assembly of macronuclear genomes using long-read sequencing, identified hundreds of differentially expressed genes associated with phenotypic plasticity in different life stages, validated the function of two of these genes, and revealed that the reaction norm of body shape in response to food density follows a power-law distribution. Purifying selection may be the dominant evolutionary force acting on the genes associated with phenotypic plasticity, and the overall data support the hypothesis that phenotypic plasticity is a trait maintained by natural selection. This study provides novel insight into the developmental genetics of phenotypic plasticity in non-model unicellular eukaryotes and sheds light on the complexity and long evolutionary history of this important survival strategy.
Collapse
Affiliation(s)
- Jiao Pan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Yaohai Wang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Simo Zhang
- Department of Biology, Indiana University, Bloomington, IN 47405, United States
| | - Zhiqiang Ye
- School of Life Sciences, Central China Normal University, Wuhan, Hubei 430079, China
| | - Jiahao Ni
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Haichao Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yichen Li
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hongwei Yue
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Chenchen Ruan
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Dange Zhao
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yujian Jiang
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaolin Wu
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
| | - Xiaopeng Shen
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, United States
| | - Yu Zhang
- School of Mathematics Science, Ocean University of China, Qingdao, Shandong Province 266000, China
| | - Weiyi Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, United States
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287, United States
| | - Hongan Long
- Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, Shandong 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
6
|
Tekle YI, Tefera H. A Small Genome Amidst the Giants: Evidence of Genome Reduction in a Small Tubulinid Free-Living Amoeba. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570689. [PMID: 38106205 PMCID: PMC10723436 DOI: 10.1101/2023.12.07.570689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
This study investigates the genomic characteristics of Echinamoeba silvestris , a small-sized amoeba within the Tubulinea clade of the Amoebozoa supergroup. Despite Tubulinea's significance in various fields, genomic data for this clade have been scarce . E. silvestris presents the smallest free-living amoeba genome within Tubulinea and Amoebozoa to date. Comparative analysis reveals intriguing parallels with parasitic lineages in terms of genome size and predicted gene numbers, emphasizing the need to understand the consequences of reduced genomes in free-living amoebae. Functional categorization of predicted genes in E. silvestris shows similar percentages of ortholog groups to other amoebae in various categories, but a distinctive feature is the extensive gene contraction in orphan (ORFan) genes and those involved in biological processes. Notably, among the few genes that underwent expansion, none are related to cellular components, suggesting adaptive processes that streamline biological processes and cellular components for efficiency and energy conservation. The investigation delves into genomic structural evidence, including gene content and repetitive elements, illuminating the distinctive genomic traits of E. silvestris and providing reinforcement for its compact genome size. Overall, this research underscores the diversity within Tubulinea, highlights knowledge gaps in Amoebozoa genomics, and positions E. silvestris as a valuable addition to genomic datasets, prompting further exploration of complexities in Amoebozoa diversity and genome evolution.
Collapse
|
7
|
Chen W, Geng Y, Zhang B, Yan Y, Zhao F, Miao M. Stop or Not: Genome-Wide Profiling of Reassigned Stop Codons in Ciliates. Mol Biol Evol 2023; 40:msad064. [PMID: 36952281 PMCID: PMC10089648 DOI: 10.1093/molbev/msad064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Bifunctional stop codons that have both translation and termination functions in the same species are important for understanding the evolution and function of genetic codes in living organisms. Considering the high frequency of bifunctional codons but limited number of available genomes in ciliates, we de novo sequenced seven representative ciliate genomes to explore the evolutionary history of stop codons. We further propose a stop codon reassignment quantification method (stopCR) that can identify bifunctional codons and measure their frequencies in various eukaryotic organisms. Using our newly developed method, we found two previously undescribed genetic codes, illustrating the prevalence of bifunctional stop codons in ciliates. Overall, evolutionary genomic analyses suggest that gain or loss of reassigned stop codons in ciliates is shaped by their living environment, the eukaryotic release factor 1, and suppressor tRNAs. This study provides novel clues about the functional diversity and evolutionary history of stop codons in eukaryotic organisms.
Collapse
Affiliation(s)
- Wenbing Chen
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yupeng Geng
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Bing Zhang
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Ying Yan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fangqing Zhao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, School of Ecology and Environmental Sciences, Yunnan University, Kunming, China
| | - Miao Miao
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Jiang C, Wang G, Zhang J, Gu S, Wang X, Qin W, Chen K, Yuan D, Chai X, Yang M, Zhou F, Xiong J, Miao W. iGDP: An integrated genome decontamination pipeline for wild ciliated microeukaryotes. Mol Ecol Resour 2023. [PMID: 36912756 DOI: 10.1111/1755-0998.13782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/25/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Ciliates are a large group of ubiquitous and highly diverse single-celled eukaryotes that play an essential role in the functioning of microbial food webs. However, their genomic diversity is far from clear due to the need to develop cultivation methods for most species, so most research is based on wild organisms that almost invariably contain contaminants. Here we establish an integrated Genome Decontamination Pipeline (iGDP) that combines homology search, telomere reads-assisted and clustering approaches to filter contaminated ciliate genome assemblies from wild specimens. We benchmarked the performance of iGDP using genomic data from a contaminated ciliate culture and the results showed that iGDP could recall 91.9% of the target sequences with 96.9% precision. We also used a synthetic dataset to offer guidelines for the application of iGDP in the removal of various groups of contaminants. Compared with several popular metagenome binning tools, iGDP could show better performance. To further validate the effectiveness of iGDP on real-world data, we applied it to decontaminate genome assemblies of three wild ciliate specimens and obtained their genomes with high quality comparable to that of previously well-studied model ciliate genomes. It is anticipated that the newly generated genomes and the established iGDP method will be valuable community resources for detailed studies on ciliate biodiversity, phylogeny, ecology and evolution. The pipeline (https://github.com/GWang2022/iGDP) can be implemented automatically to reduce manual filtering and classification and may be further developed to apply to other microeukaryotes.
Collapse
Affiliation(s)
- Chuanqi Jiang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Guangying Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jing Zhang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Siyu Gu
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueyan Wang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Qin
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kai Chen
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dongxia Yuan
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiaocui Chai
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Mingkun Yang
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Fang Zhou
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Xiong
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Wei Miao
- Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, China
- CAS Center for Excellence in Animal Evolution and Genetics, Kunming, China
| |
Collapse
|