1
|
Chouvenc T. Invasive termites and their growing global impact as major urban pests. CURRENT OPINION IN INSECT SCIENCE 2025; 69:101368. [PMID: 40122515 DOI: 10.1016/j.cois.2025.101368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
While termites play important ecological roles, a fraction of species have strong invasive capabilities and represent urban pests of economic importance worldwide. Their invasive potential is exacerbated by human activities such as maritime transport, with privately owned boats serving as key vectors for local and global termite dispersal, particularly for Cryptotermes and Coptotermes pest species. Land establishment by invasive termites can remain undetected for decades, often making eradication attempts too late to succeed. Ultimately, invasive termite species will likely continue to spread at the global scale, and recent new invasive records point toward an underestimation of their actual current invasive status.
Collapse
Affiliation(s)
- Thomas Chouvenc
- Entomology and Nematology Department, Ft. Lauderdale Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, 3205 College Ave., Ft. Lauderdale, FL 33314, USA.
| |
Collapse
|
2
|
Chesters D, Bossert S, Orr MC. [genus]_[species]; Presenting phylogenies to facilitate synthesis. Cladistics 2025; 41:177-192. [PMID: 39673226 DOI: 10.1111/cla.12601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
Each published phylogeny is a potential contribution to the synthesis of the Tree of Life and countless downstream projects. Steps are needed for fully synthesizable science, but only a minority of studies achieve these. We here review the range of phylogenetic presentation and note aspects that hinder further analysis. We provide simple suggestions on publication that would greatly enhance utilizability, and propose a formal grammar for phylogeny terminal format. We suggest that each published phylogeny should be accompanied by at minimum the single preferred result in machine readable tree (e.g. Newick) form in the supplement, a simple task fulfilled by fewer than half of studies. Further, the tree should be clear from the file name and extension; the orientation (rooted or unrooted) should match the figures; terminals labels should include genus and species IDs; underscores should separate strings within-field (instead of white spaces); and if other informational fields are added these should be separated by a unique delimiting character (we suggest multiple underscores or the vertical pipe character, |) and ordered consistently. These requirements are largely independent of phylogenetic study aims, while we note other requirements for synthesis (e.g. removal of species repeats and uninformative terminals) that are not necessarily the responsibility of authors. Machine readable trees show greater variation in terminal formatting than typical phylogeny images (owing presumably to greater scrutiny of the latter), and thus are complex and laborious to parse. Since the majority of existing studies have provided only images, we additionally review typical variation in plotting style, information that will be necessary for developing the automated phylogeny transcription tools needed for their eventual inclusion in the Tree of Life.
Collapse
Affiliation(s)
- Douglas Chesters
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- International College, University of Chinese Academy of Sciences, Shijingshan District, Beijing, 100049, China
| | - Silas Bossert
- Department of Entomology, Washington State University, 1945 Ferdinand's Ln, Pullman, WA, 99163, USA
| | - Michael C Orr
- Entomologie, Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, Stuttgart, 70191, Germany
| |
Collapse
|
3
|
Huang YH, Wang M, Chang XP, Ke YL, Li ZQ. Comparison Between Worker and Soldier Transcriptomes of Termite Neotermes binovatus Reveals Caste Specialization of Host-Flagellate Symbiotic System. INSECTS 2025; 16:325. [PMID: 40266833 PMCID: PMC11942850 DOI: 10.3390/insects16030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025]
Abstract
Termites are eusocial insects with functionally specialized workers and soldiers, both sharing the same genotype. Additionally, lower termites host flagellates in their hindguts that assist in wood digestion. However, worker-biased and soldier-biased gene expression patterns of the host-flagellate symbiotic system remain underexplored in most taxonomic groups. In this study, we sequenced high-depth transcriptomes from the workers and soldiers of a lower termite, Neotermes binovatus (Kalotermitidae), to investigate the differentially expressed termite transcripts, flagellate transcript abundance, and co-expression patterns of the host-flagellate transcript pairs in both castes. The worker-biased transcripts were enriched in functions related to cuticle development, nervous system regulation, pheromone biosynthesis, and metabolism, whereas the soldier-biased transcripts were predominantly involved in muscle development and kinesis, body morphogenesis, protein modification, and aggression. Flagellate transcripts from the orders Cristamonadida, Trichomonadida, Tritrichomonadida, and Oxymonadida were identified in both workers and soldiers, with the abundance of most flagellate transcripts tending to be higher in workers than in soldiers. Furthermore, we observed a much larger number of strong co-expression correlations between the termite and flagellate transcripts in workers than in soldiers, suggesting the possibility that soldiers depend more on food processed by worker holobionts than on their own symbiotic system. This research provides insights into the functional specialization of the host-flagellate symbiotic system in the worker and soldier castes of termites, supporting the workers' roles in nest maintenance, preliminary food processing, and communication, while emphasizing the defensive role of soldiers. Additionally, it offers new perspectives on the potential termite-flagellate interactions and underscores the need for whole-genome data of termite flagellates in further studies.
Collapse
Affiliation(s)
- Yu-Hao Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.-H.H.); (Y.-L.K.)
| | - Miao Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.-H.H.); (Y.-L.K.)
- College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| | - Xiu-Ping Chang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.-H.H.); (Y.-L.K.)
- Shaanxi Key Laboratory for Animal Conservation, Northwest University, Xi’an 710069, China
| | - Yun-Ling Ke
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.-H.H.); (Y.-L.K.)
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China; (Y.-H.H.); (Y.-L.K.)
| |
Collapse
|
4
|
Hernández-Teixidor D, Cussigh A, Suárez D, García J, Scheffrahn RH, Luchetti A. Molecular analyses of the Kalotermes dispar-complex (Blattodea: Kalotermitidae) from the Canary Islands reveal cryptic intraspecific divergence and a connection to a lone Nearctic congener. JOURNAL OF INSECT SCIENCE (ONLINE) 2024; 24:6. [PMID: 38989844 PMCID: PMC11237993 DOI: 10.1093/jisesa/ieae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024]
Abstract
The Canary Islands is a Macaronesian volcanic archipelago with a depauperate community of three species of Kalotermitidae, including Kalotermes dispar. A total of 54 Kalotermes colonies were collected from Gran Canaria, Tenerife, La Gomera, La Palma, and El Hierro islands. Soldiers and imagos were morphologically examined and sequenced for four mitochondrial markers. Although morphological differences could not be detected, phylogenetic analysis of both cox1/tRNA/cox2 and rrnL markers revealed two distinct clades of K. dispar, suggesting cryptic diversity. The diversification within the Canary Kalotermes lineage most likely occurred around 7.5 Mya, while the divergence within the two clades was reconstructed at about 3.6 Mya and 1.9 Mya. Kalotermes approximatus from the southeastern Nearctic constitutes a sister to the Canary Kalotermes, while the Palearctic K. flavicollis, K. italicus, and K. phoenicae form a separate clade. It is hypothesized that a faunal exchange of Kalotermes from the Nearctic to the Canary Islands occurred via transoceanic rafting during the mid-Miocene.
Collapse
Affiliation(s)
- David Hernández-Teixidor
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Spain
- Grupo de Investigaciones Entomológicas de Tenerife (GIET), 38108 La Laguna, Spain
| | - Alex Cussigh
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Daniel Suárez
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Spain
- Grupo de Investigaciones Entomológicas de Tenerife (GIET), 38108 La Laguna, Spain
| | - Javier García
- Grupo de Investigaciones Entomológicas de Tenerife (GIET), 38108 La Laguna, Spain
| | - Rudolf H Scheffrahn
- Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, 3205 College Avenue, Davie, FL 33314, USA
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
5
|
Revely L, Eggleton P, Clement R, Zhou C, Bishop TR. The diversity of social complexity in termites. Proc Biol Sci 2024; 291:20232791. [PMID: 38835273 DOI: 10.1098/rspb.2023.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
Sociality underpins major evolutionary transitions and significantly influences the structure and function of complex ecosystems. Social insects, seen as the pinnacle of sociality, have traits like obligate sterility that are considered 'master traits', used as single phenotypic measures of this complexity. However, evidence is mounting that completely aligning both phenotypic and evolutionary social complexity, and having obligate sterility central to both, is erroneous. We hypothesize that obligate and functional sterility are insufficient in explaining the diversity of phenotypic social complexity in social insects. To test this, we explore the relative importance of these sterility traits in an understudied but diverse taxon: the termites. We compile the largest termite social complexity dataset to date, using specimen and literature data. We find that although functional and obligate sterility explain a significant proportion of variance, neither trait is an adequate singular proxy for the phenotypic social complexity of termites. Further, we show both traits have only a weak association with the other social complexity traits within termites. These findings have ramifications for our general comprehension of the frameworks of phenotypic and evolutionary social complexity, and their relationship with sterility.
Collapse
Affiliation(s)
- Lewis Revely
- Soil Biodiversity Group, Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- Centre for Biodiversity and Environmental Research, Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Paul Eggleton
- Soil Biodiversity Group, Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Rebecca Clement
- Computational Biology Institute, George Washington University, Washington, DC 20052, USA
| | - Chuanyu Zhou
- Soil Biodiversity Group, Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Tom R Bishop
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
6
|
Gile GH. Protist symbionts of termites: diversity, distribution, and coevolution. Biol Rev Camb Philos Soc 2024; 99:622-652. [PMID: 38105542 DOI: 10.1111/brv.13038] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non-termite-associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep-branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep-branching termites tend to harbour deep-branching protists, reflecting their broad-scale co-diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co-diversification in this symbiosis has been complicated by lineage-specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite-protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.
Collapse
Affiliation(s)
- Gillian H Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
| |
Collapse
|
7
|
Pequeno PACL. Resource adaptation drives the size-complexity rule in termites. Proc Biol Sci 2024; 291:20232363. [PMID: 38196360 PMCID: PMC10777143 DOI: 10.1098/rspb.2023.2363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2024] Open
Abstract
The size-complexity rule posits that the evolution of larger cooperative groups should favour more division of labour. Examples include more cell types in larger multicellular organisms, and more polymorphic castes in larger eusocial colonies. However, a correlation between division of labour and group size may reflect a shared response of both traits to resource availability and/or profitability. Here, this possibility was addressed by investigating the evolution of sterile caste number (worker and soldier morphotypes) in termites, a major clade of eusocial insects in which the drivers of caste polymorphism are poorly understood. A novel dataset on 90 termite species was compiled from the published literature. The analysis showed that sterile caste number did increase markedly with colony size. However, after controlling for resource adaptations and phylogeny, there was no evidence for this relationship. Rather, sterile caste number increased with increasing nest-food separation and decreased with soil-feeding, through changes in worker (but not soldier) morphotype number. Further, colony size increased with nest-food separation, thus driving the false correlation between sterile caste number and colony size. These findings support adaptation to higher energy acquisition as key to the rise of complex insect societies, with larger size being a by-product.
Collapse
Affiliation(s)
- Pedro A. C. L. Pequeno
- Natural Resources Program, Federal University of Roraima, Av. Nova Iorque, Aeroporto, Boa Vista – RR, CEP: 69.304-000, Brazil
| |
Collapse
|
8
|
Thakur H, Agarwal S, Hradecký J, Sharma G, Li HF, Yang SE, Sehadová H, Chandel RS, Hyliš M, Mathur V, Šobotník J, Sillam-Dussès D. The Trail-Following Communication in Stylotermes faveolus and S. halumicus (Blattodea, Isoptera, Stylotermitidae). J Chem Ecol 2023; 49:642-651. [PMID: 37566284 DOI: 10.1007/s10886-023-01447-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Stylotermitidae appear peculiar among all termites, feeding in trunks of living trees in South Asia only. The difficulty to collect them limits the ability to study them, and they thus still belong to critically unknown groups in respect to their biology. We used a combination of microscopic observations, chemical analysis and behavioural tests, to determine the source and chemical nature of the trail-following pheromone of Stylotermes faveolus from India and S. halumicus from Taiwan. The sternal gland located at the 5th abdominal segment was the exclusive source of the trail-following pheromone in both S. faveolus and S. halumicus, and it is made up of class I, II and III secretory cells. Using gas chromatography coupled mass spectrometry, (3Z)-dodec-3-en-1-ol (DOE) was identified as the trail-following pheromone which elicits strong behavioural responses in workers at a threshold around 10- 4 ng/cm and 0.1 ng/gland. Our results confirm the switch from complex aldehyde trail-following pheromones occurring in the basal groups to simpler linear alcohols in the ancestor of Kalotermitidae and Neoisoptera.
Collapse
Affiliation(s)
- Himanshu Thakur
- Department of Entomology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Surbhi Agarwal
- Animal-Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, 110021, New Delhi, India
| | - Jaromír Hradecký
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Garima Sharma
- Animal-Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, 110021, New Delhi, India
| | - Hou-Feng Li
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd, 402202, Taichung, Taiwan
| | - Shang-En Yang
- Department of Entomology, National Chung Hsing University, 145 Xingda Rd, 402202, Taichung, Taiwan
| | - Hana Sehadová
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic
| | - Ravinder S Chandel
- Department of Entomology, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, Himachal Pradesh, India
| | - Mirek Hyliš
- Faculty of Sciences, Charles University, Prague, Czech Republic
| | - Vartika Mathur
- Animal-Plant Interactions Lab, Department of Zoology, Sri Venkateswara College, Benito Juarez Marg, Dhaula Kuan, 110021, New Delhi, India
| | - Jan Šobotník
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, České Budějovice, Czech Republic.
- Faculty of Tropical AgriSciences, Czech University of Life Sciences, Prague, Czech Republic.
| | - David Sillam-Dussès
- Laboratory of Experimental and Comparative Ethology, LEEC, UR 4443, University Sorbonne Paris Nord, Villetaneuse, France
| |
Collapse
|
9
|
Arora J, Buček A, Hellemans S, Beránková T, Arias JR, Fisher BL, Clitheroe C, Brune A, Kinjo Y, Šobotník J, Bourguignon T. Evidence of cospeciation between termites and their gut bacteria on a geological time scale. Proc Biol Sci 2023; 290:20230619. [PMID: 37339742 DOI: 10.1098/rspb.2023.0619] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Termites host diverse communities of gut microbes, including many bacterial lineages only found in this habitat. The bacteria endemic to termite guts are transmitted via two routes: a vertical route from parent colonies to daughter colonies and a horizontal route between colonies sometimes belonging to different termite species. The relative importance of both transmission routes in shaping the gut microbiota of termites remains unknown. Using bacterial marker genes derived from the gut metagenomes of 197 termites and one Cryptocercus cockroach, we show that bacteria endemic to termite guts are mostly transferred vertically. We identified 18 lineages of gut bacteria showing cophylogenetic patterns with termites over tens of millions of years. Horizontal transfer rates estimated for 16 bacterial lineages were within the range of those estimated for 15 mitochondrial genes, suggesting that horizontal transfers are uncommon and vertical transfers are the dominant transmission route in these lineages. Some of these associations probably date back more than 150 million years and are an order of magnitude older than the cophylogenetic patterns between mammalian hosts and their gut bacteria. Our results suggest that termites have cospeciated with their gut bacteria since first appearing in the geological record.
Collapse
Affiliation(s)
- Jigyasa Arora
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Aleš Buček
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Tereza Beránková
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Johanna Romero Arias
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| | - Brian L Fisher
- Madagascar Biodiversity Center, Parc Botanique et Zoologique de Tsimbazaza, Antananarivo 101, Madagascar
- California Academy of Sciences, San Francisco, CA, USA
| | - Crystal Clitheroe
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Andreas Brune
- Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, 35043, Germany
| | - Yukihiro Kinjo
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- College of Economics and Environmental Policy, Okinawa International University, 2-6-1 Ginowan, Ginowan, 901-2701, Okinawa, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
- College of Economics and Environmental Policy, Okinawa International University, 2-6-1 Ginowan, Ginowan, 901-2701, Okinawa, Japan
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, Suchdol, 165 00, Prague 6, Czech Republic
| |
Collapse
|
10
|
Mizumoto N, Bourguignon T, Bailey NW. Ancestral sex-role plasticity facilitates the evolution of same-sex sexual behavior. Proc Natl Acad Sci U S A 2022; 119:e2212401119. [PMID: 36346843 PMCID: PMC9674213 DOI: 10.1073/pnas.2212401119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/29/2022] [Indexed: 02/24/2024] Open
Abstract
Recent attempts to explain the evolutionary prevalence of same-sex sexual behavior (SSB) have focused on the role of indiscriminate mating. However, in many cases, SSB may be more complex than simple mistaken identity, instead involving mutual interactions and successful pairing between partners who can detect each other's sex. Behavioral plasticity is essential for the expression of SSB in such circumstances. To test behavioral plasticity's role in the evolution of SSB, we used termites to study how females and males modify their behavior in same-sex versus heterosexual pairs. Male termites follow females in paired "tandems" before mating, and movement patterns are sexually dimorphic. Previous studies observed that adaptive same-sex tandems also occur in both sexes. Here we found that stable same-sex tandems are achieved by behavioral plasticity when one partner adopts the other sex's movements, resulting in behavioral dimorphism. Simulations based on empirically obtained parameters indicated that this socially cued plasticity contributes to pair maintenance, because dimorphic movements improve reunion success upon accidental separation. A systematic literature survey and phylogenetic comparative analysis suggest that the ancestors of modern termites lack consistent sex roles during pairing, indicating that plasticity is inherited from the ancestor. Socioenvironmental induction of ancestral behavioral potential may be of widespread importance to the expression of SSB. Our findings challenge recent arguments for a prominent role of indiscriminate mating behavior in the evolutionary origin and maintenance of SSB across diverse taxa.
Collapse
Affiliation(s)
- Nobuaki Mizumoto
- Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495 Japan
| | - Thomas Bourguignon
- Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495 Japan
| | - Nathan W. Bailey
- School of Biology, University of St. Andrews, St. Andrews, Fife, KY16 9TH, United Kingdom
| |
Collapse
|
11
|
Gunter F, Oldeland J, Picker MD, Henschel JR, Jürgens N. Cryptic subterranean diversity: regional phylogeography of the sand termite Psammotermes allocerus Silvestri, 1908 in the wider Namib region. ORG DIVERS EVOL 2022. [DOI: 10.1007/s13127-022-00580-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractPsammotermes allocerus Silvestri, 1908 is the only described species representing the genus Psammotermes Desneux, 1902 in Southern Africa. The large geographical range of this subterranean termite covers both summer and winter rainfall regimes. Deadwood is the preferred food when available, but in more arid habitats, both live and dead grasses form the major dietary component. Along the Namib Desert margins, the species’ localised herbivory creates circular bare patches known as fairy circles. For a regional phylogeographic study of this species, we sampled 65 sand termite populations within drier parts of Namibia, South Africa, and Angola. Based on combined molecular and ecological data, we found considerable genetic diversification within P. allocerus. Analyses of two mitochondrial markers (COI, COII), including a Bayesian inference tree, haplotype analysis and genetic distances suggest a delineation into seven highly differentiated genetic groups. The ‘Succulent Karoo’ group is additionally characterised by unique features of the royal chamber, nest and tunnel system. In conclusion, our data suggest that P. allocerus should be not regarded as one species but as a species complex. Termites of each analysed group ‘Northern Namib’, ‘Western Kalahari Basin’, ‘Nama’, ‘Southwestern Kalahari’, ‘East Gariep’, ‘Southern Namib’ and ‘Succulent Karoo’ should be considered as distinct species. The species name P. allocerus should be used for termites of the ‘Succulent Karoo’.
Collapse
|
12
|
Hellemans S, Šobotník J, Lepoint G, Mihaljevič M, Roisin Y, Bourguignon T. Termite dispersal is influenced by their diet. Proc Biol Sci 2022; 289:20220246. [PMID: 35611530 PMCID: PMC9132130 DOI: 10.1098/rspb.2022.0246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Termites feed on vegetal matter at various stages of decomposition. Lineages of wood- and soil-feeding termites are distributed across terrestrial ecosystems located between 45°N and 45°S of latitude, a distribution they acquired through many transoceanic dispersal events. While wood-feeding termites often live in the wood on which they feed and are efficient at dispersing across oceans by rafting, soil-feeders are believed to be poor dispersers. Therefore, their distribution across multiple continents requires an explanation. Here, we reconstructed the historical biogeography and the ancestral diet of termites using mitochondrial genomes and δ13C and δ15N stable isotope measurements obtained from 324 termite samples collected in five biogeographic realms. Our biogeographic models showed that wood-feeders are better at dispersing across oceans than soil-feeders, further corroborated by the presence of wood-feeders on remote islands devoid of soil-feeders. However, our ancestral range reconstructions identified 33 dispersal events among biogeographic realms, 18 of which were performed by soil-feeders. Therefore, despite their lower dispersal ability, soil-feeders performed several transoceanic dispersals that shaped the distribution of modern termites.
Collapse
Affiliation(s)
- Simon Hellemans
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan
| | - Jan Šobotník
- Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 Suchdol, Czech Republic
| | - Gilles Lepoint
- Laboratory of Trophic and Isotopes Ecology (LETIS), UR FOCUS, 13 allee du six aout, University of Liège, 4000 Liege, Belgium
| | - Martin Mihaljevič
- Institute of Geochemistry, Mineralogy and Mineral Resources, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Yves Roisin
- Evolutionary Biology and Ecology, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, CP 160/12, B-1050 Brussels, Belgium
| | - Thomas Bourguignon
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan,Faculty of Tropical AgriScience, Czech University of Life Sciences, Kamýcká 129, 165 00 Prague 6 Suchdol, Czech Republic
| |
Collapse
|