1
|
He H, Leng Y, Cao X, Zhu Y, Li X, Yuan Q, Zhang B, He W, Wei H, Liu X, Xu Q, Guo M, Zhang H, Yang L, Lv Y, Wang X, Shi C, Zhang Z, Chen W, Zhang B, Wang T, Yu X, Qian H, Zhang Q, Dai X, Liu C, Cui Y, Wang Y, Zheng X, Xiong G, Zhou Y, Qian Q, Shang L. The pan-tandem repeat map highlights multiallelic variants underlying gene expression and agronomic traits in rice. Nat Commun 2024; 15:7291. [PMID: 39181885 PMCID: PMC11344853 DOI: 10.1038/s41467-024-51854-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
Tandem repeats (TRs) are genomic regions that tandemly change in repeat number, which are often multiallelic. Their characteristics and contributions to gene expression and quantitative traits in rice are largely unknown. Here, we survey rice TR variations based on 231 genome assemblies and the rice pan-genome graph. We identify 227,391 multiallelic TR loci, including 54,416 TR variations that are absent from the Nipponbare reference genome. Only 1/3 TR variations show strong linkage with nearby bi-allelic variants (SNPs, Indels and PAVs). Using 193 panicle and 202 leaf transcriptomic data, we reveal 485 and 511 TRs act as QTLs independently of other bi-allelic variations to nearby gene expression, respectively. Using plant height and grain width as examples, we identify and validate TRs contributions to rice agronomic trait variations. These findings would enhance our understanding of the functions of multiallelic variants and facilitate rice molecular breeding.
Collapse
Affiliation(s)
- Huiying He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yue Leng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xinglan Cao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Yiwang Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Institute of Biotechnology, Fujian Academy of Agricultural Sciences/Fujian Provincial Key Laboratory of Genetic Engineering for Agriculture, Fuzhou, 350003, China
| | - Xiaoxia Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qiaoling Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bin Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Wenchuang He
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hua Wei
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiangpei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qiang Xu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Mingliang Guo
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Longbo Yang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yang Lv
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xianmeng Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Chuanlin Shi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zhipeng Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wu Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Bintao Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Tianyi Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiaoman Yu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hongge Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qianqian Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Xiaofan Dai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Congcong Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yan Cui
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yuexing Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Guosheng Xiong
- Academy for Advanced Interdisciplinary Studies, Plant Phenomics Research Center, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongfeng Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Qian Qian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- Yazhouwan National Laboratory, Sanya, 572024, China.
| |
Collapse
|
3
|
Bayat H, Mirahmadi M, Azarshin Z, Ohadi H, Delbari A, Ohadi M. CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B leads to disruption of neural cell differentiation from NT2 cells. Sci Rep 2024; 14:2136. [PMID: 38273037 PMCID: PMC10810867 DOI: 10.1038/s41598-024-52675-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
The human neuron-specific gene, GPM6B (Glycoprotein membrane 6B), is considered a key gene in neural cell functionality. This gene contains an exceptionally long and strictly monomorphic short tandem repeat (STR) of 9-repeats, (GA)9. STRs in regulatory regions, may impact on the expression of nearby genes. We used CRISPR-based tool to delete this GA-repeat in NT2 cells, and analyzed the consequence of this deletion on GPM6B expression. Subsequently, the edited cells were induced to differentiate into neural cells, using retinoic acid (RA) treatment. Deletion of the GA-repeat significantly decreased the expression of GPM6B at the RNA (p < 0.05) and protein (40%) levels. Compared to the control cells, the edited cells showed dramatic decrease of the astrocyte and neural cell markers, including GFAP (0.77-fold), TUBB3 (0.57-fold), and MAP2 (0.2-fold). Subsequent sorting of the edited cells showed an increased number of NES (p < 0.01), but a decreased number of GFAP (p < 0.001), TUBB3 (p < 0.05), and MAP2 (p < 0.01), compared to the control cells. In conclusion, CRISPR/Cas9-mediated deletion of a GA-repeat in human GPM6B, led to decreased expression of this gene, which in turn, disrupted differentiation of NT2 cells into neural cells.
Collapse
Affiliation(s)
- Hadi Bayat
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Postal Code: 1985713834, Iran
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Postal Box: 331-14115, Tehran, Iran
| | - Maryam Mirahmadi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Postal Box: 331-14115, Tehran, Iran
- Department of Exomine, PardisGene Company, Tehran, Postal Code: 1917635816, Iran
| | - Zohreh Azarshin
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Postal Box: 331-14115, Tehran, Iran
| | - Hamid Ohadi
- School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
| | - Ahmad Delbari
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Postal Code: 1985713834, Iran
| | - Mina Ohadi
- Iranian Research Center on Aging, University of Social Welfare and Rehabilitation Sciences, Tehran, Postal Code: 1985713834, Iran.
| |
Collapse
|
4
|
Yang Y, Zeng L, Wang T, Wu L, Wu X, Xia J, Meng Z, Liu X. Assembly of Genome and Resequencing Provide Insights into Genetic Differentiation between Parents of Hulong Hybrid Grouper ( Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Int J Mol Sci 2023; 24:12007. [PMID: 37569383 PMCID: PMC10418399 DOI: 10.3390/ijms241512007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
The Hulong hybrid grouper was bred from the brown-marbled grouper (Epinephelus fuscoguttatus) ♀ and the giant grouper (E. lanceolatus) ♂, combining the advantageous traits of both parents. Possessing an excellent performance, this hybrid's cultivation promotes the development of the grouper industry. Its male parent, the giant grouper, possesses the fastest growth and the largest body size among all coral-reef-dwelling fish. This species is not only an economically important species in marine aquaculture, but it is also an ideal male parent in the interspecific crossing of grouper species. In the present study, a high-quality chromosome-level genome of the giant grouper was constructed with a total length of 1.06 Gb, consisting of 24 chromosomes and 69 scaffolds. To analyze the genetic differences between the parents of the Hulong hybrid grouper, the structural variations (SVs) between both parental genomes were detected, and a total of 46,643 SVs were obtained. High-quality SNPs were identified from resequencing data. There were significant differences between the two genomes, and the average FST reached 0.685. A total of 234 highly differentiated regions were detected with an FST > 0.9. The protein-coding genes involved in SVs and highly differentiated regions were significantly enriched in metabolic pathways, including fatty metabolism, carbohydrate metabolism, amino acid metabolism and the TCA cycle. These genes may be related to the differences in feeding preferences and the ability to digest carbohydrates between the two grouper species under natural conditions. In addition, protein-coding genes related to the cell cycle and p53-signaling pathway were also detected. These genes may play important roles in the regulation of body size and growth performance. This research provides genomic resources for further breeding works and evolutionary analyses.
Collapse
Affiliation(s)
- Yang Yang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
- Key Laboratory of Tropical Marine Fish Germplasm Innovation and Utilization, Ministry of Agriculture, Sanya 572025, China
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya 572025, China
| | - Leilei Zeng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
| | - Tong Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
| | - Lina Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
| | - Xi Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
| | - Junhong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| | - Zining Meng
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| | - Xiaochun Liu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, Life Sciences School, Sun Yat-sen University, Guangzhou 510275, China; (Y.Y.); (L.Z.); (T.W.); (L.W.); (X.W.); (J.X.)
- Southern Laboratory of Ocean Science and Engineering, Zhuhai 519000, China
| |
Collapse
|